Exemplo n.º 1
0
def get_indexes(config):
    indexes = list(range(0, len(list(config.attributes_dict.values())[0])))

    for obs, value in config.attributes.observables.types.items():
        any = CommonTypes.any.value
        if obs in config.attributes_dict:

            if isinstance(value, list):

                passed_indexes = []

                for v in value:

                    if is_float(v):
                        v = float(v)
                        if v.is_integer():
                            v = int(v)

                    passed_indexes += pass_indexes(config, obs, v, any)
            else:

                if is_float(value):
                    value = float(value)
                    if value.is_integer():
                        value = int(value)

                passed_indexes = pass_indexes(config, obs, value, any)

            indexes = list(set(indexes).intersection(passed_indexes))
        else:
            raise ValueError('Wrong observables.types key.')

    indexes.sort()

    return indexes
Exemplo n.º 2
0
def get_indexes(config):
    indexes = list(range(0, len(list(config.observables_dict.values())[0])))

    for obs, value in config.attributes.observables.types.items():
        any = CommonTypes.any.value
        if obs in config.observables_dict:

            if obs == 'age':

                if len(value) == 2:
                    left = float(value[0])
                    right = float(value[1])
                    passed_indexes = pass_indexes_interval(
                        config, obs, left, right)
                else:
                    raise ValueError(
                        'Wrong observables_dict key for age. It should be (left, right).'
                    )

            else:

                if isinstance(value, list):
                    passed_indexes = []
                    for v in value:
                        if is_float(v):
                            v = float(v)
                            if v.is_integer():
                                v = int(v)
                        passed_indexes += pass_indexes(config, obs, v, any)
                else:
                    if is_float(value):
                        value = float(value)
                        if value.is_integer():
                            value = int(value)
                    passed_indexes = pass_indexes(config, obs, value, any)

            indexes = list(set(indexes).intersection(passed_indexes))
        else:
            raise ValueError('Wrong observables.types key.')

    indexes.sort()

    print(f'number of indexes: {len(indexes)}')

    return indexes
Exemplo n.º 3
0
def load_observables_dict(config):
    fn = get_data_base_path(config) + '/' + config.attributes.observables.name
    fn_txt = fn + '.txt'
    fn_xlsx = fn + '.xlsx'
    fn_pkl = fn + '.pkl'

    if os.path.isfile(fn_pkl):

        f = open(fn_pkl, 'rb')
        observables_dict = pickle.load(f)
        f.close()

    else:

        if os.path.isfile(fn_xlsx):
            df = pd.read_excel(fn_xlsx)
            tmp_dict = df.to_dict()
            observables_dict = {}
            for key in tmp_dict:
                curr_dict = tmp_dict[key]
                observables_dict[key] = list(curr_dict.values())

        elif os.path.isfile(fn_txt):
            f = open(fn_txt)
            key_line = f.readline()
            keys = key_line.split('\t')
            keys = [x.rstrip() for x in keys]

            observables_dict = {}
            for key in keys:
                observables_dict[key] = []

            for line in f:
                values = line.split('\t')
                for key_id in range(0, len(keys)):
                    key = keys[key_id]
                    value = values[key_id].rstrip()
                    if is_float(value):
                        value = float(value)
                        if value.is_integer():
                            observables_dict[key].append(int(value))
                        else:
                            observables_dict[key].append(float(value))
                    else:
                        observables_dict[key].append(value)
            f.close()

        else:
            raise ValueError('No observables file')

        f = open(fn_pkl, 'wb')
        pickle.dump(observables_dict, f, pickle.HIGHEST_PROTOCOL)
        f.close()

    return observables_dict
Exemplo n.º 4
0
def load_observables_categorical_dict(config):
    fn = get_data_base_path(config) + '/' + config.attributes.observables.name + '_categorical'
    fn_pkl = fn + '.pkl'

    if os.path.isfile(fn_pkl):

        f = open(fn_pkl, 'rb')
        observables_categorical_dict = pickle.load(f)
        f.close()

    else:

        observables_categorical_dict = {}

        if config.observables_dict is not None:
            observables_dict = config.observables_dict
        else:
            observables_dict = load_observables_dict(config)

        na_values = ['', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>',
                     'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null', '-', '--']

        for key in observables_dict:
            all_numeric = True
            for i in range(0, len(observables_dict[key])):
                value = observables_dict[key][i]
                if value in na_values:
                    value = np.nan
                if is_float(value):
                    value = float(value)
                    if value.is_integer():
                        observables_dict[key][i] = value
                    else:
                        observables_dict[key][i] = float(value)
                else:
                    observables_dict[key][i] = value
                    all_numeric = False
            if all_numeric:
                observables_categorical_dict[key] = np.asarray(config.observables_dict[key])
            else:
                observables_categorical_dict[key] = categorize_data(np.asarray(config.observables_dict[key]))

