Exemplo n.º 1
0
def e2e_test(expected_wclat):
    options.init_pycpa()

    # generate an new system
    s = model.System()

    # add a resource to the system
    # register round robin scheduler
    r1 = s.bind_resource(model.Resource("R1",
                                        schedulers.RoundRobinScheduler()))

    # map two tasks to
    t11 = r1.bind_task(model.Task("T11", wcet=1, bcet=1))
    t12 = r1.bind_task(model.Task("T12", wcet=2, bcet=1))

    # register precedence constraint
    t11.link_dependent_task(t12)

    t11.in_event_model = model.PJdEventModel(P=4, J=3)

    # register a task chain as a stream
    s1 = s.bind_path(model.Path("S1", [t11, t12]))

    # perform a system analysis
    print("analyzing")
    task_results = analysis.analyze_system(s)

    # calculate the latency for the first 10 events
    for n in range(1, 11):
        best_case_latency, worst_case_latency = path_analysis.end_to_end_latency(
            s1, task_results, n)
        print("stream S1 e2e latency. best case: %d, worst case: %d" %
              (best_case_latency, worst_case_latency))
        assert (worst_case_latency == expected_wclat[n - 1])
Exemplo n.º 2
0
def spp_test():
    # init pycpa and trigger command line parsing
    options.init_pycpa()

    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
    r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

    # create and bind tasks to r2
    t21 = r2.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

    # specify precedence constraints: T11 -> T21; T12-> T22
    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    # register a periodic with jitter event model for T11 and T12
    t11.in_event_model = model.PJdEventModel(P=30, J=5)
    t12.in_event_model = model.PJdEventModel(P=15, J=6)

    # plot the system graph to visualize the architecture
    g = graph.graph_system(s, 'spp_graph.pdf', dotout='spp_graph.dot')

    # perform the analysis
    print("Performing analysis")
    task_results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print("%s: wcrt=%d" % (t.name, task_results[t].wcrt))
            print("    b_wcrt=%s" % (task_results[t].b_wcrt_str()))

    expected_wcrt = dict()
    expected_wcrt[t11] = 10
    expected_wcrt[t12] = 13
    expected_wcrt[t21] = 2
    expected_wcrt[t22] = 19

    for t in expected_wcrt.keys():
        assert (expected_wcrt[t] == task_results[t].wcrt)
Exemplo n.º 3
0
def gantt_test():
    # initialyze pycpa. (e.g. read command line switches and set up default options)
    options.init_pycpa()

    # generate an new system
    s = model.System()

    # instantiate a resource
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=5, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=9, bcet=1, scheduling_parameter=2))

    # connect communicating tasks: T11 -> T12
    t11.link_dependent_task(t12)

    # register a PJd event model
    t11.in_event_model = model.PJdEventModel(P=30, J=60)

    # perform the analysis
    print("Performing analysis")
    results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print("%s: wcrt=%d" % (t.name, results[t].wcrt))

    simmodel = simulation.ResourceModel(r1)
    simmodel.runModel(task=t12,
                      scheduler=simulation.SimSPP(name="SPP", sim=simmodel))

    # plot
    hp_tasks = list()
    for t in sorted(r1.tasks, key=str):
        if t.scheduling_parameter <= t12.scheduling_parameter:
            hp_tasks.append(t)

    plot.plot_gantt(hp_tasks,
                    results,
                    height=2. / 3,
                    bar_linewidth=2,
                    min_dist_arrows=1,
                    arrow_head_width=1,
                    task=t12,
                    show=options.get_opt('show'),
                    file_name='gantt.pdf')
Exemplo n.º 4
0
def simple_test():
    # initialyze pycpa. (e.g. read command line switches and set up default options)
    options.init_pycpa()

    # generate an new system
    s = model.System()

    # instantiate a resource
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=5, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=9, bcet=1, scheduling_parameter=2))

    # connect communicating tasks: T11 -> T12
    t11.link_dependent_task(t12)

    # register a PJd event model
    t11.in_event_model = model.PJdEventModel(P=30, J=60)

    # create a path
    p1 = model.Path("P1", [t11, t12])

    # add constraints to task t11
    s.constraints.add_backlog_constraint(t11, 5)

    # add constraints to task t12
    s.constraints.add_wcrt_constraint(t12, 90)

    try:
        # plot the system graph to visualize the architecture
        g = graph.graph_system(s, 'simple_graph.pdf')
    except Exception:
        # gracefully pass for machines without matplotlib
        pass

