Exemplo n.º 1
0
def get_nd_dynamics(state, u, force, dim=2, linearize_theta=None):
    """Return state space dyanmics in n dimensions.

    Keyword arguments:
    state -- the state of the cube
    u -- the input torque on the wheel
    force -- the 8 forces acting on the wheel corners
    dim -- the dimension of the state space (default 2)
    linearize_theta -- this is used only because the qp solver needed it this way
    """
    # half state length
    hl = len(state) / 2

    m_t = m_c + m_w  # total mass
    I_t = I_c + I_w  # total inertia

    # gravity
    g = 9.81

    # unpack the states
    # x = state[0]
    # y = state[1]
    if linearize_theta is not None:
        theta = linearize_theta
    else:
        theta = state[dim]
    # alpha = state[hl-1]
    # xdot = state[0+hl]
    # ydot = state[1+hl]
    theta_dot = state[dim + hl]
    alpha_dot = state[-1]

    # derivative vector
    derivs = np.zeros_like(state)
    derivs[0:hl] = state[hl:]  # set velocities

    # ballistic dynamics
    derivs[0 +
           hl] = (force[1] - force[2] + force[6] - force[5]) * cos(theta) - (
               force[0] + force[3] - force[4] - force[7]) * sin(
                   theta)  # forces along x
    derivs[1 +
           hl] = (force[1] - force[2] + force[6] - force[5]) * sin(theta) + (
               force[0] + force[3] - force[4] -
               force[7]) * cos(theta) - g * m_t  # forces in y direction

    # cube angle acceleration
    derivs[dim + hl] = (-u[0] + F_w * alpha_dot - F_c * theta_dot) / I_c + (
        -force[0] + force[1] - force[2] + force[3] - force[4] + force[5] -
        force[6] + force[7]) * .5

    # wheel acceleration
    derivs[-1] = (u[0] * I_t + F_c * theta_dot * I_w -
                  F_w * alpha_dot * I_t) / (I_w * I_c)

    return derivs
Exemplo n.º 2
0
def cube_dynamics(state, u, force):

    # Need to grab important parameters
    M_c = 1.0  # self.M_c
    M_w = 1.0  # self.M_w
    M_t = M_c + M_w

    I_c = 1.0  #self.I_c
    I_w = 1.0  #self.I_w
    I_t = I_c + I_w

    # Distance from edge to center of cube
    L_t = np.sqrt(2)  #np.sqrt.(2*self.L)

    # Assuming friction is 0 right now
    F_c = 0.5
    F_w = 0.5

    g = 9.81  # self.g

    # Relevant states are x,z,thetay, phi
    x = state[0]
    z = state[2]
    thetay = state[4]
    phi = state[6]

    # Velocity States
    xdot = state[7]
    zdot = state[9]
    thetaydot = state[11]
    phidot = state[13]

    # Setup the derivative of the state vector
    derivs = np.zeros_like(state)
    derivs[0:7] = state[7:]

    # Ballistic Dynamics
    derivs[7] = (force[1] - force[2] + force[6] - force[5]) * cos(thetay) - (
        force[0] + force[3] - force[4] - force[7]) * sin(
            thetay)  # forces along x
    derivs[9] = (force[1] - force[2] + force[6] - force[5]) * sin(thetay) + (
        force[0] + force[3] - force[4] -
        force[7]) * cos(thetay) - g  # forces in y direction

    # Back torque due to wheel
    derivs[11] = (-u[0] + F_w * phidot - F_c * thetaydot) / I_c + (
        -force[0] + force[1] - force[2] + force[3] - force[4] + force[5] -
        force[6] + force[7]) * .5