        f = open(fn_pkl, 'wb')
        pickle.dump(observables_categorical_dict, f, pickle.HIGHEST_PROTOCOL)
        f.close()

    return observables_categorical_dict
Exemplo n.º 5
0
def load_observables_dict(config):
    fn = get_data_base_path(config) + '/' + config.attributes.observables.name
    fn_txt = fn + '.txt'
    fn_pkl = fn + '.pkl'

    if os.path.isfile(fn_pkl):

        f = open(fn_pkl, 'rb')
        attributes_dict = pickle.load(f)
        f.close()

    else:

        f = open(fn_txt)
        key_line = f.readline()
        keys = key_line.split('\t')
        keys = [x.rstrip() for x in keys]

        attributes_dict = {}
        for key in keys:
            attributes_dict[key] = []

        for line in f:
            values = line.split('\t')
            for key_id in range(0, len(keys)):
                key = keys[key_id]
                value = values[key_id].rstrip()
                if is_float(value):
                    value = float(value)
                    if value.is_integer():
                        attributes_dict[key].append(int(value))
                    else:
                        attributes_dict[key].append(float(value))
                else:
                    attributes_dict[key].append(value)
        f.close()

        f = open(fn_pkl, 'wb')
        pickle.dump(attributes_dict, f, pickle.HIGHEST_PROTOCOL)
        f.close()

    return attributes_dict
Exemplo n.º 6
0
def load_cells_dict(config):
    fn = get_data_base_path(config) + '/' + config.attributes.cells.name
    fn_txt = fn + '.txt'
    fn_pkl = fn + '.pkl'

    if os.path.isfile(fn_pkl):

        f = open(fn_pkl, 'rb')
        cells_dict = pickle.load(f)
        f.close()

    else:

        f = open(fn_txt)
        key_line = f.readline()
        keys = key_line.split('\t')
        # First column is always sample name
        keys = [x.rstrip() for x in keys][1::]

        cells_dict = {}
        for key in keys:
            cells_dict[key] = []

        for line in f:
            values = line.split('\t')[1::]
            for key_id in range(0, len(keys)):
                key = keys[key_id]
                value = values[key_id].rstrip()
                if is_float(value):
                    cells_dict[key].append(float(value))
                else:
                    cells_dict[key].append(value)
        f.close()

        f = open(fn_pkl, 'wb')
        pickle.dump(cells_dict, f, pickle.HIGHEST_PROTOCOL)
        f.close()

    return cells_dict
Exemplo n.º 7
0
    def run(self, config, configs_child):

        if config.experiment.method == Method.histogram:

            plot_data = []
            for config_child in configs_child:

                curr_plot_data = []

                target = self.get_strategy.get_target(config_child)
                is_number_list = [is_float(t) for t in target]
                if False in is_number_list:
                    xbins = {}
                else:
                    bin_size = config.experiment.params['bin_size']
                    xbins = dict(start=min(target) - 0.5 * bin_size,
                                 end=max(target) + 0.5 * bin_size,
                                 size=bin_size)

                color = cl.scales['8']['qual']['Set1'][configs_child.index(
                    config_child)]

                if config_child.experiment.method == Method.histogram:

                    histogram = go.Histogram(
                        x=target,
                        name=str(config_child.attributes.observables),
                        xbins=xbins,
                        marker=dict(
                            opacity=config.experiment.params['opacity'],
                            color=color))

                    curr_plot_data.append(histogram)

                plot_data += curr_plot_data

            config.experiment_data['data'] = plot_data
Exemplo n.º 8
0
    def run(self, config, configs_child):

        if config.experiment.data in [
                DataType.betas, DataType.betas_adj, DataType.residuals,
                DataType.resid_old, DataType.epimutations, DataType.entropy,
                DataType.cells, DataType.genes
        ]:

            if config.experiment.method in [
                    Method.scatter, Method.variance_histogram
            ]:
                self.iterate(config, configs_child)

            elif config.experiment.method == Method.curve:

                x_target = config.experiment.method_params['x']
                y_target = config.experiment.method_params['y']
                number_of_points = int(
                    config.experiment.method_params['number_of_points'])

                plot_data = []

                for config_child in configs_child:

                    if x_target == 'count':
                        xs = list(range(1, number_of_points + 1))
                    else:
                        if x_target in config_child.advanced_data:
                            xs = config_child.advanced_data[x_target][
                                0:number_of_points]
                        else:
                            raise ValueError(
                                f'{x_target} not in {config_child}.')

                    if y_target in config_child.advanced_data:
                        ys = config_child.advanced_data[y_target][
                            0:number_of_points]
                    else:
                        raise ValueError(f'{y_target} not in {config_child}.')

