Exemplo n.º 1
0
def test_timecon_get_T():
    """verify we get correct time frame"""
    # given
    con_tc = TimeConstraint(np.atleast_2d([0, 0, 0, 119, 0, 1]).T,
                            index=['k', 'x', 'y', 'z', 0, 1],
                            columns=['u_p0'])
    theo_T = 2  # pulls out last two rows
    # when
    T = con_tc.get_T()
    # then
    np.testing.assert_array_equal(theo_T, T)
Exemplo n.º 2
0
def test_timecon_get_spat():
    """verify we get correct spatial frame"""
    # given
    con_tc = TimeConstraint(np.atleast_2d([0, 0, 0, 119, 0, 1]).T,
                            index=['k', 'x', 'y', 'z', 0, 1],
                            columns=['u_p0'])
    theo_time = con_tc.loc[['k', 'x', 'y', 'z']]  # pulls out last two rows
    # when
    time_vec = con_tc.get_spat()
    # then
    np.testing.assert_array_equal(theo_time, time_vec)
Exemplo n.º 3
0
def test_data_spectrum_nolabels():
    """test 1)can interpolate with no/incorrect column labels 2) float comparisons"""
    # given
    dt, z, T = 1, 65, 4
    con_tc = TimeConstraint([[0, 0], [0, 0], [0, 0], [60, 70], [9, 17],
                             [11, 20], [10, 18], [9, 16]],
                            index=['k', 'x', 'y', 'z', 0, dt, 2 * dt, 3 * dt],
                            columns=['dog', 'cat'])
    mags_theo = np.abs(np.fft.rfft(con_tc.get_time(), axis=0) / (T / dt))
    spec_theo = np.mean(2 * mags_theo**2 * T, axis=1).reshape(-1, 1)
    f = np.arange(mags_theo.shape[0]) / T + 1e-12
    # when
    spec = data_spectrum(f, 0, 0, z, con_tc=con_tc)
    # then
    np.testing.assert_array_almost_equal(spec, spec_theo)
Exemplo n.º 4
0
def test_gen_turb_con():
    """mean & std of iec turbulence, con'd turb is regen'd, correct columns
    """
    # given -- constraining points
    con_spat_df = pd.DataFrame([[0, 0, 0, 70]], columns=_spat_rownames).T
    kwargs = {'u_ref': 10, 'turb_class': 'B', 'l_c': 340.2, 'z_ref': 70, 'T': 300,
              'dt': 0.5, 'seed': 1337}
    coh_model = 'iec'
    con_turb_df = gen_turb(con_spat_df, coh_model=coh_model, **kwargs)
    con_tc = TimeConstraint().from_con_data(con_spat_df=con_spat_df.T,
                                            con_turb_df=con_turb_df)  # old spat_df was T
    # given -- simulated, constrainted turbulence
    y, z = 0, [70, 72]
    spat_df = gen_spat_grid(y, z)
    wsp_func, sig_func, spec_func = power_profile, iec_sig, kaimal_spectrum
    sig_theo = np.tile([1.834, 1.4672, 0.917], 2)  # sig_u, sig_v, sig_w
    u_theo = np.array([10, 0, 0, 10.05650077210035, 0, 0])  # U1, ... U2, ...
    theo_cols = [f'{"uvw"[ic]}_p{ip}' for ip in range(2)for ic in range(3)]
    # when
    sim_turb_df = gen_turb(spat_df, con_tc=con_tc, wsp_func=wsp_func, sig_func=sig_func,
                           spec_func=spec_func, coh_model=coh_model, **kwargs)
    # then (std dev, mean, and regen'd time series should be close; right colnames)
    pd.testing.assert_index_equal(sim_turb_df.columns, pd.Index(theo_cols))
    np.testing.assert_allclose(sig_theo, sim_turb_df.std(axis=0), atol=0.01, rtol=0.50)
    np.testing.assert_allclose(u_theo, sim_turb_df.mean(axis=0), atol=0.01)
    np.testing.assert_allclose(con_turb_df.u_p0, sim_turb_df.u_p0, atol=0.01)
Exemplo n.º 5
0
def test_timecon_from_condata():
    """verify correct converstion from old con_data format"""
    # given
    con_spat_df = pd.DataFrame([[0, 0, 0, 0, 119]],
                               columns=['k', 'p_id', 'x', 'y', 'z'])
    con_turb_df = pd.DataFrame([[0], [1]], index=[0, 1], columns=['u_p0'])
    con_data = {'con_spat_df': con_spat_df, 'con_turb_df': con_turb_df}
    theo_tc = TimeConstraint(np.atleast_2d([0, 0, 0, 119, 0, 1]).T,
                             index=['k', 'x', 'y', 'z', 0, 1],
                             columns=['u_p0'])
    # when
    con_tc1 = TimeConstraint().from_con_data(con_data)
    con_tc2 = TimeConstraint().from_con_data(con_spat_df=con_spat_df,
                                             con_turb_df=con_turb_df)
    # then
    pd.testing.assert_frame_equal(theo_tc, con_tc1, check_dtype=False)
    pd.testing.assert_frame_equal(theo_tc, con_tc2, check_dtype=False)
Exemplo n.º 6
0
def test_combine_spat_con_nonunique():
    """should raise an error when we try to combine badly named columns"""
    # given
    spat_df = pd.DataFrame([[0], [0], [0], [60]], index=_spat_rownames, columns=['u_p0_con'])
    con_tc = TimeConstraint([[0], [0], [0], [70]], index=_spat_rownames, columns=['u_p0'])
    # when and then
    with pytest.raises(ValueError):
        utils.combine_spat_con(spat_df, con_tc)
Exemplo n.º 7
0
def test_data_spectrum():
    """verify 1) data interpolator implement in data_spectrum works, 2) dtype"""
    # given
    f, T, dt = [0, 0.5], 2, 1
    k, y, z = np.repeat(range(3),
                        3), np.zeros(9, dtype=int), np.tile([40, 70, 100], 3)
    con_tc = TimeConstraint(
        [[0, 0, 1, 1, 2, 2], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
         [50, 90, 50, 90, 50, 90], [0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6]],
        index=['k', 'x', 'y', 'z', 0.0, 1.0])
    spec_cols = 2 * np.abs(np.fft.rfft(con_tc.get_time(), axis=0) /
                           (T / dt))**2 * T
    spec_theo = np.tile(
        np.interp([0, 0.5, 1, 2, 2.5, 3, 4, 4.5, 5], np.arange(6),
                  spec_cols[0]), (2, 1))
    # when