    # Wheel accel
    derivs[13] = (u[0] * I_t + F_c * thetaydot * I_w -
                  F_w * phidot * I_t) / (I_w * I_c)

    return derivs
Exemplo n.º 3
0
def complimentarity_constraint(mp, state, force, dim=2):
    theta = state[dim]

    distances = get_corner_distances(state[:], dim)

    s = sin(theta)
    c = cos(theta)

    z_0 = force[0] * c + force[1] * s
    z_1 = -force[2] * s + force[3] * c
    z_2 = -force[4] * c - force[5] * s
    z_3 = force[6] * s - force[7] * c

    xy_0 = -force[0] * s + force[1] * c
    xy_1 = -force[2] * c - force[3] * s
    xy_2 = force[4] * s - force[5] * c
    xy_3 = force[6] * c + force[7] * s

    mp.AddConstraint(xy_0 <= z_0 * mu)
    mp.AddConstraint(xy_0 >= -z_0 * mu)
    mp.AddConstraint(xy_1 <= z_1 * mu)
    mp.AddConstraint(xy_1 >= -z_1 * mu)
    mp.AddConstraint(xy_2 <= z_2 * mu)
    mp.AddConstraint(xy_2 >= -z_2 * mu)
    mp.AddConstraint(xy_3 <= z_3 * mu)
    mp.AddConstraint(xy_3 >= -z_3 * mu)

    val_0 = np.asarray([force[0], force[2], force[4], force[6]])
    val_1 = np.asarray([force[1], force[3], force[5], force[7]])
    mp.AddConstraint(val_0.dot(distances) <= complimentarity_constraint_thresh)
    mp.AddConstraint(
        val_0.dot(distances) >= -complimentarity_constraint_thresh)
    mp.AddConstraint(val_1.dot(distances) <= complimentarity_constraint_thresh)
    mp.AddConstraint(
        val_1.dot(distances) >= -complimentarity_constraint_thresh)
 def _inertia_matrix(self,
                     state: np.ndarray,
                     dtype: Any = float) -> np.ndarray:
     """Helper method to calculate the inertia matrix."""
     M12 = self._mp * self._l * cos(state[1])
     return np.array(
         [[self._mc + self._mp, M12], [M12, self._mp * self._l**2]],
         dtype=dtype)
def EvaluateDynamics(x, u):
    # """
    # Evaluate dynamics for system xdot = f(x, u).
    # Inputs:
    # x (Array[Continuous Variables]): State Variables Array
    #     x = [r, alpha, beta, Vx, Vy, Vz, m, phi, psi]
    # u (Array[Continuous Variables]): Input (control) Variables Array
    #     u = [T, omega_phi, omega_psi]

    # Returns:
    # xdot (Array[Continuous Variables]): Dyanmics of state variables.
    # """
    g_m = 3.71  # Mars
    I_sp = 302.39

    r = x[0]
    alpha = x[1]
    beta = x[2]
    Vx = x[3]
    Vy = x[4]
    Vz = x[5]
    m = x[6]
    phi = x[7]
    psi = x[8]

    rdot = Vx
    alphadot = Vy / (r * drake_math.cos(beta))
    betadot = Vz / r

    T = u[0]
    omega_phi = u[1]
    omega_psi = u[2]

    mdot = -T / (I_sp * g_m)

    Vxdot = T * drake_math.sin(phi) / m - g_m + (Vy**2 + Vz**2) / r
    Vydot = T * drake_math.cos(phi) * drake_math.cos(psi) / m - (
        Vx * Vy) / r + (Vy * Vz * drake_math.tan(beta)) / r
    Vzdot = T * drake_math.cos(phi) * drake_math.sin(psi) / m - (
        Vx * Vz) / r - (Vy**2 * drake_math.tan(beta)) / r

    xdot = np.array([
        rdot, alphadot, betadot, Vxdot, Vydot, Vzdot, mdot, omega_phi,
        omega_psi
    ])
    return xdot
    def nominal_dynamics(self, s0, s1, F, delta):
        """ Return the residuals for the nominal dynamics of the vehicle.