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(
                        config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(
                        coordinates) + ',' + str(0.5) + ')'
                    color_border = 'rgba(' + ','.join(coordinates) + ',' + str(
                        0.9) + ')'

                    scatter = go.Scatter(
                        x=xs,
                        y=ys,
                        name=get_names(config_child,
                                       config.experiment.method_params),
                        mode='lines+markers',
                        marker=dict(size=10,
                                    color=color_transparent,
                                    line=dict(
                                        width=2,
                                        color=color_border,
                                    )),
                    )
                    plot_data.append(scatter)

                config.experiment_data['data'] = plot_data

        elif config.experiment.data == DataType.observables:

            if config.experiment.method == Method.histogram:

                plot_data = []
                num_points = []
                for config_child in configs_child:

                    curr_plot_data = []

                    targets = self.get_strategy.get_target(config_child)
                    num_points.append(len(targets))
                    is_number_list = [is_float(t) for t in targets]
                    if False in is_number_list:
                        xbins = {}
                    else:
                        bin_size = config.experiment.method_params['bin_size']
                        xbins = dict(start=min(targets) - 0.5 * bin_size,
                                     end=max(targets) + 0.5 * bin_size,
                                     size=bin_size)

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(
                        config_child)]

                    if config_child.experiment.method == Method.histogram:
                        histogram = go.Histogram(
                            x=targets,
                            name=get_names(config_child,
                                           config.experiment.method_params) +
                            f': {len(targets)}',
                            xbins=xbins,
                            marker=dict(opacity=config.experiment.
                                        method_params['opacity'],
                                        color=color,
                                        line=dict(color='#444444', width=1)))

                        curr_plot_data.append(histogram)

                    plot_data += curr_plot_data

                # Sorting by total number of points
                order = np.argsort(num_points)[::-1]
                config.experiment_data['data'] = [
                    plot_data[index] for index in order
                ]
Exemplo n.º 9
0
    def release(self, config, configs_child):

        if config.experiment.task_params is None or config.experiment.task_params[
                'type'] == 'run':

            if config.experiment.data in [
                    DataType.betas, DataType.betas_adj, DataType.residuals,
                    DataType.resid_old, DataType.epimutations,
                    DataType.entropy, DataType.cells, DataType.genes
            ]:
                if config.experiment.method in [Method.scatter, Method.range]:

                    for item_id, items in enumerate(
                            config.experiment_data['item']):

                        if config.experiment.data in [
                                DataType.betas,
                                DataType.betas_adj,
                                DataType.residuals,
                                DataType.resid_old,
                        ]:
                            if items in config.cpg_gene_dict:
                                aux = config.cpg_gene_dict[items]
                                if isinstance(aux, list):
                                    aux_str = ';'.join(aux)
                                else:
                                    aux_str = str(aux)
                            else:
                                aux_str = 'non-genic'
                            title = items + '(' + aux_str + ')'
                        elif config.experiment.data == DataType.genes:
                            title = items
                        else:
                            title = ''

                        if config.experiment.method == Method.range:
                            layout = get_layout(config)
                        else:
                            layout = get_layout(config, title)

                        if config.experiment.data == DataType.cells:
                            layout.yaxis = get_axis(items)

                        raw_item_id = config.experiment.method_params[
                            'items'].index(items)

                        if 'x_ranges' in config.experiment.method_params:
                            x_range = config.experiment.method_params[
                                'x_ranges'][raw_item_id]
                            if x_range != 'auto' or 'auto' not in x_range:
                                layout.xaxis.range = x_range

                        if 'y_ranges' in config.experiment.method_params:
                            y_range = config.experiment.method_params[
                                'y_ranges'][raw_item_id]
                            if y_range != 'auto' or 'auto' not in y_range:
                                layout.yaxis.range = y_range

                        if config.experiment.method == Method.range:
                            borders = config.experiment.method_params[
                                'borders']
                            labels = []
                            tickvals = []
                            for seg_id in range(0, len(borders) - 1):
                                x_center = (borders[seg_id + 1] +
                                            borders[seg_id]) * 0.5
                                tickvals.append(x_center)
                                labels.append(
                                    f'{borders[seg_id]} to {borders[seg_id + 1] - 1}'
                                )
                            layout.xaxis.tickvals = tickvals
                            layout.xaxis.ticktext = labels

