def ReduceTwo(speclist, flatlist='', biaslist='', HeNeAr_file='', stdstar='', trace_recenter=False, ntracesteps=15, airmass_file='apoextinct.dat', flat_mode='spline', flat_order=9, flat_response=True, apwidth=8, skysep=3, skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=True, HeNeAr_tol=20, HeNeAr_order=3, display_HeNeAr=False, std_mode='spline', std_order=12, display_std=False, trim=True, write_reduced=True, display=True, display_final=True): if (len(biaslist) > 0): bias = pydis.biascombine(biaslist, trim=trim) else: bias = 0.0 if (len(biaslist) > 0) and (len(flatlist) > 0): flat,fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode,display=False, flat_poly=flat_order, response=flat_response) else: flat = 1.0 fmask_out = (1,) if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file+'.lines' # do the HeNeAr mapping first, must apply to all science frames if (len(HeNeAr_file) > 0): wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev,mode='poly', display=display_HeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) # read in the list of target spectra # assumes specfile is a list of file names of object #-> wrap with array and flatten because Numpy sucks with one-element arrays... specfile = np.array([np.loadtxt(speclist, dtype='string')]).flatten() for i in range(len(specfile)): spec = specfile[i] print("> Processing file "+spec+" ["+str(i)+"/"+str(len(specfile))+"]") # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength # remove bias and flat, divide by exptime data = ((raw - bias) / flat) / exptime if display is True: plt.figure() plt.imshow(np.log10(data), origin = 'lower',aspect='auto',cmap=cm.Greys_r) plt.title(spec+' (flat and bias corrected)') plt.show() # with reduced data, trace BOTH apertures trace_1 = pydis.ap_trace(data,fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=True) trace_2 = pydis.ap_trace(data,fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=True) xbins = np.arange(data.shape[1]) if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower',aspect='auto',cmap=cm.Greys_r) plt.plot(xbins, trace_1,'b',lw=1) plt.plot(xbins, trace_1-apwidth,'r',lw=1) plt.plot(xbins, trace_1+apwidth,'r',lw=1) plt.plot(xbins, trace_1-apwidth-skysep,'g',lw=1) plt.plot(xbins, trace_1-apwidth-skysep-skywidth,'g',lw=1) plt.plot(xbins, trace_1+apwidth+skysep,'g',lw=1) plt.plot(xbins, trace_1+apwidth+skysep+skywidth,'g',lw=1) plt.plot(xbins, trace_2,'b',lw=1) plt.plot(xbins, trace_2-apwidth,'r',lw=1) plt.plot(xbins, trace_2+apwidth,'r',lw=1) plt.plot(xbins, trace_2-apwidth-skysep,'g',lw=1) plt.plot(xbins, trace_2-apwidth-skysep-skywidth,'g',lw=1) plt.plot(xbins, trace_2+apwidth+skysep,'g',lw=1) plt.plot(xbins, trace_2+apwidth+skysep+skywidth,'g',lw=1) plt.title('(Both Traces, with aperture and sky regions)') plt.show() t_indx = 1 # now do the processing for both traces as if separate stars for trace in [trace_1, trace_2]: tnum = '_' + str(t_indx) t_indx = t_indx + 1 # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=1) if (len(HeNeAr_file) > 0): wfinal = pydis.mapwavelength(trace, wfit, mode='poly') else: # if no line lamp given, use approx from the img header wfinal = wapprox # subtract local sky level, divide by exptime to get flux units # (counts / sec) flux_red = (ext_spec - sky) # now correct the spectrum for airmass extinction flux_red_x = pydis.AirmassCor(wfinal, flux_red, airmass, airmass_file=airmass_file) # now get flux std IF stdstar is defined # !! assume first object in list is std star !! if (len(stdstar) > 0) and (i==0): sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode=std_mode, polydeg=std_order, display=display_std) sens_wave = wfinal elif (len(stdstar) == 0) and (i==0): # if 1st obj not the std, then just make array of 1's to multiply thru sens_flux = np.ones_like(flux_red_x) sens_wave = wfinal # final step in reduction, apply sensfunc ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) if write_reduced is True: pydis._WriteSpec(spec+tnum, wfinal, ffinal, efinal, trace) now = datetime.datetime.now() lout = open(spec+tnum+'.log','w') lout.write('# This file contains the reduction parameters \n'+ '# used in autoreduce for '+spec+'\n') lout.write('DATE-REDUCED = '+str(now)+'\n') lout.write('HeNeAr_tol = '+str(HeNeAr_tol)+'\n') lout.write('HeNeAr_order = '+str(HeNeAr_order)+'\n') lout.write('trace1 = '+str(False)+'\n') lout.write('ntracesteps = '+str(ntracesteps)+'\n') lout.write('trim = '+str(trim)+'\n') lout.write('response = '+str(flat_response)+'\n') lout.write('apwidth = '+str(apwidth)+'\n') lout.write('skysep = '+str(skysep)+'\n') lout.write('skywidth = '+str(skywidth)+'\n') lout.write('skydeg = '+str(skydeg)+'\n') lout.write('stdstar = '+str(stdstar)+'\n') lout.write('airmass_file = '+str(airmass_file)+'\n') lout.close() if display_final is True: # the final figure to plot plt.figure() # plt.plot(wfinal, ffinal) plt.errorbar(wfinal, ffinal, yerr=efinal) plt.xlabel('Wavelength') plt.ylabel('Flux') plt.title(spec) #plot within percentile limits plt.ylim( (np.percentile(ffinal,2), np.percentile(ffinal,98)) ) plt.show() return