        Args:
            s0 (1D array of ContinuousVariable): [description]
            s1 (1D array of ContinuousVariable): [description]
            F (1D array of ContinuousVariable): [description]
            delta (ContinuousVariable): [description]

        Returns:
            [type]: [description]
        """
        s = unpack_state_vector(s0)
        snext = unpack_state_vector(s1)
        F = unpack_force_vector(F)

        # Trigonometric functions of variables.
        cos_d = pmath.cos(delta)
        sin_d = pmath.sin(delta)
        cos_psi = pmath.cos(s["psi"])
        sin_psi = pmath.sin(s["psi"])

        # Net longitudinal and lateral forces.
        Fx = F["r_long"] + F["f_long"] * cos_d - F["f_lat"] * sin_d
        Fy = F["r_lat"] + F["f_long"] * sin_d + F["f_lat"] * cos_d

        derivs = np.array([
            s["psidot"] * s["ydot"] + (Fx / self.m),  #xddot
            -s["psidot"] * s["xdot"] + (Fy / self.m),  #yddot
            s["psidot"],  #psidot
            (1.0 / self.Iz) *
            (self.lf * (F["f_long"] * sin_d + F["f_lat"] * cos_d) -
             self.lr * F["r_lat"]),  #psiddot
            s["xdot"] * cos_psi - s["ydot"] * sin_psi,  #Xdot
            s["xdot"] * sin_psi + s["ydot"] * cos_psi  #Ydot
        ])
        # Apply Euler Integration to get Residuals
        residuals = np.array([
            snext["xdot"] - (s["xdot"] + self.dt * derivs[0]),
            snext["ydot"] - (s["ydot"] + self.dt * derivs[1]),
            snext["psi"] - (s["psi"] + self.dt * derivs[2]),
            snext["psidot"] - (s["psidot"] + self.dt * derivs[3]),
            snext["X"] - (s["X"] + self.dt * derivs[4]),
            snext["Y"] - (s["Y"] + self.dt * derivs[5])
        ])
        return residuals
    def jacobian(self, t: float, state: np.ndarray, u: np.float) -> np.ndarray:
        c_theta = cos(state[1])
        s_theta = sin(state[1])
        theta = state[1]
        omega = state[3]

        # d(xdd)/dx, d(xdd/dxd), d(thetadd)/dx, d(theta_dd)/d_xd are all zero
        jac = np.zeros((4, 4))

        jac[0][2] = 1.0  # d/dxdot (xdot)
        jac[1][3] = 1.0  # d/dthetadot (theta_dot)

        #d(xdd)/dtheta
        term1 = 1.0 / (self._mc + self._mp * s_theta**2)
        dterm1dtheta = -(2.0 * self._mp * s_theta * c_theta) * (term1**2)
        term2 = (u + self._mp * s_theta * (self._l *
                                           (omega**2) + self._g * c_theta))
        dterm2dtheta = (self._mp * c_theta * self._l * (omega**2) -
                        self._g * s_theta)
        jac[2][1] = term1 * dterm2dtheta + term2 * dterm1dtheta

        #d(xdd)/dthetad
        jac[2][3] = term1 * 2.0 * self._mp * s_theta * self._l * state[3]

        #d(thetadd)/dtheta
        term3 = 1.0 / self._l * term1
        dterm3dtheta = 1.0 / self._l * dterm1dtheta
        term4 = (-u * c_theta - self._mp * self._l *
                 (state[3]**2) * c_theta * s_theta -
                 (self._mc + self._mp) * self._g * s_theta)
        dterm4dtheta = (u * s_theta -
                        self._mp * self._l * state[3] * cos(2 * state[1]) -
                        (self._mc + self._mp) * self._g * c_theta)
        jac[3][1] = term3 * dterm4dtheta + term4 * dterm3dtheta

        #d(thetadd)/dthetad
        jac[3][3] = term3 * (-self._mp * self._l * state[3] * sin(2 * theta))

        return jac
Exemplo n.º 8
0
def get_corner_x_positions(state, dim=2, linearize_theta=None):
    """Return x position of the corners in the order [0,1,2,3] as a numpy array.

