Exemplo n.º 1
0
		def CheckLevelSet(self, prev_x, x0, Vs, Vsdot, rho, multiplier_degree):
			prog = MathematicalProgram()
			x = prog.NewIndeterminates(len(prev_x),'x')
			V = Vs.Substitute(dict(zip(prev_x, x)))
			Vdot = Vsdot.Substitute(dict(zip(prev_x, x)))
			slack = prog.NewContinuousVariables(1,'a')[0]  
			#mapping = dict(zip(x, np.ones(len(x))))
			#V_norm = 0.0*V
			#for i in range(len(x)):
			#	basis = np.ones(len(x))
			#	V_norm = V_norm + V.Substitute(dict(zip(x, basis)))
			#V = V/V_norm
			#Vdot = Vdot/V_norm
			#prog.AddConstraint(V_norm == 0)

			# in relative state (lambda(xbar)
			Lambda = prog.NewSosPolynomial(Variables(x), multiplier_degree)[0].ToExpression() 
			Lambda = Lambda.Substitute(dict(zip(x, x-x0))) # switch to relative state (lambda(xbar)
			prog.AddSosConstraint(-Vdot + Lambda*(V - rho) - slack*V)
			prog.AddCost(-slack)
			#import pdb; pdb.set_trace()
			result = Solve(prog)
			if(not result.is_success()):
				print('%s, %s' %(result.get_solver_id().name(),result.get_solution_result()) )
				print('slack = %f' %(result.GetSolution(slack)) )
				print('Rho = %f' %(rho))
				#assert result.is_success()
				return -1.0
			
			return result.GetSolution(slack)
Exemplo n.º 2
0
		def FixedLyapunovMaximizeLevelSet(self, prog, x, V, Vdot, multiplier_degree=None):
			'''
			Assumes V>0.
			Vdot >= 0 => V >= rho (or x=0) via 
				maximize rho subject to
				  (V-rho)*x'*x - Lambda*Vdot is SOS, 
				  Lambda is SOS.
			'''

			if multiplier_degree is None:
				# There are no guarantees... this is a reasonable guess:
				multiplier_degree = Polynomial(Vdot).TotalDegree()
				print "Using a degree " + str(multiplier_degree) + " multiplier for the S-procedure"

			# TODO(russt): implement numerical "balancing" from matlab version.
			Lambda = prog.NewSosPolynomial(Variables(x), multiplier_degree)[0].ToExpression()

			rho = prog.NewContinuousVariables(1, "rho")[0]
			prog.AddSosConstraint((V-rho)*(x.dot(x)) - Lambda*Vdot)

			prog.AddCost(-rho)

		#    mosek = MosekSolver()
		#    mosek.set_stream_logging(True, 'mosek.out')
		#    result = mosek.Solve(prog, None, None)
			result = Solve(prog)

			print "Using " + result.get_solver_id().name()

			assert result.is_success()
			assert result.GetSolution(rho) > 0, "Optimization failed (rho <= 0)."

			return V/result.GetSolution(rho)
Exemplo n.º 3
0
		def runDircol(self,x0,xf,tf0):
			N = 15 # constant
			#N = np.int(tf0 * 10) # "10Hz" / samples per second
			
			context = self.CreateDefaultContext()
			dircol  = DirectCollocation(self, context, num_time_samples=N,
							   minimum_timestep=0.05, maximum_timestep=1.0)
			u = dircol.input()
			# set some constraints on inputs
			dircol.AddEqualTimeIntervalsConstraints()
			
			dircol.AddConstraintToAllKnotPoints(u[1] <=  self.slewmax)
			dircol.AddConstraintToAllKnotPoints(u[1] >= -self.slewmax)
			dircol.AddConstraintToAllKnotPoints(u[0] <=  self.umax)
			dircol.AddConstraintToAllKnotPoints(u[0] >= -self.umax)
			