def autoreduce(speclist, flatlist='', biaslist='', HeNeAr_file='', stdstar='', trace_recenter=False, trace_interac=True, trace1=False, ntracesteps=15, airmass_file='apoextinct.dat', flat_mode='spline', flat_order=9, flat_response=True, apwidth=8, skysep=3, skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=True, HeNeAr_tol=20, HeNeAr_order=3, display_HeNeAr=False, std_mode='spline', std_order=12, display_std=False, trim=True, write_reduced=True, display=True, display_final=True, silent=True): """ A wrapper routine to carry out the full steps of the spectral reduction and calibration. Steps include: 1) combines bias and flat images 2) maps wavelength in the HeNeAr image 3) perform simple image reduction: Data = (Raw - Bias)/Flat 4) trace spectral aperture 5) extract spectrum 6) measure sky along extracted spectrum 7) apply flux calibration 8) write output files Parameters ---------- speclist : str Path to file containing list of science images. flatlist : str Path to file containing list of flat images. biaslist : str Path to file containing list of bias images. HeNeAr_file : str Path to the HeNeAr calibration image stdstar : str Name of the standard star to use for flux calibration. Currently the IRAF library onedstds/spec50cal is used for flux calibration. Assumes the first star in "speclist" is the standard star. If nothing is entered for "stdstar", no flux calibration will be computed. (Default is '') trace1 : bool, optional use trace1=True if only perform aperture trace on first object in speclist. Useful if e.g. science targets are faint, and first object is a bright standard star. Note: assumes star placed at same position in spatial direction. (Default is False) trace_recenter : bool, optional If trace1=True, set this to True to allow for small linear adjustments to the trace (default is False) trace_interac : bool, optional Set to True if user should interactively select aperture center for each object spectrum. (Default is True) ntracesteps : int, optional Number of bins in X direction to chop image into. Use fewer bins if ap_trace is having difficulty, such as with faint targets (default here is 25, minimum is 4) apwidth : int, optional The width along the Y axis of the trace to extract. Note: a fixed width is used along the whole trace. (default here is 3 pixels) skysep : int, optional The separation in pixels from the aperture to the sky window. (Default is 25) skywidth : int, optional The width in pixels of the sky windows on either side of the aperture. (Default is 75) HeNeAr_interac : bool, optional Should the HeNeAr identification be done interactively (manually)? (Default here is False) HeNeAr_tol : int, optional When in automatic mode, the tolerance in pixel units between linelist entries and estimated wavelengths for the first few lines matched... use carefully. (Default here is 20) HeNeAr_order : int, optional The polynomial order to use to interpolate between identified peaks in the HeNeAr (Default is 2) display_HeNeAr : bool, optional std_mode : str, optional Fit mode to use with the flux standard star. Options are 'spline' and 'poly' (Default is 'spline') std_order : int, optional The order of polynomial to fit, if std_mode='poly'. (Default is 12) display_std : bool, optional If set, display plots of the flux standard being fit (Default is False) trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) write_reduced : bool, optional Set to True to write output files, including the .spec file with columns (wavelength, flux); the .trace file with columns (X pixel number, Y pixel of trace); .log file with record of settings used in this routine for reduction. (Default is True) display : bool, optional Set to True to display intermediate steps along the way. (Default is True) display_final : bool, optional Set to False to suppress plotting the final reduced spectrum to the screen. Useful for running in quiet batch mode. (Default is True) """ if (len(biaslist) > 0): bias = pydis.biascombine(biaslist, trim=trim, silent=silent) else: bias = 0.0 if (len(biaslist) > 0) and (len(flatlist) > 