    Keyword arguments:
    state -- the state of the cube
    dim -- the dimension of the state space (default 2)
    """

    x = state[0]
    if linearize_theta is not None:
        theta = linearize_theta
    else:
        theta = state[dim]

    offset = .5 * np.sqrt(2) * cos(np.pi / 4.0 + theta)
    val = cos(theta)

    pos_0 = x - offset
    pos_1 = pos_0 + val
    pos_2 = x + offset
    pos_3 = pos_2 - val

    return np.asarray([pos_0, pos_1, pos_2, pos_3])
    def linearization(self, t: float, state: np.ndarray,
                      u: float) -> Tuple[np.ndarray, np.ndarray]:
        """
        Calculate linearization about arbitrary state.

        Arguments:
            t: time (s)
            state: state at time ``t``
            u: force control signal in N

        Returns:
            linearized "A" and "B" matrices according to xdot = Ax + Bu
        """
        B = np.zeros(4)
        B[2] = 1.0 / (self._mc + self._mp * sin(state[1])**2)
        B[3] = 1 / self._l * B[2] * (
            1.0 /
            (self._l *
             (self._mc + self._mp * sin(state[1])**2))) * (-cos(state[1]))

        return (self.jacobian(t, state, u), B)
Exemplo n.º 10
0
    def satellite_dynamics(self, state, u):

        '''
        state: x, y, vx, vy, h, w
        '''

        satellite_position = state[0:2]
        derivs = np.zeros_like(state)
        derivs[0:2] = state[2:4]
        satellite_heading = state[4]
        satellite_angvel = state[5]

        m = self.mass; l = self.len; I = self.MOI; dep = self.dep;

        # Underactuated system via dep array
        derivs[2] = (u[0]*dep[0]+u[1]*dep[1]-u[2]*dep[2]-u[3]*dep[3])*sin(satellite_heading) / m # solves for dvx 
        derivs[3] = (-u[0]*dep[0]-u[1]*dep[1]+u[2]*dep[2]+u[3]*dep[3])*cos(satellite_heading) / m # solves for dvy
        derivs[4] = satellite_angvel # solves for dh
        derivs[5] = (-u[0]*dep[0]+u[1]*dep[1]-u[2]*dep[2]+u[3]*dep[3]) * l / (2.0*I) # solves for dw

        return derivs
Exemplo n.º 11
0
 def test_scalar_math(self):
     a = AD(1, [1., 0])
     self._compare_scalar(a, a)
     b = AD(2, [0, 1.])
     # Arithmetic
     self._compare_scalar(a + b, AD(3, [1, 1]))
     self._compare_scalar(a + 1, AD(2, [1, 0]))
     self._compare_scalar(1 + a, AD(2, [1, 0]))
     self._compare_scalar(a - b, AD(-1, [1, -1]))
     self._compare_scalar(a - 1, AD(0, [1, 0]))
     self._compare_scalar(1 - a, AD(0, [-1, 0]))
     self._compare_scalar(a * b, AD(2, [2, 1]))
     self._compare_scalar(a * 2, AD(2, [2, 0]))
     self._compare_scalar(2 * a, AD(2, [2, 0]))
     self._compare_scalar(a / b, AD(1. / 2, [1. / 2, -1. / 4]))
     self._compare_scalar(a / 2, AD(0.5, [0.5, 0]))
     self._compare_scalar(2 / a, AD(2, [-2, 0]))
     # Logical
     af = a.value()
     self._check_logical(lambda x, y: x == y, a, a, True)
     self._check_logical(lambda x, y: x != y, a, a, False)
     self._check_logical(lambda x, y: x < y, a, b, True)
     self._check_logical(lambda x, y: x <= y, a, b, True)
     self._check_logical(lambda x, y: x > y, a, b, False)
     self._check_logical(lambda x, y: x >= y, a, b, False)
     # Additional math
     self._compare_scalar(a**2, AD(1, [2., 0]))
     # Test autodiff overloads.
     # See `math_overloads_test` for more comprehensive checks.
     c = AD(0, [1., 0])
     d = AD(1, [0, 1.])
     self._compare_scalar(drake_math.sin(c), AD(0, [1, 0]))
     self._compare_scalar(drake_math.cos(c), AD(1, [0, 0]))
     self._compare_scalar(drake_math.tan(c), AD(0, [1, 0]))
     self._compare_scalar(drake_math.asin(c), AD(0, [1, 0]))
     self._compare_scalar(drake_math.acos(c), AD(np.pi / 2, [-1, 0]))
     self._compare_scalar(drake_math.atan2(c, d), AD(0, [1, 0]))
     self._compare_scalar(drake_math.sinh(c), AD(0, [1, 0]))
     self._compare_scalar(drake_math.cosh(c), AD(1, [0, 0]))
     self._compare_scalar(drake_math.tanh(c), AD(0, [1, 0]))
def constraint_evaluator1(z):
    return np.array([(-(z[6] + z[7])*sin(z[2])/m)*dt + z[3] - z[8], 
                    ((z[6] + z[7])*cos(z[2]) - m*g/m)*dt + z[4] - z[9],
                    ((z[6] - z[7])*r/I)*dt + z[5] - z[10]
                    ])
Exemplo n.º 13
0
    def airplaneLongDynamics(self, state, u, uncertainty=False):
        """
        Compute the longitudinal dynamics of the airplane, as in xdot = f(x,u). Can compute with/without uncertainty,
        where uncertainty=True is used for simulation of system with modeling errors. Accepts either pydrake::symbolic
        or floats for state, u, and formats output accordingly.