			# constrain the last input to be zero (at least for the u input)
			#import pdb; pdb.set_trace()
			dv = dircol.decision_variables()
			for i in range(3, self.nX*N, 4):
				alfa_state = dv[i] #u[t_end]
				dircol.AddBoundingBoxConstraint(-self.alfamax, self.alfamax, alfa_state)
			#final_u_decision_var = dv[self.nX*N + self.nU*N - 1] #u[t_end]
			#dircol.AddLinearEqualityConstraint(final_u_decision_var, 0.0)
			#first_u_decision_var = dv[self.nX*N + 1 ] #u[t_0]
			#dircol.AddLinearEqualityConstraint(first_u_decision_var, 0.0)
			
			# set some constraints on start and final pose
			eps = 0.0 * np.ones(self.nX) # relaxing factor
			dircol.AddBoundingBoxConstraint(x0, x0, dircol.initial_state())
			dircol.AddBoundingBoxConstraint(xf-eps, \
											xf+eps, dircol.final_state())

			R = 1.0*np.eye(self.nU)  # Cost on input "effort".
			dircol.AddRunningCost( u.transpose().dot(R.dot(u)) ) 

			# Add a final cost equal to the total duration.
			dircol.AddFinalCost(dircol.time())

			# guess initial trajectory
			initial_x_trajectory = \
				PiecewisePolynomial.FirstOrderHold([0., tf0], np.column_stack((x0, xf)))
			dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

			# optimize
			result = Solve(dircol)
			print('******\nRunning trajectory optimization:')
			print('w/ solver %s' %(result.get_solver_id().name()))
			print(result.get_solution_result())
			assert(result.is_success())

			xtraj = dircol.ReconstructStateTrajectory(result)
			utraj = dircol.ReconstructInputTrajectory(result)

			# return nominal trajectory
			return utraj,xtraj
Exemplo n.º 4
0
        def runDircol(self, x0, xf, tf0):
            N = 21  #np.int(tf0 * 10) # "10Hz" samples per second

            context = self.CreateDefaultContext()
            dircol = DirectCollocation(self,
                                       context,
                                       num_time_samples=N,
                                       minimum_timestep=0.05,
                                       maximum_timestep=1.0)
            u = dircol.input()

            dircol.AddEqualTimeIntervalsConstraints()

            dircol.AddConstraintToAllKnotPoints(u[0] <= 0.5 * self.omegamax)
            dircol.AddConstraintToAllKnotPoints(u[0] >= -0.5 * self.omegamax)
            dircol.AddConstraintToAllKnotPoints(u[1] <= 0.5 * self.umax)
            dircol.AddConstraintToAllKnotPoints(u[1] >= -0.5 * self.umax)

            eps = 0.0
            dircol.AddBoundingBoxConstraint(x0, x0, dircol.initial_state())
            dircol.AddBoundingBoxConstraint(xf - np.array([eps, eps, eps]),
                                            xf + np.array([eps, eps, eps]),
                                            dircol.final_state())

            R = 1.0 * np.eye(2)  # Cost on input "effort".
            dircol.AddRunningCost(u.transpose().dot(R.dot(u)))
            #dircol.AddRunningCost(R*u[0]**2)

            # Add a final cost equal to the total duration.
            dircol.AddFinalCost(dircol.time())

            initial_x_trajectory = \
             PiecewisePolynomial.FirstOrderHold([0., tf0], np.column_stack((x0, xf)))
            dircol.SetInitialTrajectory(PiecewisePolynomial(),
                                        initial_x_trajectory)

            result = Solve(dircol)
            print(result.get_solver_id().name())
            print(result.get_solution_result())
            assert (result.is_success())

            #import pdb; pdb.set_trace()
            xtraj = dircol.ReconstructStateTrajectory(result)
            utraj = dircol.ReconstructInputTrajectory(result)

            return utraj, xtraj
    def compute_trajectory_to_other_world(self, state_initial, minimum_time,
                                          maximum_time):
        '''
        Your mission is to implement this function.

        A successful implementation of this function will compute a dynamically feasible trajectory
        which satisfies these criteria:
            - Efficiently conserve fuel
            - Reach "orbit" of the far right world
            - Approximately obey the dynamic constraints
            - Begin at the state_initial provided
            - Take no more than maximum_time, no less than minimum_time

        The above are defined more precisely in the provided notebook.

        Please note there are two return args.