0): flat,fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode,display=False, flat_poly=flat_order, response=flat_response) else: flat = 1.0 fmask_out = (1,) if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file+'.lines' # do the HeNeAr mapping first, must apply to all science frames if (len(HeNeAr_file) > 0): wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev,mode='poly', display=display_HeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) # read in the list of target spectra # assumes specfile is a list of file names of object specfile = np.array([np.loadtxt(speclist, dtype='string')]).flatten() for i in range(len(specfile)): spec = specfile[i] if silent is False: print("> Processing file "+spec+" ["+str(i)+"/"+str(len(specfile))+"]") # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength # remove bias and flat, divide by exptime data = ((raw - bias) / flat) / exptime if display is True: plt.figure() plt.imshow(np.log10(data), origin = 'lower',aspect='auto',cmap=cm.Greys_r) plt.title(spec+' (flat and bias corrected)') plt.show() # with reduced data, trace the aperture if (i==0) or (trace1 is False): trace = pydis.ap_trace(data,fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=trace_interac) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=1) xbins = np.arange(data.shape[1]) if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower',aspect='auto',cmap=cm.Greys_r) plt.plot(xbins, trace,'b',lw=1) plt.plot(xbins, trace-apwidth,'r',lw=1) plt.plot(xbins, trace+apwidth,'r',lw=1) plt.plot(xbins, trace-apwidth-skysep,'g',lw=1) plt.plot(xbins, trace-apwidth-skysep-skywidth,'g',lw=1) plt.plot(xbins, trace+apwidth+skysep,'g',lw=1) plt.plot(xbins, trace+apwidth+skysep+skywidth,'g',lw=1) plt.title('(with trace, aperture, and sky regions)') plt.show() if (len(HeNeAr_file) > 0): wfinal = pydis.mapwavelength(trace, wfit, mode='poly') else: # if no line lamp given, use approx from the img header wfinal = wapprox # plt.figure() # plt.plot(wfinal,'r') # plt.show() # subtract local sky level, divide by exptime to get flux units # (counts / sec) flux_red = (ext_spec - sky) # now correct the spectrum for airmass extinction flux_red_x = pydis.AirmassCor(wfinal, flux_red, airmass, airmass_file=airmass_file) # now get flux std IF stdstar is defined # !! assume first object in list is std star !! if (len(stdstar) > 0) and (i==0): sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode=std_mode, polydeg=std_order, display=display_std) sens_wave = wfinal elif (len(stdstar) == 0) and (i==0): # if 1st obj not the std, then just make array of 1's to multiply thru sens_flux = np.ones_like(flux_red_x) sens_wave = wfinal # final step in reduction, apply sensfunc ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) if write_reduced is True: pydis._WriteSpec(spec, wfinal, ffinal, efinal, trace) now = datetime.datetime.now() lout = open(spec+'.log','w') lout.write('# This file contains the reduction parameters \n'+ '# used in autoreduce for '+spec+'\n') lout.write('DATE-REDUCED = '+str(now)+'\n') lout.write('HeNeAr_tol = '+str(HeNeAr_tol)+'\n') lout.write('HeNeAr_order = '+str(HeNeAr_order)+'\n') lout.write('trace1 = '+str(trace1)+'\n') lout.write('ntracesteps = '+str(ntracesteps)+'\n') lout.write('trim = '+str(trim)+'\n') lout.write('response = '+str(flat_response)+'\n') lout.write('apwidth = '+str(apwidth)+'\n') lout.write('skysep = '+str(skysep)+'\n') lout.write('skywidth = '+str(skywidth)+'\n') lout.write('skydeg = '+str(skydeg)+'\n') lout.write('stdstar = '+str(stdstar)+'\n') lout.write('airmass_file = '+str(airmass_file)+'\n') lout.close() if display_final is True: # the final figure to plot plt.figure() # plt.plot(wfinal, ffinal) plt.errorbar(wfinal, ffinal, yerr=efinal) plt.xlabel('Wavelength') plt.ylabel('Flux') plt.title(spec) #plot within percentile limits plt.ylim( (np.percentile(ffinal,2), np.percentile(ffinal,98)) ) plt.show() return
def ReduceCoAdd(speclist, flatlist, biaslist, HeNeAr_file, stdstar='', trace1=False, ntracesteps=15, flat_mode='spline', flat_order=9, flat_response=True, apwidth=6,skysep=1,skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=False, HeNeAr_tol=20, HeNeAr_order=2, displayHeNeAr=False, trim=True, write_reduced=True, display=True): """ A special version of autoreduce, that assumes all the target images want to be median co-added and then extracted. All images have flat and bias removed first, then are combined. Trace and Extraction happens only on the final combined image. Assumes file names in speclist are the standard star, followed by all the target images you want to co-add. """ #-- the basic crap, used for all