Exemplo n.º 1
0
    B0 = partials[:, n:n + m]
    Q = 10 * np.eye(n)
    R = np.eye(m)

    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(A0, B0, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    dt = 0.001
    N = int(4.0 / dt)
    x = np.zeros((N + 1, n))

    x0 = np.zeros(n)
    x[0] = x0

    timeVec = np.zeros(N + 1)

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        x[i + 1] = x[i] + dt * CalcF(x_u)
        timeVec[i] = timeVec[i - 1] + dt

    #PlotTraj(x.copy(), dt)

    #%% open meshact
    vis = meshcat.Visualizer()
    vis.open

    #%% Meshcat animation
    PlotTrajectoryMeshcat(x, timeVec, vis)
Exemplo n.º 2
0
def one_rotor_loss():
    # simulate quadrotor w/ LQR controller using forward Euler integration.
    # fixed point

    n = 12
    m = 4
    xd = np.zeros(n)
    xd[0:2] = [2, 1]
    ud = np.zeros(m)
    ud[:] = mass * g / 4
    x_u = np.hstack((xd, ud))
    partials = jacobian(CalcF, x_u)
    A0 = partials[:, 0:n]
    print(A0)
    B0 = partials[:, n:n + m]
    print(B0)
    Q = 10 * np.eye(n)
    R = np.eye(m)

    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(A0, B0, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    # dt = 0.001
    # N = int(2.0/dt)
    x = np.zeros((N + 1, n))

    x0 = np.zeros(n)
    x[0] = x0

    timeVec = np.zeros(2 * N + 1)
    all_p = np.zeros(2 * N)
    all_q = np.zeros(2 * N)
    # keeping track of all forces on the quadrotors to show how they adapt
    forces = np.zeros((2 * N, 4))

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        all_p[i] = x_u[9]
        all_q[i] = x_u[10]
        forces[i] = x_u[12:16]
        print(forces[i])
        x[i + 1] = x[i] + dt * CalcF(x_u)
        timeVec[i] = timeVec[i - 1] + dt

    #%% open meshact
    # vis = meshcat.Visualizer()
    # vis.open

    #%% Meshcat animation
    # PlotTrajectoryMeshcat(x, timeVec, vis)

    # at timestamp N=5.0 seconds, rotor 4 fails and we switch control systems
    n = 6
    m = 2
    #for failure of rotor 4, omega_hat_4 = 0
    n_bar = [0.0, 0.289, 0.958]
    sigma_motor = 0.015

    #from eq 51
    xd = np.zeros(n)
    xd[1] = 5.69  #q
    xd[2] = n_bar[0]  #nx
    xd[3] = n_bar[1]  #ny
    ud = np.zeros(m)  #zero because u is in error coordinates
    x_u = np.hstack((xd, ud))

    #based on eq 51
    force_bar = np.array([2.05, 1.02, 2.05, 0])
    # force_bar = np.array([1.02, 2.05, 1.02, 0])
    omega_bar = np.sqrt(force_bar / kF)

    #define the A matrix for failed quad
    Ae = np.zeros([6, 6])
    B0_f = np.zeros([4, 2])
    #extended state
    Be = np.zeros([6, 2])
    Q = np.eye(n)
    R = np.eye(m)

    r_hat = ((kF * kM) / gamma) * (omega_bar[0]**2 - omega_bar[1]**2 +
                                   omega_bar[2]**2 - omega_bar[3]**2)

    #define coupling constant
    a_bar = (I[0, 0] - I[2, 2]) / I[0, 0]

    B0_f[1, 0] = 1
    B0_f[0, 1] = 1
    B0_f = (l / I[0, 0]) * B0_f

    Ae[0, 1] = a_bar
    Ae[1, 0] = -1 * a_bar
    Ae[1, 0] = -1 * a_bar
    Ae[2, 1] = -1 * n_bar[2]
    Ae[2, 3] = r_hat
    Ae[3, 0] = n_bar[2]
    Ae[3, 2] = -1 * r_hat
    Ae[0:4, 4:6] = B0_f

