Exemplo n.º 1
0
def main(args):
    pydiffvg.set_device(th.device('cuda:1'))

    # Load SVG
    svg_path = os.path.join(args.svg_path)
    save_svg_path = svg_path.replace('.svg', '_resave.svg')
    canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
        svg_path)
    print("canvas_width", canvas_width)
    print("canvas_height", canvas_height)
    print("shapes", shapes)
    for shape in shapes:
        print("num_control_points", shape.num_control_points.size(),
              shape.num_control_points)
        print("points", shape.points.size(), shape.points)
        print("is_closed", shape.is_closed)
        print("stroke_width", shape.stroke_width.size(), shape.stroke_width)
        print("id", shape.id)
        print("use_distance_approx", shape.use_distance_approx)

    print("shape_groups", shape_groups)
    pydiffvg.save_svg_paths_only(save_svg_path, canvas_width, canvas_height,
                                 shapes, shape_groups)

    # Save initial state
    ref = render(canvas_width, canvas_height, shapes, shape_groups)
Exemplo n.º 2
0
def main(args):
    pydiffvg.set_device(th.device('cuda:1'))

    # Load SVG
    svg = os.path.join(args.svg)
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(svg)

    # Save initial state
    ref = render(canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(ref.cpu(), args.out, gamma=2.2)
Exemplo n.º 3
0
def main(svg_dirs):
    pydiffvg.set_device(th.device('cuda:1'))

    assert os.path.exists(svg_dirs)
    svg_files = os.listdir(svg_dirs)
    for svg_file in svg_files:
        if '.svg' not in svg_file:
            continue
        svg_file_path = os.path.join(svg_dirs, svg_file)
        out_file_path = svg_file_path.replace('.svg', '.png')
        # Load SVG
        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_file_path)
        # Save initial state
        ref = render(canvas_width, canvas_height, shapes, shape_groups)
        pydiffvg.imwrite(ref.cpu(), out_file_path, gamma=2.2)
Exemplo n.º 4
0
    def gen_func(self):
        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(self.input_path)
        new_shapes = list()
        new_groups = list()
        for dx in range(0, self.multiplier_x):
            for dy in range(0, self.multiplier_y):
                for i in range(len(shapes)):
                    new_shape = build_translated_path(shapes[i], dy * canvas_height, dx * canvas_width)
                    new_shapes.append(new_shape)
                    path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(new_shapes) - 1]), fill_color=None,
                                                     stroke_color=torch.tensor(self.stroke_color))
                    new_groups.append(path_group)

        def gen():
            return new_shapes, new_groups

        return gen
Exemplo n.º 5
0
def main(target_path, svg_path, output_dir, num_iter=1000, use_lpips_loss=False):
    perception_loss = ttools.modules.LPIPS().to(pydiffvg.get_device())

    target = torch.from_numpy(skimage.io.imread(target_path, as_gray=False, pilmode="RGB")).to(torch.float32) / 255.0
    print("target", target.size())
    target = target.pow(gamma)
    target = target.to(pydiffvg.get_device())
    target = target.unsqueeze(0)
    target = target.permute(0, 3, 1, 2)  # NHWC -> NCHW

    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(svg_path)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width, canvas_height, shapes, shape_groups)

    render = pydiffvg.RenderFunction.apply
    img = render(canvas_width,  # width
                 canvas_height,  # height
                 2,   # num_samples_x
                 2,   # num_samples_y
                 0,   # seed
                 None,  # bg
                 *scene_args)
    # The output image is in linear RGB space. Do Gamma correction before saving the image.
    pydiffvg.imwrite(img.cpu(), f'{output_dir}/init.png', gamma=gamma)

    points_vars = []
    for path in shapes:
        path.points.requires_grad = True
        points_vars.append(path.points)
    color_vars = {}
    for group in shape_groups:
        group.fill_color.requires_grad = True
        color_vars[group.fill_color.data_ptr()] = group.fill_color
    # color_vars = list(color_vars.values())

    # Optimize
    points_optim = torch.optim.Adam(points_vars, lr=0.1)
    # color_optim = torch.optim.Adam(color_vars, lr=0.01)

    # Adam iterations.
    for t in range(num_iter):
        print('iteration:', t)
        points_optim.zero_grad()
        # color_optim.zero_grad()
        # Forward pass: render the image.
        scene_args = pydiffvg.RenderFunction.serialize_scene(
            canvas_width, canvas_height, shapes, shape_groups)
        img = render(canvas_width,  # width
                     canvas_height,  # height
                     2,   # num_samples_x
                     2,   # num_samples_y
                     0,   # seed
                     None,  # bg
                     *scene_args)
        # Compose img with white background
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=pydiffvg.get_device()) * (1 - img[:, :, 3:4])
        # Save the intermediate render.
        pydiffvg.imwrite(img.cpu(), f'{output_dir}/iter_{t}.png', gamma=gamma)
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2)  # NHWC -> NCHW
        # print(img.size())
        # print(target.size())
        if use_lpips_loss:
            loss = perception_loss(img, target)
        else:
            loss = (img - target).pow(2).mean()
        print('render loss:', loss.item())