        :param: state_initial: :param state_initial: numpy array of length 4, see rocket_dynamics for documentation
        :param: minimum_time: float, minimum time allowed for trajectory
        :param: maximum_time: float, maximum time allowed for trajectory

        :return: three return args separated by commas:

            trajectory, input_trajectory, time_array

            trajectory: a 2d array with N rows, and 4 columns. See simulate_states_over_time for more documentation.
            input_trajectory: a 2d array with N-1 row, and 2 columns. See simulate_states_over_time for more documentation.
            time_array: an array with N rows. 

        '''

        # length of horizon (excluding init state)
        N = 50
        trajectory = np.zeros((N + 1, 4))
        input_trajectory = np.ones((N, 2)) * 10.0

        ### My implementation of Direct Transcription
        # (states and control are all decision vars using Euler integration)
        mp = MathematicalProgram()

        # let trajectory duration be a decision var
        total_time = mp.NewContinuousVariables(1, "total_time")
        dt = total_time[0] / N

        # create the control decision var (m*N) and state decision var (n*[N+1])
        idx = 0
        u_list = mp.NewContinuousVariables(2, "u_{}".format(idx))
        state_list = mp.NewContinuousVariables(4, "state_{}".format(idx))
        state_list = np.vstack(
            (state_list,
             mp.NewContinuousVariables(4, "state_{}".format(idx + 1))))
        for idx in range(1, N):
            u_list = np.vstack(
                (u_list, mp.NewContinuousVariables(2, "u_{}".format(idx))))
            state_list = np.vstack(
                (state_list,
                 mp.NewContinuousVariables(4, "state_{}".format(idx + 1))))

        ### Constraints
        # set init state as constraint on stage 0 decision vars
        for state_idx in range(4):
            mp.AddLinearConstraint(
                state_list[0, state_idx] == state_initial[state_idx])

        # interstage equality constraint on state vars via Euler integration
        # note: Direct Collocation could improve accuracy for same computation
        for idx in range(1, N + 1):
            state_new = state_list[idx - 1, :] + dt * self.rocket_dynamics(
                state_list[idx - 1, :], u_list[idx - 1, :])
            for state_idx in range(4):
                mp.AddConstraint(state_list[idx,
                                            state_idx] == state_new[state_idx])

        # constraint on time
        mp.AddLinearConstraint(total_time[0] <= maximum_time)
        mp.AddLinearConstraint(total_time[0] >= minimum_time)

        # constraint on final state distance (squared)to second planet
        final_dist_to_world_2_sq = (
            self.world_2_position[0] - state_list[-1, 0])**2 + (
                self.world_2_position[1] - state_list[-1, 1])**2
        mp.AddConstraint(final_dist_to_world_2_sq <= 0.25)

        # constraint on final state speed (squared
        final_speed_sq = state_list[-1, 2]**2 + state_list[-1, 3]**2
        mp.AddConstraint(final_speed_sq <= 1)

        ### Cost
        # equal cost on vertical/horizontal accels, weight shouldn't matter since this is the only cost
        mp.AddQuadraticCost(1 * u_list[:, 0].dot(u_list[:, 0]))
        mp.AddQuadraticCost(1 * u_list[:, 1].dot(u_list[:, 1]))

        ### Solve and parse
        result = Solve(mp)
        trajectory = result.GetSolution(state_list)
        input_trajectory = result.GetSolution(u_list)
        tf = result.GetSolution(total_time)
        time_array = np.linspace(0, tf[0], N + 1)

        print "optimization successful: ", result.is_success()
        print "total num decision vars (x: (N+1)*4, u: 2N, total_time: 1): {}".format(
            mp.num_vars())
        print "solver used: ", result.get_solver_id().name()
        print "optimal trajectory time: {:.2f} sec".format(tf[0])

        return trajectory, input_trajectory, time_array
Exemplo n.º 6
0
        def findLyapunovFunctionSOS(self, xtraj, utraj, deg_V, deg_L):
            times = xtraj.get_segment_times()

            prog = MathematicalProgram()