frames bias = pydis.biascombine(biaslist, trim=trim) flat,fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode,display=False, flat_poly=flat_order, response=flat_response) if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file+'.lines' wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev,mode='poly', display=displayHeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) #-- the standard star, set the stage specfile = np.array([np.loadtxt(speclist, dtype='string')]).flatten() spec = specfile[0] # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength data = ((raw - bias) / flat) / exptime trace = pydis.ap_trace(data,fmask=fmask_out, nsteps=ntracesteps) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=1) xbins = np.arange(data.shape[1]) wfinal = pydis.mapwavelength(trace, wfit, mode='poly') flux_red_x = (ext_spec - sky) sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode='spline',polydeg=12) sens_wave = wfinal ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) #-- the target star exposures, stack and proceed for i in range(1,len(specfile)): spec = specfile[i] # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength data_i = ((raw - bias) / flat) / exptime if (i==1): all_data = data_i elif (i>1): all_data = np.dstack( (all_data, data_i)) data = np.median(all_data, axis=2) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=len(specfile)) xbins = np.arange(data.shape[1]) wfinal = pydis.mapwavelength(trace, wfit, mode='poly') flux_red_x = (ext_spec - sky) ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) plt.figure() plt.plot(wfinal, ffinal) plt.title("CO-ADD DONE") plt.ylim( (np.percentile(ffinal,5), np.percentile(ffinal,95)) ) plt.show() return wfinal, ffinal, efinal
def ReduceCoAdd(speclist, flatlist, biaslist, HeNeAr_file, stdstar='', trace1=False, ntracesteps=15, flat_mode='spline', flat_order=9, flat_response=True, apwidth=6,skysep=1,skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=False, HeNeAr_tol=20, HeNeAr_order=2, displayHeNeAr=False, trim=True, write_reduced=True, display=True): """ A special version of autoreduce, that assumes all the target images want to be median co-added and then extracted. All images have flat and bias removed first, then are combined. Trace and Extraction happens only on the final combined image. Assumes file names in speclist are the standard star, followed by all the target images you want to co-add. """ #-- the basic crap, used for all frames bias = pydis.biascombine(biaslist, trim=trim) flat,fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode,display=False, flat_poly=flat_order, response=flat_response) # Going to need to add in something HERE for that multi henear stuffs! if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file+'.lines' wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev,mode='poly', display=displayHeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) #-- the standard star, set the stage specfile = np.loadtxt(speclist,dtype='string') spec = specfile[0] # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength data = ((raw - bias) / flat) / exptime trace = pydis.ap_trace(data,fmask=fmask_out, nsteps=ntracesteps) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=1) xbins = np.arange(data.shape[1]) wfinal = pydis.mapwavelength(trace, wfit, mode='poly') flux_red_x = (ext_spec - sky) sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode='spline',polydeg=12) sens_wave = wfinal ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) #-- the target star exposures, stack and proceed for i in range(1,len(specfile)): spec = specfile[i] # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength data_i = ((raw - bias) / flat) / exptime if (i==1): all_data = data_i elif (i>1): all_data = np.dstack( (all_data, data_i)) data = np.median(all_data, axis=2) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep,skywidth=skywidth, skydeg=skydeg,coaddN=len(specfile)) xbins = np.arange(data.shape[1]) wfinal = pydis.mapwavelength(trace, wfit, mode='poly') flux_red_x = (ext_spec - sky) ffinal,efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) plt.figure() plt.plot(wfinal, ffinal) plt.title("CO-ADD DONE") plt.ylim( (np.percentile(ffinal,5), np.percentile(ffinal,95)) ) plt.show() return wfinal, ffinal, efinal