        # Backpropagate the gradients.
        loss.backward()

        # Take a gradient descent step.
        points_optim.step()
        # color_optim.step()
        for group in shape_groups:
            group.fill_color.data.clamp_(0.0, 1.0)

        if t % 10 == 0 or t == num_iter - 1:
            pydiffvg.save_svg_paths_only(f'{output_dir}/iter_{t}.svg',
                                         canvas_width, canvas_height, shapes, shape_groups)

    # Render the final result.
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width, canvas_height, shapes, shape_groups)
    img = render(canvas_width,  # width
                 canvas_height,  # height
                 2,   # num_samples_x
                 2,   # num_samples_y
                 0,   # seed
                 None,  # bg
                 *scene_args)
    # Save the intermediate render.
    pydiffvg.imwrite(img.cpu(), f'{output_dir}/final.png', gamma=gamma)
    # Convert the intermediate renderings to a video.
    from subprocess import call
    call(["ffmpeg", "-framerate", "24", "-i",
          f"{output_dir}/iter_%d.png", "-vb", "20M",
          f"{output_dir}/out.mp4"])
Exemplo n.º 6
0
def main(args):
    pydiffvg.set_use_gpu(torch.cuda.is_available())

    canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
        args.content_file)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width, canvas_height, shapes, shape_groups)
    render = pydiffvg.RenderFunction.apply
    img = render(
        canvas_width,  # width
        canvas_height,  # height
        2,  # num_samples_x
        2,  # num_samples_y
        0,  # seed
        None,
        *scene_args)
    # Transform to gamma space
    pydiffvg.imwrite(img.cpu(), 'results/style_transfer/init.png', gamma=1.0)
    # HWC -> NCHW
    img = img.unsqueeze(0)
    img = img.permute(0, 3, 1, 2)  # NHWC -> NCHW

    loader = transforms.Compose([transforms.ToTensor()
                                 ])  # transform it into a torch tensor

    def image_loader(image_name):
        image = Image.open(image_name)
        # fake batch dimension required to fit network's input dimensions
        image = loader(image).unsqueeze(0)
        return image.to(pydiffvg.get_device(), torch.float)

    style_img = image_loader(args.style_img)
    # alpha blend content with a gray background
    content_img = img[:, :3, :, :] * img[:, 3, :, :] + \
        0.5 * torch.ones([1, 3, img.shape[2], img.shape[3]]) * \
        (1 - img[:, 3, :, :])

    assert style_img.size() == content_img.size(), \
        "we need to import style and content images of the same size"

    # unloader = transforms.ToPILImage()  # reconvert into PIL image

    class ContentLoss(nn.Module):
        def __init__(
            self,
            target,
        ):
            super(ContentLoss, self).__init__()
            # we 'detach' the target content from the tree used
            # to dynamically compute the gradient: this is a stated value,
            # not a variable. Otherwise the forward method of the criterion
            # will throw an error.
            self.target = target.detach()

        def forward(self, input):
            self.loss = F.mse_loss(input, self.target)
            return input

    def gram_matrix(input):
        a, b, c, d = input.size()  # a=batch size(=1)
        # b=number of feature maps
        # (c,d)=dimensions of a f. map (N=c*d)

        features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL

        G = torch.mm(features, features.t())  # compute the gram product

        # we 'normalize' the values of the gram matrix
        # by dividing by the number of element in each feature maps.
        return G.div(a * b * c * d)

    class StyleLoss(nn.Module):
        def __init__(self, target_feature):
            super(StyleLoss, self).__init__()
            self.target = gram_matrix(target_feature).detach()

        def forward(self, input):
            G = gram_matrix(input)
            self.loss = F.mse_loss(G, self.target)
            return input

    device = pydiffvg.get_device()
    cnn = models.vgg19(pretrained=True).features.to(device).eval()

    cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
    cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)

    # create a module to normalize input image so we can easily put it in a
    # nn.Sequential
    class Normalization(nn.Module):
        def __init__(self, mean, std):
            super(Normalization, self).__init__()
            # .view the mean and std to make them [C x 1 x 1] so that they can
            # directly work with image Tensor of shape [B x C x H x W].
            # B is batch size. C is number of channels. H is height and W is width.
            self.mean = mean.clone().view(-1, 1, 1)
            self.std = std.clone().view(-1, 1, 1)

        def forward(self, img):
            # normalize img
            return (img - self.mean) / self.std

    # desired depth layers to compute style/content losses :
    content_layers_default = ['conv_4']
    style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']

    def get_style_model_and_losses(cnn,
                                   normalization_mean,
                                   normalization_std,
                                   style_img,
                                   content_img,
                                   content_layers=content_layers_default,
                                   style_layers=style_layers_default):
        cnn = copy.deepcopy(cnn)

        # normalization module
        normalization = Normalization(normalization_mean,
                                      normalization_std).to(device)

        # just in order to have an iterable access to or list of content/syle
        # losses
        content_losses = []
        style_losses = []

        # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
        # to put in modules that are supposed to be activated sequentially
        model = nn.Sequential(normalization)

        i = 0  # increment every time we see a conv
        for layer in cnn.children():
            if isinstance(layer, nn.Conv2d):
                i += 1
                name = 'conv_{}'.format(i)
            elif isinstance(layer, nn.ReLU):
                name = 'relu_{}'.format(i)
                # The in-place version doesn't play very nicely with the ContentLoss
                # and StyleLoss we insert below. So we replace with out-of-place
                # ones here.
                layer = nn.ReLU(inplace=False)
            elif isinstance(layer, nn.MaxPool2d):
                name = 'pool_{}'.format(i)
            elif isinstance(layer, nn.BatchNorm2d):
                name = 'bn_{}'.format(i)
            else:
                raise RuntimeError('Unrecognized layer: {}'.format(
                    layer.__class__.__name__))

            model.add_module(name, layer)

            if name in content_layers:
                # add content loss:
                target = model(content_img).detach()
                content_loss = ContentLoss(target)
                model.add_module("content_loss_{}".format(i), content_loss)
                content_losses.append(content_loss)

            if name in style_layers:
                # add style loss:
                target_feature = model(style_img).detach()
                style_loss = StyleLoss(target_feature)
                model.add_module("style_loss_{}".format(i), style_loss)
                style_losses.append(style_loss)

        # now we trim off the layers after the last content and style losses
        for i in range(len(model) - 1, -1, -1):
            if isinstance(model[i], ContentLoss) or isinstance(
                    model[i], StyleLoss):
                break

        model = model[:(i + 1)]

        return model, style_losses, content_losses

    def run_style_transfer(cnn,
                           normalization_mean,
                           normalization_std,
                           content_img,
                           style_img,
                           canvas_width,
                           canvas_height,
                           shapes,
                           shape_groups,
                           num_steps=500,
                           style_weight=5000,
                           content_weight=1):
        """Run the style transfer."""
        print('Building the style transfer model..')
        model, style_losses, content_losses = get_style_model_and_losses(
            cnn, normalization_mean, normalization_std, style_img, content_img)
        point_params = []
        color_params = []
        stroke_width_params = []
        for shape in shapes:
            if isinstance(shape, pydiffvg.Path):
                point_params.append(shape.points.requires_grad_())
                stroke_width_params.append(shape.stroke_width.requires_grad_())
        for shape_group in shape_groups:
            if isinstance(shape_group.fill_color, torch.Tensor):
                color_params.append(shape_group.fill_color.requires_grad_())
            elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient):
                point_params.append(
                    shape_group.fill_color.begin.requires_grad_())
                point_params.append(
                    shape_group.fill_color.end.requires_grad_())
                color_params.append(
                    shape_group.fill_color.stop_colors.requires_grad_())
            if isinstance(shape_group.stroke_color, torch.Tensor):
                color_params.append(shape_group.stroke_color.requires_grad_())
            elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
                point_params.append(
                    shape_group.stroke_color.begin.requires_grad_())
                point_params.append(
                    shape_group.stroke_color.end.requires_grad_())
                color_params.append(
                    shape_group.stroke_color.stop_colors.requires_grad_())

        point_optimizer = optim.Adam(point_params, lr=1.0)
        color_optimizer = optim.Adam(color_params, lr=0.01)
        stroke_width_optimizers = optim.Adam(stroke_width_params, lr=0.1)
        print('Optimizing..')
        run = [0]
        while run[0] <= num_steps:
            point_optimizer.zero_grad()
            color_optimizer.zero_grad()
            stroke_width_optimizers.zero_grad()

            scene_args = pydiffvg.RenderFunction.serialize_scene(
                canvas_width, canvas_height, shapes, shape_groups)
            render = pydiffvg.RenderFunction.apply
            img = render(
                canvas_width,  # width
                canvas_height,  # height
                2,  # num_samples_x
                2,  # num_samples_y
                0,  # seed
                None,
                *scene_args)
            # alpha blend img with a gray background
            img = img[:, :, :3] * img[:, :, 3:4] + \
                0.5 * torch.ones([img.shape[0], img.shape[1], 3]) * \
                (1 - img[:, :, 3:4])

            pydiffvg.imwrite(img.cpu(),
                             'results/style_transfer/step_{}.png'.format(
                                 run[0]),
                             gamma=1.0)

            # HWC to NCHW
            img = img.permute([2, 0, 1]).unsqueeze(0)
            model(img)
            style_score = 0
            content_score = 0

            for sl in style_losses:
                style_score += sl.loss
            for cl in content_losses:
                content_score += cl.loss

            style_score *= style_weight
            content_score *= content_weight

            loss = style_score + content_score
            loss.backward()

            run[0] += 1
            if run[0] % 1 == 0:
                print("run {}:".format(run))
                print('Style Loss : {:4f} Content Loss: {:4f}'.format(
                    style_score.item(), content_score.item()))
                print()

            point_optimizer.step()
            color_optimizer.step()
            stroke_width_optimizers.step()

            for color in color_params:
                color.data.clamp_(0, 1)
            for w in stroke_width_params:
                w.data.clamp_(0.5, 4.0)

        return shapes, shape_groups

    shapes, shape_groups = run_style_transfer(cnn, cnn_normalization_mean,
                                              cnn_normalization_std,
                                              content_img, style_img,
                                              canvas_width, canvas_height,
                                              shapes, shape_groups)

    scene_args = pydiffvg.RenderFunction.serialize_scene(shapes, shape_groups)
    render = pydiffvg.RenderFunction.apply
    img = render(
        canvas_width,  # width
        canvas_height,  # height
        2,  # num_samples_x
        2,  # num_samples_y
        0,  # seed
        None,
        *scene_args)
    # Transform to gamma space
    pydiffvg.imwrite(img.cpu(), 'results/style_transfer/output.png', gamma=1.0)
Exemplo n.º 7
0
def main(args):
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg_file)