    # perform the analysis
    print("Performing analysis")
    results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print("%s: wcrt=%d" % (t.name, results[t].wcrt))

    bcl, wcl = path_analysis.end_to_end_latency(p1, results, 2)
    print "bcl: %d, wcl: %d" % (bcl, wcl)
Exemplo n.º 5
0
def constraints_example():

    options.init_pycpa()

    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
    r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

    # create and bind tasks to r2
    t21 = r2.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

    # specify precedence constraints: T11 -> T21; T12-> T22
    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    # register a periodic with jitter event model for T11 and T12
    t11.in_event_model = model.PJdEventModel(P=30, J=5)
    t12.in_event_model = model.PJdEventModel(P=15, J=6)

    p1 = model.Path("myPath", [t11, t21])
    s.bind_path(p1)

    # deliberately overconstrain the system
    s.constraints.add_path_constraint(p1, 5, n=2)
    s.constraints.add_wcrt_constraint(t11, 1)
    s.constraints.add_load_constraint(r1, 0.5)
    s.constraints.add_backlog_constraint(t11, 1)

    # perform the analysis
    print("Performing analysis")
    task_results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print("%s: wcrt=%d" % (t.name, task_results[t].wcrt))
Exemplo n.º 6
0
    def xmlrpc_new_system(self, name):
        """ create new pycpa system and return it's id

        :param name: Name of the system.
        :type name: string
        :returns: ID of the created system
        :rtype: string

        """
        name = str(name)
        s = model.System(name)
        sid = self._unique(s)
        self._objects[sid] = s
        logger.debug("{} = {}new_system('{}')".format(sid, self.debug_prefix,
                                                      name))
        return sid
Exemplo n.º 7
0
def test_spp():
    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
    r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

    # create and bind tasks to r2
    t21 = r2.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

    # specify precedence constraints: T11 -> T21; T12-> T22
    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    # register a periodic with jitter event model for T11 and T12
    t11.in_event_model = model.PJdEventModel(P=30, J=5)
    t12.in_event_model = model.PJdEventModel(P=15, J=6)

    # perform the analysis
    task_results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    busy_times_t11 = [0, 10]
    busy_times_t12 = [0, 13, 16]
    busy_times_t21 = [0, 2]
    busy_times_t22 = [0, 11, 20, 31, 40]

    assert task_results[t11].busy_times == busy_times_t11
    assert task_results[t12].busy_times == busy_times_t12
    assert task_results[t21].busy_times == busy_times_t21
    assert task_results[t22].busy_times == busy_times_t22

    assert task_results[t11].wcrt == 10
    assert task_results[t12].wcrt == 13
    assert task_results[t21].wcrt == 2
    assert task_results[t22].wcrt == 19
Exemplo n.º 8
0
def sampling_test(wclat_results):

    options.init_pycpa()

    # generate an new system
    s = model.System()

    # add two resources to the system
    # register two schedulers
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))

    # add a task
    t11 = r1.bind_task(model.Task(name="T11", wcet=3, bcet=1, scheduling_parameter=1))
    # register input event model
    t11.in_event_model = model.PJdEventModel(P=30, J=15)

    # add three more tasks, these will be triggered by other tasks
    t12 = r1.bind_task(model.Task(name="T12", wcet=3, bcet=2, scheduling_parameter=2))

    # add a sampling junction
    j1 = s.bind_junction(model.Junction(name="J1", strategy=junctions.SampledInput()))
    j1.strategy.set_trigger_event_model(model.PJdEventModel(P=50, J=0))

    # register a task chain as a stream: t11->j1->t12
    s1 = s.bind_path(model.Path("S1", [t11, j1, t12]))

    # graph the system
    graph.graph_system(s, "sampling_example.pdf")

    # analyze the system
    print("Performing analysis")
    results = analysis.analyze_system(s)

    # print the results
    print("Result:")
    for r in sorted(s.resources, key=str):
        print "load on resource %s: %0.2f" % (r.name, r.load())
        for t in sorted(r.tasks, key=str):
            print "  task %s - wcrt: %d" % (t.name, results[t].wcrt)