                        fig = go.Figure(
                            data=config.experiment_data['data'][item_id],
                            layout=layout)
                        config.experiment_data['fig'].append(fig)

                elif config.experiment.method == Method.scatter_comparison:

                    x_num = len(configs_child)
                    if x_num == 3:
                        x_begin = 0.11
                    elif x_num == 2:
                        x_begin = 0.2
                    else:
                        x_begin = 0.075
                    x_end = 1
                    x_shift = (x_end - x_begin) / x_num
                    x_size = x_shift - 0.01
                    x_domains = []
                    for x_id in range(0, x_num):
                        x = x_begin + x_shift * x_id
                        x_domains.append([x, x + x_size])

                    y_num = len(configs_child[0].experiment_data['item'])

                    if y_num == 1:
                        y_begin = 0.25
                    elif y_num == 2:
                        y_begin = 0.2
                    else:
                        y_begin = 0.06

                    y_end = 1
                    y_shift = (y_end - y_begin) / y_num
                    y_size = y_shift - 0.02
                    y_domains = []
                    for y_id in range(0, y_num):
                        y = y_begin + y_shift * y_id
                        y_domains.append([y, y + y_size])

                    for configs_child_id, config_child in enumerate(
                            configs_child):
                        for item_id, items in enumerate(
                                config_child.experiment_data['data']):

                            if configs_child_id == 0:
                                x_string = 'x'
                            else:
                                x_string = f'x{configs_child_id + 1}'

                            if item_id == 0:
                                y_string = 'y'
                            else:
                                y_string = f'y{item_id + 1}'

                            if isinstance(items, list):
                                for item in items:
                                    item.xaxis = x_string
                                    item.yaxis = y_string

                                    if item.mode == 'markers':
                                        item.marker.size = 1
                                        item.marker.line.width = 0.2
                                    if item.mode == 'lines':
                                        item.line.width = 1

                                    config.experiment_data['data'].append(item)
                            else:
                                items.xaxis = x_string
                                items.yaxis = y_string

                                if items.mode == 'markers':
                                    items.marker.size = 1
                                    items.marker.line.width = 0.2
                                if items.mode == 'lines':
                                    items.line.width = 1

                                config.experiment_data['data'].append(items)

                    layout = {}

                    layout['template'] = 'plotly_white'

                    layout['showlegend'] = False
                    layout['margin'] = {
                        'l': 0,
                        'r': 0,
                        'b': 0,
                        't': 0,
                    }
                    height_per_row = 125
                    width_per_col = 200
                    layout['height'] = height_per_row * y_num
                    layout['width'] = width_per_col * x_num

                    for x_id in range(0, x_num):

                        if x_id == 0:
                            x_string_add = ''
                        else:
                            x_string_add = str(x_id + 1)

                        layout['xaxis' + x_string_add] = {}
                        layout['xaxis' +
                               x_string_add]['domain'] = x_domains[x_id]
                        layout['xaxis' +
                               x_string_add]['anchor'] = 'x' + x_string_add

                        layout['xaxis' + x_string_add]['zeroline'] = False
                        layout['xaxis' + x_string_add]['showgrid'] = True
                        layout['xaxis' + x_string_add]['showline'] = True
                        layout['xaxis' + x_string_add]['mirror'] = 'allticks'

                        layout['xaxis' + x_string_add]['titlefont'] = dict(
                            family='Arial', size=13, color='black')

                        layout['xaxis' + x_string_add]['tickfont'] = dict(
                            family='Arial', size=10, color='black')

                        db = config.experiment.method_params['data_bases'][
                            x_id]
                        x_title = db
                        layout['xaxis' + x_string_add]['title'] = x_title

                        x_range = config.experiment.method_params['x_ranges'][
                            x_id]
                        if x_range != 'auto' or 'auto' not in x_range:
                            layout['xaxis' + x_string_add]['range'] = x_range

                    for y_id in range(0, y_num):

                        if y_id == 0:
                            y_string_add = ''
                        else:
                            y_string_add = str(y_id + 1)

                        layout['yaxis' + y_string_add] = {}
                        layout['yaxis' +
                               y_string_add]['domain'] = y_domains[y_id]
                        layout['yaxis' +
                               y_string_add]['anchor'] = 'y' + y_string_add

                        layout['yaxis' + y_string_add]['zeroline'] = False
                        layout['yaxis' + y_string_add]['showgrid'] = True
                        layout['yaxis' + y_string_add]['showline'] = True
                        layout['yaxis' + y_string_add]['mirror'] = 'allticks'

                        layout['yaxis' + y_string_add]['titlefont'] = dict(
                            family='Arial', size=13, color='black')