    w = int(canvas_width * args.size_scale)
    h = int(canvas_height * args.size_scale)

    pfilter = pydiffvg.PixelFilter(type=diffvg.FilterType.box,
                                   radius=torch.tensor(0.5))

    use_prefiltering = False
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)

    num_samples_x = 16
    num_samples_y = 16
    render = pydiffvg.RenderFunction.apply
    img = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,
        *scene_args)
    pydiffvg.imwrite(img.cpu(),
                     'results/finite_difference_comp/img.png',
                     gamma=1.0)

    epsilon = 0.1

    def perturb_scene(axis, epsilon):
        shapes[2].points[:, axis] += epsilon
        # for s in shapes:
        #     if isinstance(s, pydiffvg.Circle):
        #         s.center[axis] += epsilon
        #     elif isinstance(s, pydiffvg.Ellipse):
        #         s.center[axis] += epsilon
        #     elif isinstance(s, pydiffvg.Path):
        #         s.points[:, axis] += epsilon
        #     elif isinstance(s, pydiffvg.Polygon):
        #         s.points[:, axis] += epsilon
        #     elif isinstance(s, pydiffvg.Rect):
        #         s.p_min[axis] += epsilon
        #         s.p_max[axis] += epsilon
        # for s in shape_groups:
        #     if isinstance(s.fill_color, pydiffvg.LinearGradient):
        #         s.fill_color.begin[axis] += epsilon
        #         s.fill_color.end[axis] += epsilon

    perturb_scene(0, epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    render = pydiffvg.RenderFunction.apply
    img0 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,
        *scene_args)

    forward_diff = (img0 - img) / (epsilon)
    forward_diff = forward_diff.sum(axis=2)
    x_diff_max = 1.5
    x_diff_min = -1.5
    print(forward_diff.max())
    print(forward_diff.min())
    forward_diff = cm.viridis(
        normalize(forward_diff, x_diff_min, x_diff_max).cpu().numpy())
    pydiffvg.imwrite(
        forward_diff,
        'results/finite_difference_comp/shared_edge_forward_diff.png',
        gamma=1.0)

    perturb_scene(0, -2 * epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    img1 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,
        *scene_args)
    backward_diff = (img - img1) / (epsilon)
    backward_diff = backward_diff.sum(axis=2)
    print(backward_diff.max())
    print(backward_diff.min())
    backward_diff = cm.viridis(
        normalize(backward_diff, x_diff_min, x_diff_max).cpu().numpy())
    pydiffvg.imwrite(
        backward_diff,
        'results/finite_difference_comp/shared_edge_backward_diff.png',
        gamma=1.0)
    perturb_scene(0, epsilon)

    num_samples_x = 4
    num_samples_y = 4
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    render_grad = pydiffvg.RenderFunction.render_grad
    img_grad = render_grad(
        torch.ones(h, w, 4),
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        *scene_args)
    print(img_grad[:, :, 0].max())
    print(img_grad[:, :, 0].min())
    x_diff = cm.viridis(
        normalize(img_grad[:, :, 0], x_diff_min, x_diff_max).cpu().numpy())
    pydiffvg.imwrite(x_diff,
                     'results/finite_difference_comp/ours_x_diff.png',
                     gamma=1.0)
Exemplo n.º 8
0
def main(args):
    case_name = args.svg_file.split('/')[-1].split('.')[0]
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg_file)

    w = int(canvas_width * args.size_scale)
    h = int(canvas_height * args.size_scale)

    print(w, h)
    curve_counts = 0
    for s in shapes:
        if isinstance(s, pydiffvg.Circle):
            curve_counts += 1
        elif isinstance(s, pydiffvg.Ellipse):
            curve_counts += 1
        elif isinstance(s, pydiffvg.Path):
            curve_counts += len(s.num_control_points)
        elif isinstance(s, pydiffvg.Polygon):
            curve_counts += len(s.points) - 1
            if s.is_closed:
                curve_counts += 1
        elif isinstance(s, pydiffvg.Rect):
            curve_counts += 1
    print('curve_counts:', curve_counts)

    pfilter = pydiffvg.PixelFilter(type=diffvg.FilterType.box,
                                   radius=torch.tensor(0.5))

    use_prefiltering = args.use_prefiltering
    print('use_prefiltering:', use_prefiltering)

    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)

    num_samples_x = args.num_spp
    num_samples_y = args.num_spp
    if (use_prefiltering):
        num_samples_x = 1
        num_samples_y = 1

    render = pydiffvg.RenderFunction.apply
    img = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)
    pydiffvg.imwrite(
        img.cpu(),
        f'results/finite_difference_comp/{case_name}_{use_prefiltering}/img.png',
        gamma=1.0)

    epsilon = 0.1

    def perturb_scene(axis, epsilon):
        for s in shapes:
            if isinstance(s, pydiffvg.Circle):
                s.center[axis] += epsilon
            elif isinstance(s, pydiffvg.Ellipse):
                s.center[axis] += epsilon
            elif isinstance(s, pydiffvg.Path):
                s.points[:, axis] += epsilon
            elif isinstance(s, pydiffvg.Polygon):
                s.points[:, axis] += epsilon
            elif isinstance(s, pydiffvg.Rect):
                s.p_min[axis] += epsilon
                s.p_max[axis] += epsilon
        for s in shape_groups:
            if isinstance(s.fill_color, pydiffvg.LinearGradient):
                s.fill_color.begin[axis] += epsilon
                s.fill_color.end[axis] += epsilon