    # calculate the latency for the first 10 events
    for n in range(1, 11):
        best_case_latency, worst_case_latency = path_analysis.end_to_end_latency(s1, results, n)
        print("stream S1 e2e latency. best case: %d, worst case: %d" % (best_case_latency, worst_case_latency))
        assert(worst_case_latency == wclat_results[n-1])
Exemplo n.º 9
0
def _run_test(scheduler, priorities):
    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(model.Resource("R1", scheduler))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=1, scheduling_parameter=priorities[0]))
    t21 = r1.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=priorities[1]))
    t31 = r1.bind_task(
        model.Task("T31", wcet=4, bcet=2, scheduling_parameter=priorities[2]))

    # specify precedence constraints: T11 -> T21 -> T31
    t11.link_dependent_task(t21)
    t21.link_dependent_task(t31)

    # register a periodic with jitter event model for T11
    t11.in_event_model = model.PJdEventModel(P=20, J=5)

    # perform the analysis
    print("Performing analysis")
    task_results = analysis.analyze_system(s)

    failed = False
    for t in r1.tasks:
        for n in range(1, 11):
            if t.in_event_model.delta_min(n) != t.in_event_model.deltamin_func(
                    n):
                failed = True
                print("%s: cached EM of != uncached EM" % (t.name))
                print("delta_min(%d) = %d != %d" %
                      (n, t.in_event_model.delta_min(n),
                       t.in_event_model.deltamin_func(n)))
                print("for priorities = %s" % str(priorities))
                break

    return not failed
Exemplo n.º 10
0
def profiling_test():

    options.init_pycpa()

    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(model.Resource("R1", schedulers.SPPScheduler()))
    r2 = s.bind_resource(model.Resource("R2", schedulers.SPPScheduler()))

    # create and bind tasks to r1
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=5, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

    # create and bind tasks to r2
    t21 = r2.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task("T22", wcet=9, bcet=4, scheduling_parameter=2))

    # specify precedence constraints: T11 -> T21; T12-> T22
    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    # register a periodic with jitter event model for T11 and T12
    t11.in_event_model = model.PJdEventModel(P=30, J=5)
    t12.in_event_model = model.PJdEventModel(P=15, J=6)

    filename = "profiling_example.prof"
    prof = hotshot.Profile(filename)
    prof.runcall(analysis.analyze_system, s)
    prof.close()

    stats = hotshot.stats.load(filename)
    stats.strip_dirs()
    stats.sort_stats('time', 'calls')
    stats.print_stats(20)
Exemplo n.º 11
0
def tdma_test():

    options.init_pycpa()

    s = model.System()
    r1 = s.bind_resource(model.Resource("R1", schedulers.TDMAScheduler()))
    r2 = s.bind_resource(model.Resource("R2", schedulers.TDMAScheduler()))

    # scheduling_parameter denotes the slotsize
    t11 = r1.bind_task(
        model.Task("T11", wcet=10, bcet=5, scheduling_parameter=2))
    t12 = r1.bind_task(
        model.Task("T12", wcet=3, bcet=1, scheduling_parameter=2))

    t21 = r2.bind_task(
        model.Task("T21", wcet=2, bcet=2, scheduling_parameter=2))
    t22 = r2.bind_task(
        model.Task("T22", wcet=3, bcet=3, scheduling_parameter=2))

    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    t11.in_event_model = model.PJdEventModel()
    t11.in_event_model.set_PJd(30, 5)

    t12.in_event_model = model.PJdEventModel()
    t12.in_event_model.set_PJd(15, 6)

    g = graph.graph_system(s, 'tdma_graph.pdf')

    print("Performing analysis")
    results = analysis.analyze_system(s)

    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print str(t), " - ", results[t].wcrt
            print "    ", results[t].b_wcrt_str()
Exemplo n.º 12
0
def rr_test():

    options.init_pycpa()

    s = model.System()
    r1 = s.bind_resource(model.Resource("R1",
                                        schedulers.RoundRobinScheduler()))
    r2 = s.bind_resource(model.Resource("R2",
                                        schedulers.RoundRobinScheduler()))