        state: 6D state (x, z, V, gamma, theta, q)
        u: 2D input (thrust [N], elevator [deg])
        """

        x = state[0]  # horizontal position
        z = state[1]  # vertical position
        V = state[2]  # airspeed
        gamma = state[3]  # flight path angle
        theta = state[4]  # pitch angle
        q = state[5]  # pitch rate

        FT = u[0]  # thrust force
        de = u[1]  # elevator deflection

        cg = cos(gamma)
        sg = sin(gamma)
        alpha = theta - gamma  # angle of attack
        ca = cos(alpha)
        sa = sin(alpha)

        m = self.m
        g = self.g
        S = self.S
        rho = self.rho  # assume stays near sea level
        cbar = self.cbar
        I_y = self.I_y
        if uncertainty:
            m = 1.05 * m  # make heavier
            S = 0.95 * S  # make wing area smaller
            I_y = 1.05 * I_y  # increase moment of inertia

        # assume constant aero moment coefficients
        CM_alpha = self.CM_alpha
        CM_q = self.CM_q
        CM_de = self.CM_de

        # CL, CD based on flat plate theory
        CL = 2 * ca * sa
        CD = 2 * sa**2
        CM = CM_alpha * alpha + CM_q * q + CM_de * de

        # lift force, drag force, moment
        L = (0.5 * rho * S * V**2) * CL
        D = (0.5 * rho * S * V**2) * CD
        M = (0.5 * rho * S * V**2) * cbar * CM

        if u.dtype == np.dtype('O'):
            derivs = np.zeros_like(state, dtype=object)
        else:
            derivs = np.zeros_like(state)

        # (dynamics from Stevens, Lewis, Johnson: "Aircraft Control and Simulation" CH2.5)
        # positions
        derivs[0] = state[2] * cg
        derivs[1] = state[2] * sg
        # vdot
        derivs[2] = (1.0 / m) * (-D + FT * ca - m * g * sg)
        # gammadot
        derivs[3] = (1.0 / (m * V)) * (L + FT * sa - m * g * cg)
        # thetadot
        derivs[4] = q
        # qdot
        derivs[5] = M / I_y

        return derivs
Exemplo n.º 14
0
def mblock_example(initial_state,
                   final_state,
                   min_time,
                   max_time,
                   max_torque,
                   dim=2):

    print("Initial State: {}".format(initial_state))
    print("Final State: {}".format(final_state))