    perturb_scene(0, epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    render = pydiffvg.RenderFunction.apply
    img0 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)

    perturb_scene(0, -2 * epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    img1 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)
    x_diff = (img0 - img1) / (2 * epsilon)
    x_diff = x_diff.sum(axis=2)
    x_diff_max = x_diff.max() * args.clamping_factor
    x_diff_min = x_diff.min() * args.clamping_factor
    print(x_diff.max())
    print(x_diff.min())
    x_diff = cm.viridis(
        normalize(x_diff, x_diff_min, x_diff_max).cpu().numpy())
    pydiffvg.imwrite(
        x_diff,
        f'results/finite_difference_comp//{case_name}_{use_prefiltering}/finite_x_diff.png',
        gamma=1.0)

    perturb_scene(0, epsilon)

    perturb_scene(1, epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    render = pydiffvg.RenderFunction.apply
    img0 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)

    perturb_scene(1, -2 * epsilon)
    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    img1 = render(
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)
    y_diff = (img0 - img1) / (2 * epsilon)
    y_diff = y_diff.sum(axis=2)
    y_diff_max = y_diff.max() * args.clamping_factor
    y_diff_min = y_diff.min() * args.clamping_factor
    y_diff = cm.viridis(
        normalize(y_diff, y_diff_min, y_diff_max).cpu().numpy())
    pydiffvg.imwrite(
        y_diff,
        f'results/finite_difference_comp/{case_name}_{use_prefiltering}/finite_y_diff.png',
        gamma=1.0)
    perturb_scene(1, epsilon)

    scene_args = pydiffvg.RenderFunction.serialize_scene(
        canvas_width,
        canvas_height,
        shapes,
        shape_groups,
        filter=pfilter,
        use_prefiltering=use_prefiltering)
    render_grad = pydiffvg.RenderFunction.render_grad
    img_grad = render_grad(
        torch.ones(h, w, 4, device=pydiffvg.get_device()),
        w,  # width
        h,  # height
        num_samples_x,  # num_samples_x
        num_samples_y,  # num_samples_y
        0,  # seed
        None,  # background_image
        *scene_args)
    print(img_grad[:, :, 0].max())
    print(img_grad[:, :, 0].min())
    x_diff = cm.viridis(
        normalize(img_grad[:, :, 0], x_diff_min, x_diff_max).cpu().numpy())
    y_diff = cm.viridis(
        normalize(img_grad[:, :, 1], y_diff_min, y_diff_max).cpu().numpy())
    pydiffvg.imwrite(
        x_diff,
        f'results/finite_difference_comp/{case_name}_{use_prefiltering}/ours_x_diff.png',
        gamma=1.0)
    pydiffvg.imwrite(
        y_diff,
        f'results/finite_difference_comp/{case_name}_{use_prefiltering}/ours_y_diff.png',
        gamma=1.0)
Exemplo n.º 9
0
def main():
    pydiffvg.set_device(th.device('cuda:1'))

    # Load SVG
    svg = os.path.join("imgs", "peppers.svg")
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(svg)

    # Save initial state
    ref = render(canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(ref.cpu(), 'results/gaussian_blur/init.png', gamma=2.2)

    target = F.gaussian_filter(ref.cpu().numpy(), [10, 10, 0])
    target = th.from_numpy(target).to(ref.device)
    pydiffvg.imwrite(target.cpu(),
                     'results/gaussian_blur/target.png',
                     gamma=2.2)

    # Collect variables to optimize
    points_vars = []
    width_vars = []
    for path in shapes:
        path.points.requires_grad = True
        points_vars.append(path.points)
        path.stroke_width.requires_grad = True
        width_vars.append(path.stroke_width)
    color_vars = []
    for group in shape_groups:
        # do not optimize alpha
        group.fill_color[..., :3].requires_grad = True
        color_vars.append(group.fill_color)

    # Optimize
    points_optim = th.optim.Adam(points_vars, lr=1.0)
    width_optim = th.optim.Adam(width_vars, lr=1.0)
    color_optim = th.optim.Adam(color_vars, lr=0.01)

    for t in range(20):
        print('\niteration:', t)
        points_optim.zero_grad()
        width_optim.zero_grad()
        color_optim.zero_grad()
        # Forward pass: render the image.
        img = render(canvas_width, canvas_height, shapes, shape_groups)
        # Save the intermediate render.
        pydiffvg.imwrite(img.cpu(),
                         'results/gaussian_blur/iter_{}.png'.format(t),
                         gamma=2.2)
        loss = (img - target)[..., :3].pow(2).mean()

        print('alpha:', img[..., 3].mean().item())
        print('render loss:', loss.item())

        # Backpropagate the gradients.
        loss.backward()

        # Take a gradient descent step.
        points_optim.step()
        width_optim.step()
        color_optim.step()
        for group in shape_groups:
            group.fill_color.data.clamp_(0.0, 1.0)

    # Final render
    img = render(canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(img.cpu(), 'results/gaussian_blur/final.png', gamma=2.2)