                        layout['yaxis' + y_string_add]['tickfont'] = dict(
                            family='Arial', size=10, color='black')

                        y_title = config.experiment.method_params['items'][
                            y_id]
                        if config.experiment.data in [
                                DataType.betas,
                                DataType.betas_adj,
                                DataType.residuals,
                                DataType.resid_old,
                        ]:
                            if 'aux' in config.experiment.method_params:
                                aux = config.experiment.method_params['aux'][
                                    y_id]
                                if is_float(aux) and math.isnan(aux):
                                    aux = ''
                                y_title = str(y_title) + '<br>' + str(aux)
                        layout['yaxis' + y_string_add]['title'] = y_title

                        y_range = config.experiment.method_params['y_ranges'][
                            y_id]
                        if y_range != 'auto' or 'auto' not in y_range:
                            layout['yaxis' + y_string_add]['range'] = y_range

                    fig = go.Figure(data=config.experiment_data['data'],
                                    layout=layout)
                    config.experiment_data['fig'] = fig

                elif config.experiment.method == Method.variance_histogram:

                    for data in config.experiment_data['data']:
                        layout = get_layout(config)
                        layout.xaxis.title = '$\\Delta$'
                        layout.yaxis.title = '$PDF$'

                        fig = ff.create_distplot(data['hist_data'],
                                                 data['group_labels'],
                                                 show_hist=False,
                                                 show_rug=False,
                                                 colors=data['colors'])
                        fig['layout'] = layout

                        config.experiment_data['fig'] = fig

                elif config.experiment.method == Method.curve:

                    layout = get_layout(config)
                    config.experiment_data['fig'] = go.Figure(
                        data=config.experiment_data['data'], layout=layout)

            elif config.experiment.data == DataType.observables:

                if config.experiment.method == Method.histogram:

                    layout = get_layout(config)

                    if 'x_range' in config.experiment.method_params:
                        if config.experiment.method_params['x_range'] != 'auto':
                            layout.xaxis.range = config.experiment.method_params[
                                'x_range']

                    config.experiment_data['fig'] = go.Figure(
                        data=config.experiment_data['data'], layout=layout)

        elif config.experiment.task_params['type'] == 'prepare':
            pass
Exemplo n.º 10
0
    def run(self, config, configs_child):

        if config.experiment.data in [DataType.betas, DataType.betas_adj, DataType.residuals_common,
                                      DataType.residuals_special]:

            if config.experiment.method == Method.scatter:

                item = config.experiment.method_params['item']
                line = config.experiment.method_params['line']
                add = config.experiment.method_params['add']
                fit = config.experiment.method_params['fit']
                semi_window = config.experiment.method_params['semi_window']
                box_b = config.experiment.method_params['box_b']
                box_t = config.experiment.method_params['box_t']

                plot_data = []

                for config_child in configs_child:

                    # Plot data
                    targets = self.get_strategy.get_target(config_child)
                    data = self.get_strategy.get_single_base(config_child, [item])[0]

                    # Colors setup
                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str(0.1) + ')'
                    color_border = 'rgba(' + ','.join(coordinates) + ',' + str(0.8) + ')'

                    # Adding scatter
                    scatter = go.Scatter(
                        x=targets,
                        y=data,
                        name=get_names(config_child),
                        mode='markers',
                        marker=dict(
                            size=4,
                            color=color_border,
                            line=dict(
                                width=1,
                                color=color_border,
                            )
                        ),
                    )
                    plot_data.append(scatter)

                    # Linear regression
                    x = sm.add_constant(targets)
                    y = data
                    results = sm.OLS(y, x).fit()
                    intercept = results.params[0]
                    slope = results.params[1]
                    intercept_std = results.bse[0]
                    slope_std = results.bse[1]

                    # Adding regression line
                    if line == 'yes':
                        x_min = np.min(targets)
                        x_max = np.max(targets)
                        y_min = slope * x_min + intercept
                        y_max = slope * x_max + intercept
                        scatter = go.Scatter(
                            x=[x_min, x_max],
                            y=[y_min, y_max],
                            mode='lines',
                            marker=dict(
                                color=color
                            ),
                            line=dict(
                                width=6,
                                color=color
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                    # Adding polygon area
                    if add == 'polygon':
                        pr = PolygonRoutines(
                            x=targets,
                            y=[],
                            params={
                                'intercept': intercept,
                                'slope': slope,
                                'intercept_std': intercept_std,
                                'slope_std': slope_std
                            },
                            method=config_child.experiment.method
                        )
                        scatter = pr.get_scatter(color_transparent)
                        plot_data.append(scatter)