    Ae[4:6, 4:6] = -1 * np.eye(2) / sigma_motor
    Be[4:6, 0:2] = np.eye(2) / sigma_motor

    #the failed matrix u
    # u_f = np.zeros([2,1])

    Q[2:4, 2:4] *= 20
    Q[4:6, 4:6] *= 0

    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(Ae, Be, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    x_mesh = np.zeros((N + 1, 12))
    x_mesh[0] = x[N]
    x = np.zeros((N + 1, n))

    x0 = np.zeros(n)
    x0[0] = 5
    x0[1] = 5
    x[0] = x0

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        all_p[i + N] = x[i, 0]
        all_q[i + N] = x[i, 1]
        xDot = Ae.dot(x[i]) + Be.dot(x_u[6:8])
        x[i + 1] = x[i] + dt * xDot
        # print(x[i,1])

        u_i = -K0.dot(x[i] - xd) + ud
        f = get_forces(u_i, force_bar)

        # x_mesh[i+1] = x_mesh[i] + dt*CalcF(np.hstack((x_mesh[i], f)))

        forces[i + N] = f

        timeVec[i + N] = timeVec[i - 1 + N] + dt
        x_mesh[i + 1] = x_mesh[i] + dt * CalcF(np.hstack([x_mesh[i], f]))
        x_mesh[i + 1, 9] = x[i + 1, 0]
        x_mesh[i + 1, 10] = x[i + 1, 1]
        print(x_mesh[i + 1])

    # plot_forces(forces, timeVec, all_p, all_q, 1, force_bar, omega_bar[1])

    #%% open meshact
    vis = meshcat.Visualizer()
    vis.open

    #%% Meshcat animation
    PlotTrajectoryMeshcat(x_mesh, timeVec[N:2 * N + 1], vis)
Exemplo n.º 3
0
def two_rotor_loss():
    # simulate quadrotor w/ LQR controller using forward Euler integration.
    # fixed point

    n = 12
    m = 4
    xd = np.zeros(n)
    xd[0:2] = [2, 1]
    ud = np.zeros(m)
    ud[:] = mass * g / 4
    x_u = np.hstack((xd, ud))
    partials = jacobian(CalcF, x_u)
    A0 = partials[:, 0:n]
    B0 = partials[:, n:n + m]
    Q = 10 * np.eye(n)
    R = np.eye(m)

    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(A0, B0, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    # dt = 0.001
    # N = int(2.0/dt)
    x = np.zeros((N + 1, n))

    x0 = np.zeros(n)
    x[0] = x0

    timeVec = np.zeros(2 * N + 1)
    all_p = np.zeros(2 * N)
    all_q = np.zeros(2 * N)
    # keeping track of all forces on the quadrotors to show how they adapt
    forces = np.zeros((2 * N, 4))

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        all_p[i] = x_u[9]
        all_q[i] = x_u[10]
        forces[i] = x_u[12:16]
        print(forces[i])
        x[i + 1] = x[i] + dt * CalcF(x_u)
        timeVec[i] = timeVec[i - 1] + dt

    #%% open meshact
    # vis = meshcat.Visualizer()
    # vis.open

    #%% Meshcat animation
    # PlotTrajectoryMeshcat(x, timeVec, vis)

    #for failure of rotor 4 and 2, omega_hat_4 = omega_hat_2= 0
    n = 5
    m = 1
    kF = 6.41e-6
    n_bar = [0.0, 0.0, 1.0]
    sigma_motor = 0.015

    #from eq 51
    xd = np.zeros(n)  #p,q are set to 0
    xd[2] = n_bar[0]  #nx
    xd[3] = n_bar[1]  #ny
    ud = np.zeros(m)  #zero because u is in error coordinates
    x_u = np.hstack((xd, ud))

    #based on eq 51
    force_bar = np.array([2.45, 0.0, 2.45, 0.0])