    # Convert the intermediate renderings to a video.
    from subprocess import call
    call([
        "ffmpeg", "-framerate", "24", "-i",
        "results/gaussian_blur/iter_%d.png", "-vb", "20M",
        "results/gaussian_blur/out.mp4"
    ])
Exemplo n.º 10
0
    inmat[0:2,:]=(np.random.rand(2,3)-0.5)*2
    decomp=OptimizableSvg.TransformTools.decompose(inmat)
    outmat=OptimizableSvg.TransformTools.recompose(torch.tensor(decomp[0],dtype=torch.float32),torch.tensor(decomp[1],dtype=torch.float32),torch.tensor(decomp[2],dtype=torch.float32),torch.tensor(decomp[3],dtype=torch.float32)).numpy()
    dif=np.linalg.norm(inmat-outmat)
    if dif > 1e-3:
        print(dif)
        print(inmat)
        print(outmat)
        print(decomp)"""

#infile='../../data/test_data/linear_grad_alpha_aspaths.svg'
#infile='../../data/note_small.svg'
infile = 'linux.svg'

canvas_width, canvas_height, shapes, shape_groups = \
 pydiffvg.svg_to_scene(infile)
scene_args = pydiffvg.RenderFunction.serialize_scene(\
 canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(
    canvas_width,  # width
    canvas_height,  # height
    2,  # num_samples_x
    2,  # num_samples_y
    0,  # seed
    *scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'test_old.png', gamma=1.0)

#optim=OptimizableSvg('linux.svg',verbose=True)
optim = OptimizableSvg(infile, verbose=True)
Exemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--svg",
                        default=os.path.join("imgs", "seamcarving",
                                             "hokusai.svg"))
    parser.add_argument("--optim_steps", default=10, type=int)
    parser.add_argument("--lr", default=1e-1, type=int)
    args = parser.parse_args()

    name = os.path.splitext(os.path.basename(args.svg))[0]
    root = os.path.join("results", "seam_carving", name)
    svg_root = os.path.join(root, "svg")
    os.makedirs(root, exist_ok=True)
    os.makedirs(os.path.join(root, "svg"), exist_ok=True)

    pydiffvg.set_use_gpu(False)
    # pydiffvg.set_device(th.device('cuda'))

    # Load SVG
    print("loading svg %s" % args.svg)
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg)
    print("done loading")

    max_size = 512
    scale_factor = max_size / max(canvas_width, canvas_height)
    print("rescaling from %dx%d with scale %f" %
          (canvas_width, canvas_height, scale_factor))
    canvas_width = int(canvas_width * scale_factor)
    canvas_height = int(canvas_height * scale_factor)
    print("new shape %dx%d" % (canvas_width, canvas_height))
    vector_rescale(shapes, scale_x=scale_factor, scale_y=scale_factor)

    # Shrink image by 33 %
    # num_seams_to_remove = 2
    num_seams_to_remove = canvas_width // 3
    new_canvas_width = canvas_width - num_seams_to_remove
    scaling = new_canvas_width * 1.0 / canvas_width

    # Naive scaling baseline
    print("rendering naive rescaling...")
    vector_rescale(shapes, scale_x=scaling)
    resized = render(new_canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(resized.cpu(),
                     os.path.join(root, 'uniform_scaling.png'),
                     gamma=2.2)
    pydiffvg.save_svg(os.path.join(svg_root, 'uniform_scaling.svg'),
                      canvas_width,
                      canvas_height,
                      shapes,
                      shape_groups,
                      use_gamma=False)
    vector_rescale(shapes,
                   scale_x=1.0 / scaling)  # bring back original coordinates
    print("saved naiving scaling")

    # Save initial state
    print("rendering initial state...")
    im = render(canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(im.cpu(), os.path.join(root, 'init.png'), gamma=2.2)
    pydiffvg.save_svg(os.path.join(svg_root, 'init.svg'),
                      canvas_width,
                      canvas_height,
                      shapes,
                      shape_groups,
                      use_gamma=False)
    print("saved initial state")

    # Optimize
    # color_optim = th.optim.Adam(color_vars, lr=0.01)

    retargeted = im[..., :3].cpu().numpy()
    previous_width = canvas_width
    print("carving seams")
    for seam_idx in range(num_seams_to_remove):
        print('\nseam', seam_idx + 1, 'of', num_seams_to_remove)

        # Remove a seam
        retargeted = carve_seam(retargeted)

        current_width = canvas_width - seam_idx - 1
        scale_factor = current_width * 1.0 / previous_width
        previous_width = current_width

        padded = np.zeros((canvas_height, canvas_width, 4))
        padded[:, :-seam_idx - 1, :3] = retargeted
        padded[:, :-seam_idx - 1, -1] = 1.0  # alpha
        padded = th.from_numpy(padded).to(im.device)

        # Remap points to the smaller canvas and
        # collect variables to optimize
        points_vars = []
        # width_vars = []
        mini, maxi = canvas_width, 0
        for path in shapes:
            path.points.requires_grad = False
            x = path.points[..., 0]
            y = path.points[..., 1]
            # rescale

            x = x * scale_factor

            # clip to canvas
            path.points[..., 0] = th.clamp(x, 0, current_width)
            path.points[..., 1] = th.clamp(y, 0, canvas_height)

            path.points.requires_grad = True
            points_vars.append(path.points)
            path.stroke_width.requires_grad = True
            # width_vars.append(path.stroke_width)

            mini = min(mini, path.points.min().item())
            maxi = max(maxi, path.points.max().item())
        print("points", mini, maxi, "scale", scale_factor)