                    # Adding box curve
                    if fit == 'no' and semi_window != 'none':
                        xs, bs, ms, ts = process_box(targets, data, semi_window, box_b, box_t)

                        scatter = go.Scatter(
                            x=xs,
                            y=bs,
                            name=get_names(config_child),
                            mode='lines',
                            line=dict(
                                width=4,
                                color=color_border
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                        scatter = go.Scatter(
                            x=xs,
                            y=ms,
                            name=get_names(config_child),
                            mode='lines',
                            line=dict(
                                width=6,
                                color=color_border
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                        scatter = go.Scatter(
                            x=xs,
                            y=ts,
                            name=get_names(config_child),
                            mode='lines',
                            line=dict(
                                width=4,
                                color=color_border
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                    # Adding best curve
                    if fit == 'yes' and semi_window != 'none':

                        residuals = data

                        characteristics_dict = {}

                        init_variance_characteristics_dict(characteristics_dict, 'box_b')
                        init_variance_characteristics_dict(characteristics_dict, 'box_m')
                        init_variance_characteristics_dict(characteristics_dict, 'box_t')

                        xs_box, bs_box, ms_box, ts_box = process_box(targets, residuals, semi_window, box_b, box_t)
                        variance_processing(xs_box, bs_box, characteristics_dict, 'box_b')
                        variance_processing(xs_box, ms_box, characteristics_dict, 'box_m')
                        variance_processing(xs_box, ts_box, characteristics_dict, 'box_t')

                        R2 = np.min([characteristics_dict['box_b_best_R2'][-1],
                                     characteristics_dict['box_t_best_R2'][-1]])

                        characteristics_dict['best_R2'].append(R2)

                        if characteristics_dict['box_t_best_type'] == [0]:  # lin-lin axes

                            ys_t = np.zeros(2, dtype=float)
                            ys_b = np.zeros(2, dtype=float)

                            intercept_box_t = characteristics_dict['box_t_lin_lin_intercept'][0]
                            slope_box_t = characteristics_dict['box_t_lin_lin_slope'][0]

                            intercept_box_b = characteristics_dict['box_b_lin_lin_intercept'][0]
                            slope_box_b = characteristics_dict['box_b_lin_lin_slope'][0]

                            ys_t[0] = slope_box_t * xs_box[0] + intercept_box_t
                            ys_b[0] = slope_box_b * xs_box[0] + intercept_box_b

                            ys_t[1] = slope_box_t * xs_box[-1] + intercept_box_t
                            ys_b[1] = slope_box_b * xs_box[-1] + intercept_box_b

                            xs = [xs_box[0], xs_box[-1]]

                        elif characteristics_dict['box_t_best_type'] == [1]:  # lin-log axes

                            ys_t = np.zeros(len(ts_box), dtype=float)
                            ys_b = np.zeros(len(bs_box), dtype=float)

                            intercept_box_t = characteristics_dict['box_t_lin_log_intercept'][0]
                            slope_box_t = characteristics_dict['box_t_lin_log_slope'][0]

                            if characteristics_dict['box_b_lin_log_intercept'][0] != 'NA' and \
                                    characteristics_dict['box_b_lin_log_slope'][0] != 'NA':
                                intercept_box_b = characteristics_dict['box_b_lin_log_intercept'][0]
                                slope_box_b = characteristics_dict['box_b_lin_log_slope'][0]
                                is_lin_log = True
                            else:
                                intercept_box_b = characteristics_dict['box_b_lin_lin_intercept'][0]
                                slope_box_b = characteristics_dict['box_b_lin_lin_slope'][0]
                                is_lin_log = False

                            for box_id in range(0, len(xs_box)):
                                ys_t[box_id] = np.exp(slope_box_t * xs_box[box_id] + intercept_box_t)
                                if is_lin_log:
                                    ys_b[box_id] = np.exp(slope_box_b * xs_box[box_id] + intercept_box_b)
                                else:
                                    ys_b[box_id] = slope_box_b * xs_box[box_id] + intercept_box_b

                            xs = xs_box

                        elif characteristics_dict['box_t_best_type'] == [2]:  # log-log axes

                            ys_t = np.zeros(len(ts_box), dtype=float)
                            ys_b = np.zeros(len(bs_box), dtype=float)

                            intercept_box_t = characteristics_dict['box_t_log_log_intercept'][0]
                            slope_box_t = characteristics_dict['box_t_log_log_slope'][0]