    # a few checks
    assert (len(initial_state) == len(final_state))
    assert (min_time <= max_time)

    # some values that can be changed if desired
    N = 50  # number knot points
    dynamics_error_thresh = 0.01  # error thresh on xdot = f(x,u,f)
    floor_offset = -.01  # used to allow a little penitration
    final_state_error_thresh = 0.01  # final state error thresh
    max_ground_force = 100
    # impose contraint to stay on the ground
    stay_on_ground = False
    stay_on_ground_tolerance = 0.1  # tolerance for leaving the ground if contstraint is used
    complimentarity_constraint_thresh = 0.0001

    fix_corner_on_ground = True
    corner_fix = [2, 0.5]  # corner index, location

    mu = 0.1  # friction force

    # use SNOPT in Drake
    mp = MathematicalProgram()

    # state length
    state_len = len(initial_state)

    # total time used (assuming equal time steps)
    time_used = mp.NewContinuousVariables(1, "time_used")
    dt = time_used / (N + 1)

    # input torque decision variables
    u = mp.NewContinuousVariables(1, "u_%d" % 0)  # only one input for the cube
    u_over_time = u
    for k in range(1, N):
        u = mp.NewContinuousVariables(1, "u_%d" % k)
        u_over_time = np.vstack((u_over_time, u))
    total_u = u_over_time

    # contact force decision variables
    f = mp.NewContinuousVariables(8, "f_%d" % 0)  # only one input for the cube
    f_over_time = f
    for k in range(1, N):
        f = mp.NewContinuousVariables(8, "f_%d" % k)
        f_over_time = np.vstack((f_over_time, f))
    total_f = f_over_time

    # state decision variables
    x = mp.NewContinuousVariables(state_len,
                                  "x_%d" % 0)  # for both input thrusters
    x_over_time = x
    for k in range(1, N + 1):
        x = mp.NewContinuousVariables(state_len, "x_%d" % k)
        x_over_time = np.vstack((x_over_time, x))
    total_x = x_over_time

    # impose dynamic constraints
    for n in range(N):
        state_next = total_x[n + 1]
        dynamic_state_next = total_x[n, :] + get_nd_dynamics(
            total_x[n, :], total_u[n, :], total_f[n, :], dim) * dt
        # make sure the actual and predicted align to follow dynamics
        for j in range(state_len):
            state_error = state_next[j] - dynamic_state_next[j]
            mp.AddConstraint(state_error <= dynamics_error_thresh)
            mp.AddConstraint(state_error >= -dynamics_error_thresh)

    # can't penitrate the floor and can't leave the floor
    for n in range(N):
        distances = get_corner_distances(total_x[n, :], dim)

        mp.AddConstraint(distances[0] >= floor_offset)
        mp.AddConstraint(distances[1] >= floor_offset)
        mp.AddConstraint(distances[2] >= floor_offset)
        mp.AddConstraint(distances[3] >= floor_offset)

        # don't leave the ground if specified
        if stay_on_ground == True:
            mp.AddConstraint(
                distances[0] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[1] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[2] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[3] <= np.sqrt(2) + stay_on_ground_tolerance)

        if fix_corner_on_ground == True:
            x_pos = get_corner_x_positions(total_x[n, :], dim)
            # make left corner on the ground
            num, loc = corner_fix
            mp.AddConstraint(distances[num] == 1.0)
            mp.AddConstraint(x_pos[num] == loc)

    # ground forces can't pull on the ground
    for n in range(N):
        force = total_f[n]
        for j in range(8):
            mp.AddConstraint(force[j] <= max_ground_force)
            mp.AddConstraint(force[j] >= 0)

    # add complimentary constraint
    for n in range(N):
        force = total_f[n]
        state = total_x[n]
        theta = state[dim]

        distances = get_corner_distances(total_x[n + 1, :], dim)

        s = sin(theta)
        c = cos(theta)

        z_0 = force[0] * c + force[1] * s
        z_1 = -force[2] * s + force[3] * c
        z_2 = -force[4] * c - force[5] * s
        z_3 = force[6] * s - force[7] * c

        xy_0 = -force[0] * s + force[1] * c
        xy_1 = -force[2] * c - force[3] * s
        xy_2 = force[4] * s - force[5] * c
        xy_3 = force[6] * c + force[7] * s

        mp.AddConstraint(xy_0 <= z_0 * mu)
        mp.AddConstraint(xy_0 >= -z_0 * mu)
        mp.AddConstraint(xy_1 <= z_1 * mu)
        mp.AddConstraint(xy_1 >= -z_1 * mu)
        mp.AddConstraint(xy_2 <= z_2 * mu)
        mp.AddConstraint(xy_2 >= -z_2 * mu)
        mp.AddConstraint(xy_3 <= z_3 * mu)
        mp.AddConstraint(xy_3 >= -z_3 * mu)