    #omega_bar = np.sqrt(force_bar/kF) explicitly calcualted in paper
    omega_bar = [-619.0, 0.0, -619.0, 0.0]

    #define the A matrix for failed quad
    Ae = np.zeros([5, 5])
    B0_f = np.zeros([4, 1])
    #extended state
    Be = np.zeros([5, 1])
    Q = np.eye(n)
    R = np.eye(m)
    R *= 0.75

    r_hat = ((kF * kM) / gamma) * (omega_bar[0]**2 - omega_bar[1]**2 +
                                   omega_bar[2]**2 - omega_bar[3]**2)

    #define coupling constant
    a_bar = (I[0, 0] - I[2, 2]) / I[0, 0]

    B0_f[1] = 1
    B0_f = (l / I[0, 0]) * B0_f

    Ae[0, 1] = a_bar
    Ae[1, 0] = -1 * a_bar
    Ae[1, 0] = -1 * a_bar
    Ae[2, 1] = -1 * n_bar[2]
    Ae[2, 3] = r_hat
    Ae[3, 0] = n_bar[2]
    Ae[3, 2] = -1 * r_hat
    Ae[0:4, 4:5] = B0_f

    Ae[4, 4] = -1 * sigma_motor
    Be[4] = 1 / sigma_motor

    #the failed matrix u
    # u_f = np.zeros([2,1])

    Q[2, 2] *= 1000
    Q[3, 3] *= 2

    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(Ae, Be, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    # dt = 0.001
    # N = int(5.0/dt)
    x = np.zeros((N + 1, n))
    # forces = np.zeros((N+1, 4))
    # forces[0] = np.zeros(4)

    x0 = np.zeros(n)
    x0[0] = 5
    x0[1] = 5
    x[0] = x0

    # here, assume the nx and ny are initially zero
    # additional motor values are also set to zero

    # timeVec = np.zeros(N+1)

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        all_p[i + N] = x[i, 0]
        all_q[i + N] = x[i, 1]
        xDot = Ae.dot(x[i]) + Be.dot(x_u[n:n + m])
        x[i + 1] = x[i] + dt * xDot

        # print(x[i,1])

        u_i = -K0.dot(x[i] - xd) + ud
        f = np.zeros(4)
        f[2] = (u_i[0] + 2 * force_bar[2]) / 2
        f[0] = np.sum(force_bar) - f[2]

        forces[i + N] = f

        timeVec[i + N] = timeVec[i - 1 + N] + dt

    # PlotFailedTraj(x.copy(), dt, xd, ud, timeVec, forces)
    print(timeVec.shape)
    print(force_bar.shape)
    plot_forces(forces, timeVec, all_p, all_q, 2, force_bar, omega_bar[1])
Exemplo n.º 4
0
    # get LQR controller about the fixed point
    K0, S0 = LinearQuadraticRegulator(A0, B0, Q, R)

    # simulate stabilizing about fixed point using LQR controller
    dt = 0.001
    N = int(4.0 / dt)
    x = np.zeros((2 * N + 1, n))

    x0 = np.zeros(n)
    x[0] = x0

    timeVec = np.zeros(2 * N + 1)

    for i in range(N):
        x_u = np.hstack((x[i], -K0.dot(x[i] - xd) + ud))
        x[i + 1] = x[i] + dt * CalcF(x_u)
        print(-K0.dot(x[i] - xd) + ud)
        timeVec[i] = timeVec[i - 1] + dt

    # make a prop fail, see how various values change

    for i in range(int(N / 8)):
        u_i = -K0.dot(x[i + N] - xd) + ud
        u_i[3] = 0
        # u_i[1] = 0  # uncomment this line to run two rotor failure
        x_u = np.hstack((x[i + N], u_i))
        x[i + N + 1] = x[i + N] + dt * CalcF(x_u)
        print(u_i)
        timeVec[i + N] = timeVec[i + N - 1] + dt