    spec_arr = data_spectrum(f, k, y, z, con_tc=con_tc)
    # then
    np.testing.assert_array_equal(spec_theo, spec_arr)
Exemplo n.º 8
0
def test_gen_turb_bad_con_tc():
    """verify the errors are thrown when con_tc dt doesn't match sim dt"""
    y, z = 0, [70, 80]
    spat_df = gen_spat_grid(y, z)
    kwargs = {'u_ref': 10, 'turb_class': 'B', 'l_c': 340.2, 'z_ref': 75, 'T': 1,
              'dt': 0.5}
    con_spat_df = pd.DataFrame([[0, 0, 0, 0, 75]],
                               columns=['k', 'p_id', 'x', 'y', 'z'])
    con_turb_df = pd.DataFrame([[9], [11]], index=[0, 5], columns=['u_p0'])
    con_tc = TimeConstraint().from_con_data(con_spat_df=con_spat_df, con_turb_df=con_turb_df)
    # when and then
    with pytest.raises(ValueError):  # no con_tc given
        gen_turb(spat_df, con_tc=con_tc, **kwargs)
Exemplo n.º 9
0
def test_combine_spat_con_tcinspat():
    """some columns in TimeConstraint are in spat_df and float precision"""
    # given
    spat_df = pd.DataFrame([[0, 0], [0, 0], [0, 0], [50, 60.]],
                           index=_spat_rownames, columns=['u_p0', 'u_p1'])
    con_tc = TimeConstraint([[0, 0], [0, 0], [0, 0], [60 + 1e-13, 70]],
                            index=_spat_rownames, columns=['u_p0', 'u_p1'])
    theo_df = pd.DataFrame([[0, 0, 0], [0, 0, 0], [0, 0, 0], [60, 70, 50]],
                           index=_spat_rownames, columns=['u_p0_con', 'u_p1_con', 'u_p0'])
    # when
    comb_df = utils.combine_spat_con(spat_df, con_tc)
    # then
    pd.testing.assert_frame_equal(theo_df, comb_df, check_dtype=False)
Exemplo n.º 10
0
def test_gen_turb_sims_collocated():
    """Should return None if all sim pts collocated with constraints"""
    # given -- constraining points
    con_spat_df = pd.DataFrame([[0, 0, 0, 70]], columns=_spat_rownames).T
    kwargs = {'u_ref': 10, 'turb_class': 'B', 'l_c': 340.2, 'z_ref': 70, 'T': 300,
              'dt': 0.5, 'seed': 1337}
    coh_model = 'iec'
    con_turb_df = gen_turb(con_spat_df, coh_model=coh_model, **kwargs)
    con_tc = TimeConstraint().from_con_data(con_spat_df=con_spat_df.T, con_turb_df=con_turb_df)
    # given -- simulated, constrainted turbulence
    spat_df = con_spat_df  # simulate same points as constraint
    # when
    sim_turb_df = gen_turb(spat_df, con_tc=con_tc, coh_model=coh_model, **kwargs)
    # then (std dev, mean, and regen'd time series should be close; right colnames)
    assert sim_turb_df is None
Exemplo n.º 11
0
def test_check_sims_collocated():
    """verify function works when no unique simulation points"""
    # given -- constraining points
    con_arr = np.array([[0, 0, 0, 70, 1], [1, 0, 0, 70, 1], [2, 0, 0, 70, 1]]).T
    kwargs = {'u_ref': 10, 'turb_class': 'B', 'l_c': 340.2, 'z_ref': 70, 'T': 300,
              'dt': 0.5, 'seed': 1337}
    inp_out = [(0, 1, False), (0, 2, True)]
    # given -- points to simulate
    spat_df = pd.DataFrame([[0, 0, 0, 70],
                            [1, 0, 0, 70]], columns=_spat_rownames).T
    for (start, stop, res_theo) in inp_out:
        # given -- constraint
        con_tc = TimeConstraint(con_arr[:, start:stop], index=_spat_rownames + [0])
        # when
        res = utils.check_sims_collocated(spat_df, con_tc)
        # then
        assert res == res_theo
Exemplo n.º 12
0
def test_gen_turb_bad_interp():
    """verify the errors are thrown for bad interp_data options"""
    # given
    y, z = 0, [70, 80]
    spat_df = gen_spat_grid(y, z)
    kwargs = {'u_ref': 10, 'turb_class': 'B', 'l_c': 340.2, 'z_ref': 75, 'T': 2,
              'dt': 1}
    con_spat_df = pd.DataFrame([[0, 0, 0, 0, 75]],
                               columns=['k', 'p_id', 'x', 'y', 'z'])
    con_turb_df = pd.DataFrame([[0], [1]], index=[9, 11], columns=['u_p0'])
    con_tc = TimeConstraint().from_con_data(con_spat_df=con_spat_df, con_turb_df=con_turb_df)
    # when and then
    with pytest.raises(ValueError):  # no con_tc given
        gen_turb(spat_df, interp_data='all', **kwargs)
    with pytest.raises(ValueError):  # bad string
        gen_turb(spat_df, interp_data='dog', con_tc=con_tc, **kwargs)
    with pytest.raises(ValueError):  # bad string in list
        gen_turb(spat_df, interp_data=['dog'], con_tc=con_tc, **kwargs)
Exemplo n.º 13
0
def test_combine_spat_con_empty():
    """verify we can combine empty/nonempty spat_df and con_tc"""
    # given
    empt_df = pd.DataFrame(index=_spat_rownames)
    df_sp = pd.DataFrame([[0], [0], [0], [60]], index=_spat_rownames, columns=['u_p0'])
    df_cn = pd.DataFrame([[0], [0], [0], [70]], index=_spat_rownames, columns=['u_p0'])
    theo_dfs = [empt_df,  # empty+empt=empt
                df_sp,  # empt con, full spat=spat
                df_cn.rename(index=str, columns={'u_p0': 'u_p0_con'}),  # emp spt, ful cn
                pd.concat((df_cn.rename(index=str, columns={'u_p0': 'u_p0_con'}), df_sp),
                          axis=1)]  # full con, full spat=con/spat
    for i in range(4):  # 4 diff tests
        spat_df = [empt_df, df_sp][i % 2]  # spat_df empty on 0, 2
        con_tc = TimeConstraint([empt_df, df_cn][i // 2])  # con_tc empty on 0, 1
        # when
        comb_df = utils.combine_spat_con(spat_df, con_tc)
        # then
        pd.testing.assert_frame_equal(comb_df, theo_dfs[i])
Exemplo n.º 14
0
Input = pd.read_csv(
    r'../InputsForConstrainedTurb/PyconturbInput/PythonWrapperInput.csv',
    index_col=None)