def autoreduce(speclist, flatlist='', biaslist='', HeNeAr_file='', stdstar='', trace_recenter=False, trace_interac=True, trace1=False, ntracesteps=15, airmass_file='apoextinct.dat', flat_mode='spline', flat_order=9, flat_response=True, apwidth=8, skysep=3, skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=True, HeNeAr_tol=20, HeNeAr_order=3, display_HeNeAr=False, std_mode='spline', std_order=12, display_std=False, trim=True, write_reduced=True, display=True, display_final=True): """ A wrapper routine to carry out the full steps of the spectral reduction and calibration. Steps include: 1) combines bias and flat images 2) maps wavelength in the HeNeAr image 3) perform simple image reduction: Data = (Raw - Bias)/Flat 4) trace spectral aperture 5) extract spectrum 6) measure sky along extracted spectrum 7) apply flux calibration 8) write output files Parameters ---------- speclist : str Path to file containing list of science images. flatlist : str Path to file containing list of flat images. biaslist : str Path to file containing list of bias images. HeNeAr_file : str Path to the HeNeAr calibration image stdstar : str Name of the standard star to use for flux calibration. Currently the IRAF library onedstds/spec50cal is used for flux calibration. Assumes the first star in "speclist" is the standard star. If nothing is entered for "stdstar", no flux calibration will be computed. (Default is '') trace1 : bool, optional use trace1=True if only perform aperture trace on first object in speclist. Useful if e.g. science targets are faint, and first object is a bright standard star. Note: assumes star placed at same position in spatial direction. (Default is False) trace_recenter : bool, optional If trace1=True, set this to True to allow for small linear adjustments to the trace (default is False) trace_interac : bool, optional Set to True if user should interactively select aperture center for each object spectrum. (Default is True) ntracesteps : int, optional Number of bins in X direction to chop image into. Use fewer bins if ap_trace is having difficulty, such as with faint targets (default here is 25, minimum is 4) apwidth : int, optional The width along the Y axis of the trace to extract. Note: a fixed width is used along the whole trace. (default here is 3 pixels) skysep : int, optional The separation in pixels from the aperture to the sky window. (Default is 25) skywidth : int, optional The width in pixels of the sky windows on either side of the aperture. (Default is 75) HeNeAr_interac : bool, optional Should the HeNeAr identification be done interactively (manually)? (Default here is False) HeNeAr_tol : int, optional When in automatic mode, the tolerance in pixel units between linelist entries and estimated wavelengths for the first few lines matched... use carefully. (Default here is 20) HeNeAr_order : int, optional The polynomial order to use to interpolate between identified peaks in the HeNeAr (Default is 2) display_HeNeAr : bool, optional trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) write_reduced : bool, optional Set to True to write output files, including the .spec file with columns (wavelength, flux); the .trace file with columns (X pixel number, Y pixel of trace); .log file with record of settings used in this routine for reduction. (Default is True) display : bool, optional Set to True to display intermediate steps along the way. (Default is True) display_final : bool, optional Set to False to suppress plotting the final reduced spectrum to the screen. Useful for running in quiet batch mode. (Default is True) """ if (len(biaslist) > 0): bias = pydis.biascombine(biaslist, trim=trim) else: bias = 0.0 if (len(biaslist) > 0) and (len(flatlist) > 0): flat,fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode,display=False, flat_poly=flat_order, response=flat_response) else: flat = 1.0 fmask_out = (1,) #something here will definately change or be added: if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file+'.lines' # do the HeNeAr mapping first, must apply to all science frames if (len(HeNeAr_file) > 0): wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev,mode='poly', display=display_HeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order)
