def open(pool_uuid, cont_uuid, flag): """Open a container and return a daosdm() object""" if flag not in ['r', 'w']: raise error container = pydaos.Cont(pool_uuid, cont_uuid) kvstore = container.rootkv() # pylint: disable=redefined-variable-type if flag == 'w': db = daosdm_rw(kvstore) else: db = daosdm(kvstore) # pylint: enable=redefined-variable-type return db
DIMENSIONS = int(os.getenv("DIMENSIONS", "500")) NUMBER_OF_CENTERS = int(os.getenv("NUMBER_OF_CENTERS", "20")) NUMBER_OF_ITERATIONS = int(os.getenv("NUMBER_OF_ITERATIONS", "10")) NUMBER_OF_KMEANS_ITERATIONS = int( os.getenv("NUMBER_OF_KMEANS_ITERATIONS", "10")) SEED = 42 MODE = 'uniform' DAOS_POOL_UUID = os.environ["DAOS_POOL"] DAOS_CONT_UUID = os.environ["DAOS_CONT"] ############################################# ############################################# DAOS_CONT = pydaos.Cont(DAOS_POOL_UUID, DAOS_CONT_UUID) DAOS_KV = DAOS_CONT.rootkv() NP_FROMSTRING_DTYPE = np.dtype('float64') NP_FROMSTRING_SHAPES = list() def generate_points(num_points, dim, mode, seed): # Random generation distributions rand = { 'normal': lambda k: np.random.normal(0, 1, k), 'uniform': lambda k: np.random.random(k), } r = rand[mode] np.random.seed(seed) mat = np.array([r(dim) for __ in range(num_points)])