    # create and bind tasks
    # the scheduling_parameter denotes the slot size
    t11 = r1.bind_task(
        model.Task(name="T11", wcet=1, bcet=1, scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task(name="T12", wcet=1, bcet=1, scheduling_parameter=1))
    t21 = r2.bind_task(
        model.Task(name="T21", wcet=1, bcet=1, scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task(name="T22", wcet=1, bcet=1, scheduling_parameter=1))

    t11.link_dependent_task(t21)
    t22.link_dependent_task(t12)

    t11.in_event_model = model.CTEventModel(c=1, T=5)
    t22.in_event_model = model.CTEventModel(c=5, T=17)

    print("Performing analysis")
    results = analysis.analyze_system(s)

    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            print(t, " - ", results[t].wcrt)
            print("    b_wcrt=%s" % (results[t].b_wcrt_str()))

    graph.graph_system(s, show=options.get_opt('show'))
Exemplo n.º 13
0
def time_bases_test(auto=True):
    # print the welcome message
    options.init_pycpa()
    # generate an new system
    s = model.System()

    # add two resources (CPUs) to the system
    # and register the static priority preemptive scheduler
    r1 = s.bind_resource(
        model.Resource("R1", schedulers.SPPScheduler(), frequency=333333333))
    r2 = s.bind_resource(
        model.Resource("R2", schedulers.SPPScheduler(), frequency=100000000))

    # get a common time-base
    common_time_base = util.ns

    if auto == True:
        common_time_base = util.calculate_base_time(
            [r.frequency for r in s.resources])

    print "Basetime is %d Hz" % common_time_base

    # create and bind tasks to r1. Here the timing is specified in absolute time (i.e. 10 ms)
    t11 = r1.bind_task(
        model.Task("T11",
                   wcet=util.time_to_time(10, util.ms, common_time_base,
                                          'ceil'),
                   bcet=util.time_to_time(5, util.ms, common_time_base,
                                          'floor'),
                   scheduling_parameter=1))
    t12 = r1.bind_task(
        model.Task("T12",
                   wcet=util.time_to_time(3, util.ms, common_time_base,
                                          'ceil'),
                   bcet=util.time_to_time(1, util.ms, common_time_base,
                                          'floor'),
                   scheduling_parameter=2))

    # create and bind tasks to r2. Here the timing is specified in cycle time (i.e. 10000 cycles)
    t21 = r2.bind_task(
        model.Task("T21",
                   wcet=util.cycles_to_time(200000, r2.frequency,
                                            common_time_base, 'ceil'),
                   bcet=util.cycles_to_time(200000, r2.frequency,
                                            common_time_base, 'floor'),
                   scheduling_parameter=1))
    t22 = r2.bind_task(
        model.Task("T22",
                   wcet=util.cycles_to_time(900000, r2.frequency,
                                            common_time_base, 'ceil'),
                   bcet=util.cycles_to_time(400000, r2.frequency,
                                            common_time_base, 'floor'),
                   scheduling_parameter=2))

    # specify precedence constraints: T11 -> T21; T12-> T22
    t11.link_dependent_task(t21)
    t12.link_dependent_task(t22)

    # register a periodic with jitter event model for T11 and T12
    t11.in_event_model = model.PJdEventModel(
        P=util.time_to_time(30, util.ms, common_time_base, 'floor'),
        J=util.time_to_time(5, util.ms, common_time_base, 'ceil'))
    t12.in_event_model = model.PJdEventModel(
        P=util.time_to_time(15, util.ms, common_time_base, 'floor'),
        J=util.time_to_time(6, util.ms, common_time_base, 'ceil'))

    # perform the analysis
    print("Performing analysis")
    task_results = analysis.analyze_system(s)

    # print the worst case response times (WCRTs)
    print("Result:")
    for r in sorted(s.resources, key=str):
        for t in sorted(r.tasks, key=str):
            wcrt_ms = util.time_to_time(task_results[t].wcrt, common_time_base,
                                        util.ms, 'ceil')
            print("%s: wcrt=%d ms" % (t.name, wcrt_ms))