def ReduceTwo(speclist, flatlist='', biaslist='', HeNeAr_file='', stdstar='', trace_recenter=False, ntracesteps=15, airmass_file='apoextinct.dat', flat_mode='spline', flat_order=9, flat_response=True, apwidth=8, skysep=3, skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=True, HeNeAr_tol=20, HeNeAr_order=3, display_HeNeAr=False, std_mode='spline', std_order=12, display_std=False, trim=True, write_reduced=True, display=True, display_final=True): if (len(biaslist) > 0): bias = pydis.biascombine(biaslist, trim=trim) else: bias = 0.0 if (len(biaslist) > 0) and (len(flatlist) > 0): flat, fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode, display=False, flat_poly=flat_order, response=flat_response) else: flat = 1.0 fmask_out = (1, ) if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file + '.lines' # do the HeNeAr mapping first, must apply to all science frames if (len(HeNeAr_file) > 0): wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev, mode='poly', display=display_HeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) # read in the list of target spectra # assumes specfile is a list of file names of object #-> wrap with array and flatten because Numpy sucks with one-element arrays... specfile = np.array([np.loadtxt(speclist, dtype='string')]).flatten() for i in range(len(specfile)): spec = specfile[i] print("> Processing file " + spec + " [" + str(i) + "/" + str(len(specfile)) + "]") # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength # remove bias and flat, divide by exptime data = ((raw - bias) / flat) / exptime if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower', aspect='auto', cmap=cm.Greys_r) plt.title(spec + ' (flat and bias corrected)') plt.show() # with reduced data, trace BOTH apertures trace_1 = pydis.ap_trace(data, fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=True) trace_2 = pydis.ap_trace(data, fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=True) xbins = np.arange(data.shape[1]) if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower', aspect='auto', cmap=cm.Greys_r) plt.plot(xbins, trace_1, 'b', lw=1) plt.plot(xbins, trace_1 - apwidth, 'r', lw=1) plt.plot(xbins, trace_1 + apwidth, 'r', lw=1) plt.plot(xbins, trace_1 - apwidth - skysep, 'g', lw=1) plt.plot(xbins, trace_1 - apwidth - skysep - skywidth, 'g', lw=1) plt.plot(xbins, trace_1 + apwidth + skysep, 'g', lw=1) plt.plot(xbins, trace_1 + apwidth + skysep + skywidth, 'g', lw=1) plt.plot(xbins, trace_2, 'b', lw=1) plt.plot(xbins, trace_2 - apwidth, 'r', lw=1) plt.plot(xbins, trace_2 + apwidth, 'r', lw=1) plt.plot(xbins, trace_2 - apwidth - skysep, 'g', lw=1) plt.plot(xbins, trace_2 - apwidth - skysep - skywidth, 'g', lw=1) plt.plot(xbins, trace_2 + apwidth + skysep, 'g', lw=1) plt.plot(xbins, trace_2 + apwidth + skysep + skywidth, 'g', lw=1) plt.title('(Both Traces, with aperture and sky regions)') plt.show() t_indx = 1 # now do the processing for both traces as if separate stars for trace in [trace_1, trace_2]: tnum = '_' + str(t_indx) t_indx = t_indx + 1 # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep, skywidth=skywidth, skydeg=skydeg, coaddN=1) if (len(HeNeAr_file) > 0): wfinal = pydis.mapwavelength(trace, wfit, mode='poly') else: # if no line lamp given, use approx from the img header wfinal = wapprox # subtract local sky level, divide by exptime to get flux units # (counts / sec) flux_red = (ext_spec - sky) # now correct the spectrum for airmass extinction flux_red_x = pydis.AirmassCor(wfinal, flux_red, airmass, airmass_file=airmass_file) # now get flux std IF stdstar is defined # !! assume first object in list is std star !! if (len(stdstar) > 0) and (i == 0): sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode=std_mode, polydeg=std_order, display=display_std) sens_wave = wfinal elif (len(stdstar) == 0) and (i == 0): # if 1st obj not the std, then just make array of 1's to multiply thru sens_flux = np.ones_like(flux_red_x) sens_wave = wfinal # final step in reduction, apply sensfunc ffinal, efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) if write_reduced is True: pydis._WriteSpec(spec + tnum, wfinal, ffinal, efinal, trace) now = datetime.datetime.now() lout = open(spec + tnum + '.log', 'w') lout.write( '# This file contains the reduction parameters \n' + '# used in autoreduce for ' + spec + '\n') lout.write('DATE-REDUCED = ' + str(now) + '\n') lout.write('HeNeAr_tol = ' + str(HeNeAr_tol) + '\n') lout.write('HeNeAr_order = ' + str(HeNeAr_order) + '\n') lout.write('trace1 = ' + str(False) + '\n') lout.write('ntracesteps = ' + str(ntracesteps) + '\n') lout.write('trim = ' + str(trim) + '\n') lout.write('response = ' + str(flat_response) + '\n') lout.write('apwidth = ' + str(apwidth) + '\n') lout.write('skysep = ' + str(skysep) + '\n') lout.write('skywidth = ' + str(skywidth) + '\n') lout.write('skydeg = ' + str(skydeg) + '\n') lout.write('stdstar = ' + str(stdstar) + '\n') lout.write('airmass_file = ' + str(airmass_file) + '\n') lout.close() if display_final is True: # the final figure to plot plt.figure() # plt.plot(wfinal, ffinal) plt.errorbar(wfinal, ffinal, yerr=efinal) plt.xlabel('Wavelength') plt.ylabel('Flux') plt.title(spec) #plot within percentile limits plt.ylim((np.percentile(ffinal, 2), np.percentile(ffinal, 98))) plt.show() return
