Exemplo n.º 1
0
 def get(self, request):
     level = request.GET.get('level', None)
     access_levels = ['district', 'warehouse', 'ip', 'facility']
     access_areas = []
     if level and level.lower() in access_levels:
         access_areas = pydash.reject(Score.objects.values_list(level, flat=True).distinct(), lambda x: len(x) < 1)
     return Response(access_areas)
Exemplo n.º 2
0
 def get(self, request):
     level = request.GET.get('level', None)
     access_levels = ['district', 'warehouse', 'ip', 'facility']
     access_areas = []
     if level and level.lower() in access_levels:
         access_areas = pydash.reject(
             Score.objects.values_list(level, flat=True).distinct(),
             lambda x: len(x) < 1)
     return Response(access_areas)
Exemplo n.º 3
0
 def get(self, request):
     level = request.GET.get("level", None)
     access_levels = ["district", "warehouse", "ip", "facility"]
     access_areas = []
     if level and level.lower() in access_levels:
         access_areas = pydash.reject(
             Score.objects.values_list(level, flat=True).distinct(),
             lambda x: len(x) < 1,
         )
     return Response(access_areas)
Exemplo n.º 4
0
def get_bot_response(text):
    sentences = (chain(re.split(
        PUNCTUATION_REGEX, text)).reject(is_empty).map(clean_sentence).value())

    if len(sentences) <= 0:
        return NO_INTENT_DETECTED_ANSWER

    lemmatized_sentences = reject(
        [lemmatize_sentence(nlp(sentence)) for sentence in sentences],
        is_empty,
    )

    X = [
        sentence_to_feature_vector(sentence, bag_of_words)
        for sentence in lemmatized_sentences
    ]

    predictions = model.predict(X)
    largest_index = np.argmax(predictions, axis=1)

    largest_values = np.take_along_axis(predictions,
                                        np.expand_dims(largest_index, axis=-1),
                                        axis=-1)

    # last user intent was not detected correctly
    if largest_values[-1][0] < MINIMUM_THRESHOLD:
        return NO_INTENT_DETECTED_ANSWER

    answers = [
        random.choice(intents_json[idx]["responses"]) for idx in largest_index
    ]

    for idx in largest_index:
        if "date" in intents_json[idx]["extract"]:
            extracted_date = get_date(sentences[-1])
            answers[-1] = answers[-1].replace("<date>", str(extracted_date))
        if "place" in intents_json[idx]["extract"]:
            extracted_places = get_places(sentences[-1], nlp)
            answers[-1] = answers[-1].replace("<place>",
                                              ",".join(extracted_places))
        if "number" in intents_json[idx]["extract"]:
            extracted_numbers = get_numbers(sentences[-1])
            answers[-1] = answers[-1].replace("<number>",
                                              ",".join(extracted_numbers))

    return {
        "answer": " ".join(answers),
        "intent": intents_json[largest_index[-1]]["tag"],
        "nextStates": intents_json[largest_index[-1]]["nextStates"],
    }
Exemplo n.º 5
0
def persist_multiple_order_records(report):
    facilities_with_multiple_orders = pydash.reject(
        report.locs, lambda f: facility_has_single_order(f))
    all = pydash.map_(facilities_with_multiple_orders, build_mof(report))
    MultipleOrderFacility.objects.filter(cycle=report.cycle).delete()
    MultipleOrderFacility.objects.bulk_create(all)
Exemplo n.º 6
0
def test_reject(case, expected):
    assert _.reject(*case) == expected
Exemplo n.º 7
0
def persist_multiple_order_records(report):
    facilities_with_multiple_orders = pydash.reject(report.locs, lambda f: facility_has_single_order(f))
    all = pydash.collect(facilities_with_multiple_orders, build_mof(report))
    MultipleOrderFacility.objects.filter(cycle=report.cycle).delete()
    MultipleOrderFacility.objects.bulk_create(all)