            # Declare the "indeterminates", x. These are the variables which define the polynomials
            x = prog.NewIndeterminates(3, 'x')
            ucon = prog.NewIndeterminates(2, 'u')
            sym_system = self.ToSymbolic()
            sym_context = sym_system.CreateDefaultContext()
            sym_context.SetContinuousState(x)
            sym_context.FixInputPort(0, ucon)
            f = sym_system.EvalTimeDerivativesTaylor(
                sym_context).CopyToVector()  # - dztrajdt.value(t).transpose()

            for t in times:
                x0 = xtraj.value(t).transpose()[0]
                u0 = utraj.value(t).transpose()[0]

                f_fb = self.EvalClosedLoopDynamics(x, ucon, f, x0, u0)

                # Construct a polynomial V that contains all monomials with s,c,thetadot up to degree n.
                V = prog.NewFreePolynomial(Variables(x), deg_V).ToExpression()
                eps = 1e-4
                constraint1 = prog.AddSosConstraint(
                    V - eps * (x - x0).dot(x - x0)
                )  # constraint to enforce that V is strictly positive away from x0.
                Vdot = V.Jacobian(x).dot(
                    f_fb
                )  # Construct the polynomial which is the time derivative of V
                #L = prog.NewFreePolynomial(Variables(x), deg_L).ToExpression() # Construct a polynomial L representing the
                # "Lagrange multiplier".
                # Add a constraint that Vdot is strictly negative away from x0
                constraint2 = prog.AddSosConstraint(-Vdot[0] - eps *
                                                    (x - x0).dot(x - x0))
                #import pdb; pdb.set_trace()
                # Add V(0) = 0 constraint
                constraint3 = prog.AddLinearConstraint(
                    V.Substitute({
                        x[0]: 0.0,
                        x[1]: 1.0,
                        x[2]: 0.0
                    }) == 1.0)
                # Add V(theta=xxx) = 1, just to set the scale.
                constraint4 = prog.AddLinearConstraint(
                    V.Substitute({
                        x[0]: 1.0,
                        x[1]: 0.0,
                        x[2]: 0.0
                    }) == 1.0)
                # Call the solver (default).
                #result = Solve(prog)
                # Call the solver (specific).
                #solver = CsdpSolver()
                #solver = ScsSolver()
                #solver = IpoptSolver()
                #result = solver.Solve(prog, None, None)
                result = Solve(prog)
                # print out the result.
                print("Success? ", result.is_success())
                print(result.get_solver_id().name())

                Vsol = Polynomial(result.GetSolution(V))

                print('Time t=%f:\nV=' % (t))
                print(Vsol.RemoveTermsWithSmallCoefficients(1e-6))

            return Vsol, Vsol.Jacobian(x).dot(f_fb)
Exemplo n.º 7
0
# dircol.AddLinearConstraint(dircol.final_state() == final_state)

R = 10  # Cost on input "effort".
dircol.AddRunningCost(R * u[0]**2)

# Add a final cost equal to the total duration.
dircol.AddFinalCost(dircol.time())

initial_x_trajectory = \
    PiecewisePolynomial.FirstOrderHold([0., 4.],
                                       np.column_stack((initial_state,
                                                        final_state)))
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

result = Solve(dircol)
print(result.get_solver_id().name())
print(result.get_solution_result())
assert (result.is_success())

x_trajectory = dircol.ReconstructStateTrajectory(result)

tree = RigidBodyTree(FindResource("acrobot/acrobot.urdf"),
                     FloatingBaseType.kFixed)
vis = PlanarRigidBodyVisualizer(tree, xlim=[-4., 4.], ylim=[-4., 4.])
ani = vis.animate(x_trajectory, repeat=True)

u_trajectory = dircol.ReconstructInputTrajectory(result)
times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 100)
u_lookup = np.vectorize(u_trajectory.value)
u_values = u_lookup(times)
Exemplo n.º 8
0
# dircol.AddLinearConstraint(dircol.final_state() == final_state)

R = 10  # Cost on input "effort".
dircol.AddRunningCost(R*u[0]**2)