def autoreduce(speclist, flatlist='', biaslist='', HeNeAr_file='', stdstar='', trace_recenter=False, trace_interac=True, trace1=False, ntracesteps=15, airmass_file='apoextinct.dat', flat_mode='spline', flat_order=9, flat_response=True, apwidth=8, skysep=3, skywidth=7, skydeg=0, HeNeAr_prev=False, HeNeAr_interac=True, HeNeAr_tol=20, HeNeAr_order=3, display_HeNeAr=False, std_mode='spline', std_order=12, display_std=False, trim=True, write_reduced=True, display=True, display_final=True, silent=True): """ A wrapper routine to carry out the full steps of the spectral reduction and calibration. Steps include: 1) combines bias and flat images 2) maps wavelength in the HeNeAr image 3) perform simple image reduction: Data = (Raw - Bias)/Flat 4) trace spectral aperture 5) extract spectrum 6) measure sky along extracted spectrum 7) apply flux calibration 8) write output files Parameters ---------- speclist : str Path to file containing list of science images. flatlist : str Path to file containing list of flat images. biaslist : str Path to file containing list of bias images. HeNeAr_file : str Path to the HeNeAr calibration image stdstar : str Name of the standard star to use for flux calibration. If nothing is entered for "stdstar", no flux calibration will be computed. (Default is ''). NOTE1: must include the subdir for the star, e.g. 'spec50cal/feige34'. NOTE2: Assumes the first star in "speclist" is the standard star. trace1 : bool, optional use trace1=True if only perform aperture trace on first object in speclist. Useful if e.g. science targets are faint, and first object is a bright standard star. Note: assumes star placed at same position in spatial direction. (Default is False) trace_recenter : bool, optional If trace1=True, set this to True to allow for small linear adjustments to the trace (default is False) trace_interac : bool, optional Set to True if user should interactively select aperture center for each object spectrum. (Default is True) ntracesteps : int, optional Number of bins in X direction to chop image into. Use fewer bins if ap_trace is having difficulty, such as with faint targets (default here is 25, minimum is 4) apwidth : int, optional The width along the Y axis of the trace to extract. Note: a fixed width is used along the whole trace. (default here is 3 pixels) skysep : int, optional The separation in pixels from the aperture to the sky window. (Default is 25) skywidth : int, optional The width in pixels of the sky windows on either side of the aperture. (Default is 75) HeNeAr_interac : bool, optional Should the HeNeAr identification be done interactively (manually)? (Default here is False) HeNeAr_tol : int, optional When in automatic mode, the tolerance in pixel units between linelist entries and estimated wavelengths for the first few lines matched... use carefully. (Default here is 20) HeNeAr_order : int, optional The polynomial order to use to interpolate between identified peaks in the HeNeAr (Default is 2) display_HeNeAr : bool, optional std_mode : str, optional Fit mode to use with the flux standard star. Options are 'spline' and 'poly' (Default is 'spline') std_order : int, optional The order of polynomial to fit, if std_mode='poly'. (Default is 12) display_std : bool, optional If set, display plots of the flux standard being fit (Default is False) trim : bool, optional Trim the image using the DATASEC keyword in the header, assuming has format of [0:1024,0:512] (Default is True) write_reduced : bool, optional Set to True to write output files, including the .spec file with columns (wavelength, flux); the .trace file with columns (X pixel number, Y pixel of trace); .log file with record of settings used in this routine for reduction. (Default is True) display : bool, optional Set to True to display intermediate steps along the way. (Default is True) display_final : bool, optional Set to False to suppress plotting the final reduced spectrum to the screen. Useful for running in quiet batch mode. (Default is True) """ if (len(biaslist) > 0): bias = pydis.biascombine(biaslist, trim=trim, silent=silent) else: bias = 0.0 if (len(biaslist) > 0) and (len(flatlist) > 0): flat, fmask_out = pydis.flatcombine(flatlist, bias, trim=trim, mode=flat_mode, display=False, flat_poly=flat_order, response=flat_response) else: flat = 1.0 fmask_out = (1, ) if HeNeAr_prev is False: prev = '' else: prev = HeNeAr_file + '.lines' # do the HeNeAr mapping first, must apply to all science frames if (len(HeNeAr_file) > 0): wfit = pydis.HeNeAr_fit(HeNeAr_file, trim=trim, fmask=fmask_out, interac=HeNeAr_interac, previous=prev, mode='poly', display=display_HeNeAr, tol=HeNeAr_tol, fit_order=HeNeAr_order) # read in the list of target spectra # assumes specfile is a list of file names of object specfile = np.array([np.loadtxt(speclist, dtype='string')]).flatten() for i in range(len(specfile)): spec = specfile[i] if silent is False: print("> Processing file " + spec + " [" + str(i) + "/" + str(len(specfile)) + "]") # raw, exptime, airmass, wapprox = pydis.OpenImg(spec, trim=trim) img = pydis.OpenImg(spec, trim=trim) raw = img.data exptime = img.exptime airmass = img.airmass wapprox = img.wavelength # remove bias and flat, divide by exptime data = ((raw - bias) / flat) / exptime if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower', aspect='auto', cmap=cm.Greys_r) plt.title(spec + ' (flat and bias corrected)') plt.show() # with reduced data, trace the aperture if (i == 0) or (trace1 is False): trace = pydis.ap_trace(data, fmask=fmask_out, nsteps=ntracesteps, recenter=trace_recenter, interac=trace_interac) # extract the spectrum, measure sky values along trace, get flux errors ext_spec, sky, fluxerr = pydis.ap_extract(data, trace, apwidth=apwidth, skysep=skysep, skywidth=skywidth, skydeg=skydeg, coaddN=1) xbins = np.arange(data.shape[1]) if display is True: plt.figure() plt.imshow(np.log10(data), origin='lower', aspect='auto', cmap=cm.Greys_r) plt.plot(xbins, trace, 'b', lw=1) plt.plot(xbins, trace - apwidth, 'r', lw=1) plt.plot(xbins, trace + apwidth, 'r', lw=1) plt.plot(xbins, trace - apwidth - skysep, 'g', lw=1) plt.plot(xbins, trace - apwidth - skysep - skywidth, 'g', lw=1) plt.plot(xbins, trace + apwidth + skysep, 'g', lw=1) plt.plot(xbins, trace + apwidth + skysep + skywidth, 'g', lw=1) plt.title('(with trace, aperture, and sky regions)') plt.show() if (len(HeNeAr_file) > 0): wfinal = pydis.mapwavelength(trace, wfit, mode='poly') else: # if no line lamp given, use approx from the img header wfinal = wapprox # plt.figure() # plt.plot(wfinal,'r') # plt.show() # subtract local sky level, divide by exptime to get flux units # (counts / sec) flux_red = (ext_spec - sky) # now correct the spectrum for airmass extinction flux_red_x = pydis.AirmassCor(wfinal, flux_red, airmass, airmass_file=airmass_file) # now get flux std IF stdstar is defined # !! assume first object in list is std star !! if (len(stdstar) > 0) and (i == 0): sens_flux = pydis.DefFluxCal(wfinal, flux_red_x, stdstar=stdstar, mode=std_mode, polydeg=std_order, display=display_std) sens_wave = wfinal elif (len(stdstar) == 0) and (i == 0): # if 1st obj not the std, then just make array of 1's to multiply thru sens_flux = np.ones_like(flux_red_x) sens_wave = wfinal # final step in reduction, apply sensfunc ffinal, efinal = pydis.ApplyFluxCal(wfinal, flux_red_x, fluxerr, sens_wave, sens_flux) if write_reduced is True: pydis._WriteSpec(spec, wfinal, ffinal, efinal, trace) now = datetime.datetime.now() lout = open(spec + '.log', 'w') lout.write('# This file contains the reduction parameters \n' + '# used in autoreduce for ' + spec + '\n') lout.write('DATE-REDUCED = ' + str(now) + '\n') lout.write('HeNeAr_tol = ' + str(HeNeAr_tol) + '\n') lout.write('HeNeAr_order = ' + str(HeNeAr_order) + '\n') lout.write('trace1 = ' + str(trace1) + '\n') lout.write('ntracesteps = ' + str(ntracesteps) + '\n') lout.write('trim = ' + str(trim) + '\n') lout.write('response = ' + str(flat_response) + '\n') lout.write('apwidth = ' + str(apwidth) + '\n') lout.write('skysep = ' + str(skysep) + '\n') lout.write('skywidth = ' + str(skywidth) + '\n') lout.write('skydeg = ' + str(skydeg) + '\n') lout.write('stdstar = ' + str(stdstar) + '\n') lout.write('airmass_file = ' + str(airmass_file) + '\n') lout.close() if display_final is True: # the final figure to plot plt.figure() # plt.plot(wfinal, ffinal) plt.errorbar(wfinal, ffinal, yerr=efinal) plt.xlabel('Wavelength') plt.ylabel('Flux') plt.title(spec) #plot within percentile limits plt.ylim((np.percentile(ffinal, 2), np.percentile(ffinal, 98))) plt.show() return
#KingValdez170615 #Code to test out and run some pydis functions # if pyDIS isn't in the currnet working directory, add to path import sys sys.path.append('/home/kvaldez/github/pydis/') import numpy as np # must import, of course import pydis # reduce and extract the data with the fancy autoreduce script #wave, flux, err = pydis.autoreduce('objlist.r.txt', 'flatlist.r.txt', 'biaslist.r.txt', #'HeNeAr.0005r.fits', stdstar='spec50cal/fiege34.dat') dir = '/usr/netapp/physics/linux-lab/data/apo/UT170422/' rbias_file = dir + 'rbias.txt' bias = pydis.biascombine(rbias_file, trim=True)