#%%
for i in range(0, Input.shape[0]):
    # Reading CSV File from Matlab an running PyConTurb
    Variables = pd.read_csv(Input.variables[i], index_col=None)
    GridY = pd.read_csv(Input.gridy[i], index_col=None)
    GridZ = pd.read_csv(Input.gridz[i], index_col=None)
    con_df = pd.read_csv(Input.contc[i], index_col=0)
    savename = Input.savename[i]
    print('running file ' + savename)
    # import pdb; pdb.set_trace()
    con_tc = TimeConstraint(con_df)  # Constraining in time
    con_tc.index = con_tc.index.map(lambda x: float(x)
                                    if (x not in 'kxyz') else x)

    # Inputs to constrained Turbulence:
    spat_df = gen_spat_grid(GridY.iloc[0, :], GridZ.iloc[
        0, :])  # create our spatial pandas dataframe with our grid data.
    kwargs = {
        'u_ref': Variables.iloc[0, 2],
        'z_ref': Variables.iloc[0, 4],
        'z_hub':
        Variables.iloc[0, 4],  # necessary keyword arguments for IEC turbulence
        'T': con_tc.get_T(),
        'dt': con_tc.get_time().index[1],
        'turb_class': Variables.iloc[0, -1],
        'alpha': Variables.iloc[0, -2],
Exemplo n.º 15
0
    Plot=False
    # Plot=False
    GenerateBox=True
    # GenerateBox=False