                            if characteristics_dict['box_b_log_log_intercept'][0] != 'NA' and \
                                    characteristics_dict['box_b_log_log_slope'][0] != 'NA':
                                intercept_box_b = characteristics_dict['box_b_log_log_intercept'][0]
                                slope_box_b = characteristics_dict['box_b_log_log_slope'][0]
                                is_log_log = True
                            else:
                                intercept_box_b = characteristics_dict['box_b_lin_lin_intercept'][0]
                                slope_box_b = characteristics_dict['box_b_lin_lin_slope'][0]
                                is_log_log = False

                            for box_id in range(0, len(xs_box)):
                                ys_t[box_id] = np.exp(slope_box_t * np.log(xs_box[box_id]) + intercept_box_t)
                                if is_log_log:
                                    ys_b[box_id] = np.exp(slope_box_b * np.log(xs_box[box_id]) + intercept_box_b)
                                else:
                                    ys_b[box_id] = slope_box_b * xs_box[box_id] + intercept_box_b

                            xs = xs_box

                        scatter = go.Scatter(
                            x=xs,
                            y=ys_t,
                            name=get_names(config_child),
                            mode='lines',
                            line=dict(
                                width=4,
                                color=color_border
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                        scatter = go.Scatter(
                            x=xs,
                            y=ys_b,
                            name=get_names(config_child),
                            mode='lines',
                            line=dict(
                                width=4,
                                color=color_border
                            ),
                            showlegend=False
                        )
                        plot_data.append(scatter)

                config.experiment_data['data'] = plot_data

            elif config.experiment.method == Method.variance_histogram:

                item = config.experiment.method_params['item']

                plot_data = {
                    'hist_data': [],
                    'group_labels': [],
                    'colors': []
                }

                for config_child in configs_child:

                    plot_data['group_labels'].append(str(config_child.attributes.observables))
                    plot_data['colors'].append(cl.scales['8']['qual']['Set1'][configs_child.index(config_child)])

                    targets = self.get_strategy.get_target(config_child)
                    data = self.get_strategy.get_single_base(config_child, [item])[0]

                    if config_child.experiment.method == Method.linreg:
                        x = sm.add_constant(targets)
                        y = data

                        results = sm.OLS(y, x).fit()

                        plot_data['hist_data'].append(results.resid)

                config.experiment_data['data'] = plot_data

            elif config.experiment.method == Method.curve:

                x_target = config.experiment.method_params['x']
                y_target = config.experiment.method_params['y']
                number_of_points = int(config.experiment.method_params['number_of_points'])

                plot_data = []

                for config_child in configs_child:

                    if x_target == 'count':
                        xs = list(range(1, number_of_points + 1))
                    else:
                        if x_target in config_child.advanced_data:
                            xs = config_child.advanced_data[x_target][0:number_of_points]
                        else:
                            raise ValueError(f'{x_target} not in {config_child}.')

                    if y_target in config_child.advanced_data:
                        ys = config_child.advanced_data[y_target][0:number_of_points]
                    else:
                        raise ValueError(f'{y_target} not in {config_child}.')

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str(0.5) + ')'
                    color_border = 'rgba(' + ','.join(coordinates) + ',' + str(0.9) + ')'

                    scatter = go.Scatter(
                        x=xs,
                        y=ys,
                        name=get_names(config_child),
                        mode='lines+markers',
                        marker=dict(
                            size=10,
                            color=color_transparent,
                            line=dict(
                                width=2,
                                color=color_border,
                            )
                        ),
                    )
                    plot_data.append(scatter)

                config.experiment_data['data'] = plot_data

        elif config.experiment.data == DataType.epimutations:

            if config.experiment.method == Method.scatter:

                plot_data = []

                y_type = config.experiment.method_params['y_type']

                for config_child in configs_child:

                    indexes = config_child.attributes_indexes

                    x = self.get_strategy.get_target(config_child)
                    y = np.zeros(len(indexes), dtype=int)

                    for subj_id in range(0, len(indexes)):
                        col_id = indexes[subj_id]
                        subj_col = self.get_strategy.get_single_base(config_child, [col_id])
                        y[subj_id] = np.sum(subj_col)

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str(0.7) + ')'
                    color_border = 'rgba(' + ','.join(coordinates) + ',' + str(0.8) + ')'

                    scatter = go.Scatter(
                        x=x,
                        y=y,
                        name=get_names(config_child),
                        mode='markers',
                        marker=dict(
                            size=4,
                            color=color_transparent,
                            line=dict(
                                width=1,
                                color=color_border,
                            )
                        ),
                    )
                    plot_data.append(scatter)