        # recreate an optimizer so we don't carry over the previous update
        # (momentum)?
        geom_optim = th.optim.Adam(points_vars, lr=args.lr)

        for step in range(args.optim_steps):
            geom_optim.zero_grad()

            img = render(canvas_width,
                         canvas_height,
                         shapes,
                         shape_groups,
                         samples=2)

            pydiffvg.imwrite(img.cpu(),
                             os.path.join(
                                 root,
                                 "seam_%03d_iter_%02d.png" % (seam_idx, step)),
                             gamma=2.2)

            # NO alpha
            loss = (img - padded)[..., :3].pow(2).mean()
            # loss = (img - padded).pow(2).mean()
            print('render loss:', loss.item())

            # Backpropagate the gradients.
            loss.backward()

            # Take a gradient descent step.
            geom_optim.step()
        pydiffvg.save_svg(os.path.join(svg_root, "seam%03d.svg" % seam_idx),
                          canvas_width - seam_idx,
                          canvas_height,
                          shapes,
                          shape_groups,
                          use_gamma=False)

        for path in shapes:
            mini = min(mini, path.points.min().item())
            maxi = max(maxi, path.points.max().item())
        print("points", mini, maxi)

    img = render(canvas_width, canvas_height, shapes, shape_groups)
    img = img[:, :-num_seams_to_remove]

    pydiffvg.imwrite(img.cpu(), os.path.join(root, 'final.png'), gamma=2.2)
    pydiffvg.imwrite(retargeted, os.path.join(root, 'ref.png'), gamma=2.2)

    pydiffvg.save_svg(os.path.join(svg_root, 'final.svg'),
                      canvas_width - num_seams_to_remove + 1,
                      canvas_height,
                      shapes,
                      shape_groups,
                      use_gamma=False)

    # Convert the intermediate renderings to a video.
    from subprocess import call
    call([
        "ffmpeg", "-framerate", "24", "-i",
        os.path.join(root, "seam_%03d_iter_00.png"), "-vb", "20M",
        os.path.join(root, "out.mp4")
    ])
Exemplo n.º 12
0
def main(args):
    # set device -> use cpu now since I haven't solved the nvcc issue
    pydiffvg.set_use_gpu(False)
    # pydiffvg.set_device(torch.device('cuda:1'))
    # use L2 for now
    # perception_loss = ttools.modules.LPIPS().to(pydiffvg.get_device())

    # generate a texture synthesized
    target_img = texture_syn(args.target)
    tar_h, tar_w = target_img.shape[1], target_img.shape[0]
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg_path)

    # svgpathtools for checking the bounding box
    # paths, _, _ = svg2paths2(args.svg_path)
    # print(len(paths))
    # xmin, xmax, ymin, ymax = big_bounding_box(paths)
    # print(xmin, xmax, ymin, ymax)
    # input("check")

    print('tar h : %d tar w : %d' % (tar_h, tar_w))
    print('canvas h : %d canvas w : %d' % (canvas_height, canvas_width))
    scale_ratio = tar_h / canvas_height
    print("scale ratio : ", scale_ratio)
    # input("check")
    for path in shapes:
        path.points[..., 0] = path.points[..., 0] * scale_ratio
        path.points[..., 1] = path.points[..., 1] * scale_ratio

    init_img = render(tar_w, tar_h, shapes, shape_groups)
    pydiffvg.imwrite(init_img.cpu(),
                     'results/texture_synthesis/%d/init.png' % (args.case),
                     gamma=2.2)
    # input("check")
    random.seed(1234)
    torch.manual_seed(1234)

    points_vars = []
    for path in shapes:
        path.points.requires_grad = True
        points_vars.append(path.points)
    color_vars = []
    for group in shape_groups:
        group.fill_color.requires_grad = True
        color_vars.append(group.fill_color)
    # Optimize
    points_optim = torch.optim.Adam(points_vars, lr=1.0)
    color_optim = torch.optim.Adam(color_vars, lr=0.01)

    target = torch.from_numpy(target_img).to(torch.float32) / 255.0
    target = target.pow(2.2)
    target = target.to(pydiffvg.get_device())
    target = target.unsqueeze(0)
    target = target.permute(0, 3, 1, 2)  # NHWC -> NCHW
    canvas_width, canvas_height = target.shape[3], target.shape[2]
    # print('canvas h : %d canvas w : %d' % (canvas_height, canvas_width))
    # input("check")

    for t in range(args.max_iter):
        print('iteration:', t)
        points_optim.zero_grad()
        color_optim.zero_grad()
        cur_img = render(canvas_width, canvas_height, shapes, shape_groups)
        pydiffvg.imwrite(cur_img.cpu(),
                         'results/texture_synthesis/%d/iter_%d.png' %
                         (args.case, t),
                         gamma=2.2)
        cur_img = cur_img[:, :, :3]
        cur_img = cur_img.unsqueeze(0)
        cur_img = cur_img.permute(0, 3, 1, 2)  # NHWC -> NCHW