# Add a final cost equal to the total duration.
dircol.AddFinalCost(dircol.time())

initial_x_trajectory = \
    PiecewisePolynomial.FirstOrderHold([0., 4.],
                                       np.column_stack((initial_state,
                                                        final_state)))
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

result = Solve(dircol)
print(result.get_solver_id().name())
print(result.get_solution_result())
assert(result.is_success())

x_trajectory = dircol.ReconstructStateTrajectory(result)

tree = RigidBodyTree(FindResource("acrobot/acrobot.urdf"),
                     FloatingBaseType.kFixed)
vis = PlanarRigidBodyVisualizer(tree, xlim=[-4., 4.], ylim=[-4., 4.])
ani = vis.animate(x_trajectory, repeat=True)

u_trajectory = dircol.ReconstructInputTrajectory(result)
times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 100)
u_lookup = np.vectorize(u_trajectory.value)
u_values = u_lookup(times)
    def diff_drive_pd_mp(
            self, x,
            x_des):  # x_des = [x, theta, yaw, x_dot, theta_dot, yaw_dot]
        m_s = 0.2  #kg
        d = 0.085  #m
        m_c = 0.056
        I_3 = 0.000228373  #.0000989844 #kg*m^2
        I_2 = .0000989844
        R = 0.0333375
        g = -9.81  #may need to be set as -9.81; test to see
        L = 0.03
        A_val_theta = (m_s * d * g *
                       (3 * m_c + m_s)) / (3 * m_c * I_3 +
                                           3 * m_c * m_s * d**2 + m_s * I_3)
        B_val_theta = (-m_s * d / R - 3 * m_c * m_s) / (
            3 * m_c * I_3 + 3 * m_c * m_s * d**2 + m_s *
            I_3) * math.pi / 180  #multiplicand for u to change in theta_dot
        B_val_phi = -(2 * L / R) / (6 * m_c * L**2 + m_c * R**2 + 2 * I_2)
        mp = MathematicalProgram()
        k = mp.NewContinuousVariables(3, 'k_val')  # [kp, kd, ky]
        u = mp.NewContinuousVariables(2, 'u_val')
        theta_dot_post = mp.NewContinuousVariables(
            1,
            'theta_dot_post_val')  #estimated value of theta dot after control
        phi_dot_post = mp.NewContinuousVariables(
            1, 'phi_dot_post_val')  #estimated value of theta dot after control
        '''
        kp = 1. #regulate theta (pitch) position
        kd = kp / 20. #regulate theta (pitch) velocity
        ky = 0.5 #regulate phi (yaw) position
        '''
        actuator_limit = .1  #estimate; 0.1 is probably high
        #mp.AddConstraint(theta[0] == np.arcsin(2*(x[0]*x[2] - x[1]*x[3]))) #pitch
        theta = np.arcsin(2 * (x[0] * x[2] - x[1] * x[3]))
        phi = np.arctan2(2 * (x[0] * x[1] + x[2] * x[3]),
                         1 - 2 * (x[1]**2 + x[2]**2))  #yaw
        theta_dot = x[
            10]  #Shown to be ~1.5% below true theta_dot on average in experiments
        mp.AddConstraint(k[0] >= 0.)
        mp.AddConstraint(k[1] >= 0.)
        mp.AddConstraint(k[2] >= 0.)
        mp.AddConstraint(u[0] == k[0] * (x_des[1] - theta + k[1] *
                                         (x_des[4] - theta_dot)) + k[2] *
                         (x_des[2] - phi))
        mp.AddConstraint(u[0] <= -actuator_limit)
        mp.AddConstraint(u[0] >= -actuator_limit)
        mp.AddConstraint(u[1] == -u[0])
        mp.AddConstraint(theta_dot_post[0] == theta_dot +
                         B_val_theta * u[0] * 0.0005 +
                         A_val_theta * theta * .0005)
        mp.AddConstraint(phi_dot_post[0] == x[11] + B_val_phi * u[0] * .0005)
        theta_dot_des = -(theta - x_des[1]) / (2 * .0005)
        mp.AddQuadraticCost((theta_dot_post[0] - theta_dot_des)**2)
        phi_dot_des = -(phi - x_des[2]) / 2
        print('theta_dot_des', theta_dot_des)
        print('theta', theta)
        mp.AddQuadraticCost(0.001 * (phi_dot_post[0] - phi_dot_des)**2)

        result = Solve(mp)
        print('Success: ', result.is_success())
        print('Solver id: ', result.get_solver_id().name())
        print('k: ', result.GetSolution(k))
        print('u: ', result.GetSolution(u))
        return result.GetSolution(u)