    # --- Constants and derived params
    pkl_file  = '{}{}.pkl'.format(Case,Suffix)
    pkl_space = '{}{}_space.pkl'.format(Case,Suffix)
    box_file  = '{}{}{}.bts'.format(OUT_Folder,Case,Suffix)
    con_file  = '35Hz_data/{}_pyConTurb_tc.csv'.format(Case)
    # --- Loading files
    print('Loading files...')
    sim_ts  = pickle.load(open(pkl_file,'rb'))
    sim_sp = pickle.load(open(pkl_space,'rb'))
    con_tc = TimeConstraint(pd.read_csv(con_file, index_col=0))  # load data from csv directly into tc
    con_tc.index = con_tc.index.map(lambda x: float(x) if (x not in 'kxyz') else x)  # index cleaning
    con_ts = con_tc.get_time()
    con_sp = con_tc.loc[['k','x','y','z']]

    RefPoints = con_sp.filter(regex='u_', axis=1).loc[['x','y','z']]
    print(RefPoints)
    print(sim_ts.columns)
    print(sim_sp.columns)

    if GenerateBox:
        print('Generating turbulence file:',box_file)
        ts = TurbSimFile()
        ts['y'] = np.unique(np.around(sim_sp.loc['y'].values,7))
        ts['z'] = np.unique(np.around(sim_sp.loc['z'].values,7))
        ts['t'] = np.around(sim_ts.index,10)
Exemplo n.º 16
0
nz = 160

Suffix=Suffix+'_'+str(ny)'_'+str(nz)

print('>>> Case:   {}'.format(Case))
print('>>> Suffix: {}'.format(Suffix))
print('>>> Write:  {} {}'.format(write_freq_data,combine_freq_data))
print('>>> y:      {} {} {}'.format(ymin,ymax,ny))
print('>>> z:      {} {} {}'.format(zmin,zmax,nz))
h_hub=57;
pkl_file = '{}{}.pkl'.format(Case,Suffix)
pkl_space = '{}{}_space.pkl'.format(Case,Suffix)
con_file = '35Hz_data/{}_pyConTurb_tc.csv'.format(Case)

# --- Constraint time series
con_tc = TimeConstraint(pd.read_csv(con_file, index_col=0))  # load data from csv directly into tc
con_tc.index = con_tc.index.map(lambda x: float(x) if (x not in 'kxyz') else x)  # index cleaning
time_df = con_tc.get_time()
dt      = con_tc.get_time().index[1]
T       = con_tc.get_T()-dt          # TODO
print('>>> Pkl : {}Mb'.format(0.07*ny*nz))
print('>>> T, dt:',T,dt)

# --- Fitting power law and sigma
# alpha,u_ref, my_wsp_func,veer_func = get_wsp_func(con_tc, h_hub, plot   = False)
# my_sig_func                        = get_sigma_func(con_tc, plot = False)
if Case=='A1':
    def my_sig_func(k, y, z, **kwargs):
        sig = np.zeros(y.shape)
        sig[k==0] =  0.46577620264919134*np.exp(-0.009459702869284256*z[k==0])+0.5242096170226613
        sig[k==1] =  0.32501065767141885*np.exp(-0.009059732365499604*z[k==1])+0.4664357892808409