Exemplo n.º 1
0
def run(fixed0, fixed1, moving0, moving1, output):
    """ Registers the two files and outputs the transformed moving file """

    # Read images using the SimpleITK IO functions
    fixed = [pydeform.read_volume(fixed0), pydeform.read_volume(fixed1)]
    moving = [pydeform.read_volume(moving0), pydeform.read_volume(moving1)]

    fixed_mask = build_mask(fixed[0])
    moving_mask = build_mask(moving[0])

    regularization_map = build_regularization_map(fixed[0], 100, 0.15, 0.25)

    # Perform the registration
    with open('registration_log.txt', 'w') as f:
        df = pydeform.register(
            fixed,
            moving,
            settings=settings,
            log=f,  # Log output
            log_level=pydeform.LogLevel.Verbose,  # Log everything
            fixed_mask=fixed_mask,
            moving_mask=moving_mask,
            regularization_map=regularization_map)

    # Transform with linear interpolation
    transformed = pydeform.transform(moving[0], df,
                                     pydeform.Interpolator.Linear)

    # Write transformed image to file
    pydeform.write_volume(output, transformed)
Exemplo n.º 2
0
    def test_affine(self):
        # Test affine initialization

        affine_transform = pydeform.AffineTransform(
            np.array((
                (2, 0, 0),
                (0, 3, 0),
                (0, 0, 4)
            )),
            np.array((10, 10, 10))
        )

        # Do a registration pass without actual iterations to see if affine transform is
        # applied to the resulting displacement field
        settings = {
            'max_iteration_count': 0
        }

        fixed = pydeform.Volume(np.zeros((10,10,10), dtype=np.float32))
        moving = pydeform.Volume(np.zeros((10,10,10), dtype=np.float32))

        df = pydeform.register(
            fixed,
            moving,
            settings=settings,
            affine_transform=affine_transform
        )

        df = np.array(df, copy=False)

        # Ax + b -> A(1, 1, 1) + b -> (2, 3, 4) + (10, 10, 10) -> (12, 13, 14)
        # u(x) = Ax + b - x
        self.assertEqual(df[1,1,1,0], 11)
        self.assertEqual(df[1,1,1,1], 12)
        self.assertEqual(df[1,1,1,2], 13)
Exemplo n.º 3
0
def run(fixed_file, moving_file, output, affine_file=None):
    """ Registers the two files and outputs the transformed moving file """

    # Read images using the IO functions
    fixed = pydeform.read_volume(fixed_file)
    moving = pydeform.read_volume(moving_file)

    # To use multiple image pairs you simply replace fixed and moving with lists
    # of images. Remember to add an additional image_slot in the settings.
    # fixed = [pydeform.read_volume((fixed_file0), pydeform.read_volume((fixed_file1)]
    # moving = [pydeform.read_volume((moving_file0), pydeform.read_volume((moving_file1)]

    # Optionally, read an affine transform
    kwargs = {}
    if affine_file:
        kwargs['affine_transform'] = pydeform.read_affine_transform(
            affine_file)

    # Perform the registration
    with open('registration_log.txt', 'w') as f:
        df = pydeform.register(
            fixed,
            moving,
            settings=settings,
            log=f,  # Log output
            log_level=pydeform.LogLevel.Verbose,  # Log everything
            use_gpu=use_gpu,
            **kwargs)

    # Transform with linear interpolation
    transformed = pydeform.transform(moving, df, pydeform.Interpolator.Linear)

    # Write transformed image to file
    pydeform.write_volume(output, transformed)
Exemplo n.º 4
0
def _registration_worker(q, args, kwargs):
    R""" To be ran in a subprocess.

    Parameters
    ----------
    q: multiprocessing.Queue
        Queue to return the result.
    kwargs: dict
        Keyword arguments for the registration.
    """
    try:
        result = pydeform.register(*args, **kwargs)
    except BaseException as e:
        result = e
    q.put(result)
Exemplo n.º 5
0
    def test_register(self):

        with self.assertRaises(RuntimeError):
            pydeform.register(None, None)

        fixed = rand(10, 10, 10)
        with self.assertRaises(RuntimeError):
            pydeform.register(fixed, None)

        moving = rand(10, 10, 10)
        with self.assertRaises(RuntimeError):
            pydeform.register(None, moving)

        fixed = rand(10, 10, 10)
        moving = [fixed, fixed]
        with self.assertRaises(ValueError):
            pydeform.register(fixed, moving)

        moving = rand(10, 10, 10)
        fixed = [moving, moving]
        with self.assertRaises(ValueError):
            pydeform.register(fixed, moving)

        fixed = (_gauss3(size=(40, 50, 60), mu=(20, 25, 30), sigma=8) > 0.3).astype(np.float32)
        moving = (_gauss3(size=(40, 50, 60), mu=(30, 20, 25), sigma=8) > 0.3).astype(np.float32)

        settings = {
            'regularization_weight': 0.05,
        }

        d = pydeform.register(fixed, moving, settings=settings)

        res = _transform(moving, np.array(d), interpolator=sitk.sitkNearestNeighbor)

        self.assertGreater(_jaccard(res > 0.1, fixed > 0.1), 0.97)