        # perceptual loss
        # loss = perception_loss(cur_img, target)
        # l2 loss
        loss = (cur_img - target).pow(2).mean()
        print('render loss:', loss.item())
        loss.backward()

        points_optim.step()
        color_optim.step()

        for group in shape_groups:
            group.fill_color.data.clamp_(0.0, 1.0)
        # write svg
        if t % 10 == 0 or t == args.max_iter - 1:
            pydiffvg.save_svg(
                'results/texture_synthesis/%d/iter_%d.svg' % (args.case, t),
                canvas_width, canvas_height, shapes, shape_groups)

    # render final result
    final_img = render(tar_h, tar_w, shapes, shape_groups)
    pydiffvg.imwrite(final_img.cpu(),
                     'results/texture_synthesis/%d/final.png' % (args.case),
                     gamma=2.2)

    from subprocess import call
    call([
        "ffmpeg", "-framerate", "24", "-i",
        "results/texture_synthesis/%d/iter_%d.png" % (args.case), "-vb", "20M",
        "results/texture_synthesis/%d/out.mp4" % (args.case)
    ])
    # make gif
    make_gif("results/texture_synthesis/%d" % (args.case),
             "results/texture_synthesis/%d/out.gif" % (args.case),
             frame_every_X_steps=1,
             repeat_ending=3,
             total_iter=args.max_iter)
Exemplo n.º 13
0
def main(args):
    inceptionv3 = models.inception_v3(pretrained=True,
                                      transform_input=False).cuda()
    inceptionv3.eval()
    perception_loss = ttools.modules.LPIPS().to(pydiffvg.get_device())

    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg)
    scene_args = pydiffvg.RenderFunction.serialize_scene( \
        canvas_width, canvas_height, shapes, shape_groups)

    render = pydiffvg.RenderFunction.apply
    img = render(
        canvas_width,  # width
        canvas_height,  # height
        2,  # num_samples_x
        2,  # num_samples_y
        0,  # seed
        None,  # bg
        *scene_args)
    # The output image is in linear RGB space. Do Gamma correction before saving the image.
    pydiffvg.imwrite(img.cpu(), 'logs/refine_svg/init.png', gamma=gamma)
    pydiffvg.imwrite(img.cpu(), 'logs/refine_svg/init_.png')

    points_vars = []
    for path in shapes:
        path.points.requires_grad = True
        points_vars.append(path.points)
    # color_vars = {}
    # for group in shape_groups:
    #     group.fill_color.requires_grad = True
    #     color_vars[group.fill_color.data_ptr()] = group.fill_color
    # color_vars = list(color_vars.values())

    # Optimize
    points_optim = torch.optim.Adam(points_vars, lr=1.0)
    # color_optim = torch.optim.Adam(color_vars, lr=0.01)

    # Adam iterations.
    for t in range(args.num_iter):
        print('iteration:', t)
        points_optim.zero_grad()
        # color_optim.zero_grad()
        # Forward pass: render the image.
        scene_args = pydiffvg.RenderFunction.serialize_scene( \
            canvas_width, canvas_height, shapes, shape_groups)
        img = render(
            canvas_width,  # width
            canvas_height,  # height
            2,  # num_samples_x
            2,  # num_samples_y
            0,  # seed
            None,  # bg
            *scene_args)
        # Compose img with white background
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(
            img.shape[0], img.shape[1], 3,
            device=pydiffvg.get_device()) * (1 - img[:, :, 3:4])
        # Save the intermediate render.
        pydiffvg.imwrite(img.cpu(),
                         'logs/refine_svg/iter_{}.png'.format(t),
                         gamma=gamma)
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2)  # NHWC -> NCHW
        output = inceptionv3.forward(img.cuda())
        get_class(output)

        target = torch.autograd.Variable(torch.LongTensor([291]),
                                         requires_grad=False).cuda()
        loss = torch.nn.CrossEntropyLoss()(output, target)
        print('render loss:', loss.item())

        # Backpropagate the gradients.
        loss.backward()

        # Take a gradient descent step.
        points_optim.step()
        # color_optim.step()
        # for group in shape_groups:
        #     group.fill_color.data.clamp_(0.0, 1.0)

        if t % 10 == 0 or t == args.num_iter - 1:
            pydiffvg.save_svg('logs/refine_svg/iter_{}.svg'.format(t),
                              canvas_width, canvas_height, shapes,
                              shape_groups)

    # Render the final result.
    scene_args = pydiffvg.RenderFunction.serialize_scene( \
        canvas_width, canvas_height, shapes, shape_groups)
    img = render(
        canvas_width,  # width
        canvas_height,  # height
        2,  # num_samples_x
        2,  # num_samples_y
        0,  # seed
        None,  # bg
        *scene_args)
    # Save the intermediate render.
    pydiffvg.imwrite(img.cpu(),
                     'logs/refine_svg/final.png'.format(t),
                     gamma=gamma)
Exemplo n.º 14
0
import pydiffvg
import matplotlib.pyplot as plt

canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(
    "data/lion.svg")
scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width,
                                                     canvas_height, shapes,
                                                     shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(
    canvas_width,  # width
    canvas_height,  # height
    2,  # num_samples_x
    2,  # num_samples_y
    0,  # seed
    None,  # bg
    *scene_args)

plt.imshow(img.detach().cpu())
plt.show()