                    # Adding regression line

                    x_linreg = sm.add_constant(x)
                    if y_type == 'log':
                        y_linreg = np.log(y)
                    else:
                        y_linreg = y

                    results = sm.OLS(y_linreg, x_linreg).fit()

                    intercept = results.params[0]
                    slope = results.params[1]

                    x_min = np.min(x)
                    x_max = np.max(x)
                    if y_type == 'log':
                        y_min = np.exp(slope * x_min + intercept)
                        y_max = np.exp(slope * x_max + intercept)
                    else:
                        y_min = slope * x_min + intercept
                        y_max = slope * x_max + intercept
                    scatter = go.Scatter(
                        x=[x_min, x_max],
                        y=[y_min, y_max],
                        mode='lines',
                        marker=dict(
                            color=color
                        ),
                        line=dict(
                            width=6,
                            color=color
                        ),
                        showlegend=False
                    )

                    plot_data.append(scatter)

                config.experiment_data['data'] = plot_data

            elif config.experiment.method == Method.range:

                plot_data = []

                borders = config.experiment.method_params['borders']

                for config_child in configs_child:

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str(0.5) + ')'

                    indexes = config_child.attributes_indexes

                    x = self.get_strategy.get_target(config_child)
                    y = np.zeros(len(indexes), dtype=int)

                    for subj_id in range(0, len(indexes)):
                        col_id = indexes[subj_id]
                        subj_col = self.get_strategy.get_single_base(config_child, [col_id])
                        y[subj_id] = np.sum(subj_col)

                    for seg_id in range(0, len(borders) - 1):
                        x_center = (borders[seg_id + 1] + borders[seg_id]) * 0.5
                        curr_box = []
                        for subj_id in range(0, len(indexes)):
                            if borders[seg_id] <= x[subj_id] < borders[seg_id + 1]:
                                curr_box.append(y[subj_id])

                        trace = go.Box(
                            y=curr_box,
                            x=[x_center] * len(curr_box),
                            name=f'{borders[seg_id]} to {borders[seg_id + 1] - 1}',
                            marker=dict(
                                color=color_transparent
                            )
                        )
                        plot_data.append(trace)

                config.experiment_data['data'] = plot_data

        elif config.experiment.data == DataType.entropy:

            if config.experiment.method == Method.scatter:

                plot_data = []

                for config_child in configs_child:
                    indexes = config_child.attributes_indexes

                    x = self.get_strategy.get_target(config_child)
                    y = self.get_strategy.get_single_base(config_child, indexes)

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]
                    coordinates = color[4:-1].split(',')
                    color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str(0.7) + ')'
                    color_border = 'rgba(' + ','.join(coordinates) + ',' + str(0.8) + ')'

                    scatter = go.Scatter(
                        x=x,
                        y=y,
                        name=get_names(config_child),
                        mode='markers',
                        marker=dict(
                            size=4,
                            color=color_transparent,
                            line=dict(
                                width=1,
                                color=color_border,
                            )
                        ),
                    )
                    plot_data.append(scatter)

                    # Adding regression line

                    x_linreg = sm.add_constant(x)
                    y_linreg = y

                    results = sm.OLS(y_linreg, x_linreg).fit()

                    intercept = results.params[0]
                    slope = results.params[1]

                    x_min = np.min(x)
                    x_max = np.max(x)
                    y_min = slope * x_min + intercept
                    y_max = slope * x_max + intercept
                    scatter = go.Scatter(
                        x=[x_min, x_max],
                        y=[y_min, y_max],
                        mode='lines',
                        marker=dict(
                            color=color
                        ),
                        line=dict(
                            width=6,
                            color=color
                        ),
                        showlegend=False
                    )

                    plot_data.append(scatter)

                config.experiment_data['data'] = plot_data

        elif config.experiment.data == DataType.observables:

            if config.experiment.method == Method.histogram:

                plot_data = []
                for config_child in configs_child:

                    curr_plot_data = []

                    targets = self.get_strategy.get_target(config_child)
                    is_number_list = [is_float(t) for t in targets]
                    if False in is_number_list:
                        xbins = {}
                    else:
                        bin_size = config.experiment.method_params['bin_size']
                        xbins = dict(
                            start=min(targets) - 0.5 * bin_size,
                            end=max(targets) + 0.5 * bin_size,
                            size=bin_size
                        )

                    color = cl.scales['8']['qual']['Set1'][configs_child.index(config_child)]

                    if config_child.experiment.method == Method.histogram:
                        histogram = go.Histogram(
                            x=targets,
                            name=get_names(config_child),
                            xbins=xbins,
                            marker=dict(
                                opacity=config.experiment.method_params['opacity'],
                                color=color,
                                line=dict(
                                    color='#444444',
                                    width=1
                                )
                            )
                        )

                        curr_plot_data.append(histogram)

                    plot_data += curr_plot_data

                config.experiment_data['data'] = plot_data