def progression_cards(deaths, color="st-blue"): deaths = deaths.values[-60:] st.cards( { _("7 days"): fmt(deaths[6]), _("15 days"): fmt(deaths[14]), _("30 days"): fmt(deaths[29]), _("60 days"): fmt(deaths[59]), }, color=color, )
def show(self): curves = self.get_epidemic_curves(self.user_inputs['states'].index).fillna(0) # Acc cases ax = curves.iloc[-30:, self.user_inputs['idx']::2].plot(legend=False, grid=True) curves[self.user_inputs['loc'], self.user_inputs['which']].iloc[-30:].plot(ax=ax, legend=False, grid=True) st.pyplot() # Daily cases # ax = curves.iloc[-30:, self.user_inputs['idx']::2] # curves[self.user_inputs['loc'], self.user_inputs['which']] \ # .iloc[-30:] \ # .diff() \ # .plot(ax=ax, legend=False, grid=True) # st.pyplot() # # Growth factors growths = self.get_growths(self.user_inputs['states'].index, self.user_inputs['which']) ci = pd.DataFrame({"low": growths["value"] - growths["std"], "std": growths["std"]}) st.header("Growth factor +/- error") ci.plot.bar(width=0.9, ylim=(0.8, 2), stacked=True, grid=True) plt.plot(self.user_inputs['states'].index, [1] * len(self.user_inputs['states']), "k--") st.pyplot() # # Duplication times st.header("Duplication time") (np.log(2) / np.log(growths["value"])).plot.bar(grid=True, ylim=(0, 30)) st.pyplot() # R0 st.header("R0") params = covid19.params(region=self.user_inputs['loc']) ( np.log(growths["value"]) .apply(lambda K: formulas.R0_from_K("SEAIR", params, K=K)) .plot.bar(width=0.9, grid=True, ylim=(0, 4)) ) st.pyplot() ms_good, ms_keep, ms_bad = self.run_models(self.user_inputs['states'].index, self.user_inputs['which']) # ICU overflow for ms, msg in [ (ms_keep, "keep trends"), (ms_bad, "no distancing"), (ms_good, "more distancing"), ]: st.header(f"Deaths and ICU overflow ({msg})") deaths = pd.DataFrame({m.region.id: m["deaths:dates"] for m in ms}) deaths.plot(legend=False, color="0.5") deaths.sum(1).plot(grid=True) deaths[self.user_inputs['loc']].plot(legend=True, grid=True) st.cards({"Total de mortes": fmt(deaths.iloc[-1].sum())}) st.pyplot() data = {} for m in ms: overflow = m.results["dates.icu_overflow"] if overflow: data[m.region.id] = (overflow - pd.to_datetime(today())).days if data: data = pd.Series(data) data.plot.bar(width=0.9, grid=True) st.pyplot()
def show_outputs(base, group, region: RegionT, plot_opts, clinical_opts, **kwargs): """ Show results from user input. """ cmodels = group.clinical.overflow_model(**clinical_opts) cforecast = cmodels[0] start = base.info["event.simulation_start"] # # Introduction # st.header(_("Introduction")) st.markdown(report_intro(region)) st.cards( { _("Basic reproduction number"): fmt(base.R0), _("Ascertainment rate"): pc( base.info["observed.notification_rate"]), }, color="st-gray-900", ) # # Forecast # st.header(_("Forecasts")) st.markdown(forecast_intro(region)) # Infectious curve group["infectious:dates"].plot(**plot_opts) mark_x(start.date, "k--") plt.legend() plt.title(_("Active cases")) plt.tight_layout() st.pyplot() st.markdown("#### " + _("Download data")) opts = ["critical", "severe", "infectious", "cases", "deaths"] default_columns = ["critical", "severe", "cases", "deaths"] columns = st.multiselect(_("Select columns"), opts, default=default_columns) rename = dict(zip(range(len(columns)), columns)) columns = [c + ":dates" for c in columns] data = pd.concat([cm[columns].rename(rename, axis=1) for cm in cmodels], axis=1, keys=cmodels.names) st.data_anchor(data.astype(int), f"data-{region.id}.csv") # # Reopening # st.header(_("When can we reopen?")) st.markdown(reopening_intro(region)) st.subheader(_("Step 1: Controlling the curve")) st.markdown(rt_intro(region)) st.subheader(_("Step 2: Testing")) st.markdown(rt_intro(region)) if kwargs.get("show_weekday_rate"): region.ui.weekday_rate() st.subheader(_("Step 3: Hospital capacity")) st.markdown(rt_intro(region)) # Hospitalization cmodels["critical:dates"].plot(**plot_opts) mark_x(start.date, "k--") mark_y(cforecast.icu_surge_capacity, "k:") plt.legend() plt.title(_("Critical cases")) plt.tight_layout() st.pyplot()