        # vector_0 = force[0] * force[1]
        # vector_1 = force[2] * force[3]
        # vector_2 = force[4] * force[5]
        # vector_3 = force[6] * force[7]
        # val = np.asarray([vector_0, vector_1, vector_2, vector_3])
        # mp.AddConstraint(val.dot(distances) <= complimentarity_constraint_thresh)
        # mp.AddConstraint(val.dot(distances) >= -complimentarity_constraint_thresh)

        val_0 = np.asarray([force[0], force[2], force[4], force[6]])
        val_1 = np.asarray([force[1], force[3], force[5], force[7]])
        mp.AddConstraint(
            val_0.dot(distances) <= complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_0.dot(distances) >= -complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_1.dot(distances) <= complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_1.dot(distances) >= -complimentarity_constraint_thresh)

    # initial state, no state error allowed
    for i in range(state_len):
        initial_state_error = x_over_time[0, i] - initial_state[i]
        mp.AddConstraint(initial_state_error == 0.0)

    # don't care about final wheel angle, so skip restriction in it
    state_indices = [i for i in range(0, state_len)]
    a = state_indices[0:state_len / 2 - 1] + state_indices[state_len / 2:]
    for i in a:
        # final
        final_state_error = x_over_time[-1, i] - final_state[i]
        mp.AddConstraint(final_state_error <= final_state_error_thresh)
        mp.AddConstraint(final_state_error >= -final_state_error_thresh)

    # add time constraint
    mp.AddConstraint(time_used[0] >= min_time)
    mp.AddConstraint(time_used[0] <= max_time)

    # add torque constraints
    for n in range(N):
        mp.AddConstraint(u_over_time[n, 0] <= max_torque)
        mp.AddConstraint(u_over_time[n, 0] >= -max_torque)

    # try to keep the velocity of the wheel in the correct direction
    # mp.AddLinearCost(x_over_time[:,-1].sum())

    # mp.AddLinearCost(-x_over_time[:,1].sum())
    # mp.AddLinearCost(-x_over_time[N//2,1])

    print "Number of decision vars", mp.num_vars()
    print(mp.Solve())

    trajectory = mp.GetSolution(x_over_time)
    input_trajectory = mp.GetSolution(u_over_time)
    force_trajectory = mp.GetSolution(f_over_time)
    t = mp.GetSolution(time_used)
    time_array = np.arange(0.0, t, t / (N + 1))

    return trajectory, input_trajectory, force_trajectory, time_array
Exemplo n.º 15
0
def next_state_with_contact(state, u, dt, dim=2):
    """Return the next state after computing the force for the given timestep.
    Note that this is not guaranteed to work realtime or even every time.

    Keyword arguments:
    state -- the state of the cube
    u -- the input torque on the wheel
    dt -- the timestep size
    dim -- the dimension of the state space (default 2)
    """

    mu = 0.1  # friction force
    max_ground_force = 200
    complimentarity_constraint_thresh = 0.01

    # use SNOPT in Drake
    mp = MathematicalProgram()

    floor_offset = -0.01  # used to allow a little penitration

    x = mp.NewContinuousVariables(len(state), "x_%d" % 0)
    u_decision = mp.NewContinuousVariables(len(u), "u_%d" % 0)
    f = mp.NewContinuousVariables(8, "f_%d" % 0)

    # starting values
    for i in range(len(x)):
        mp.AddConstraint(x[i] == state[i])
    for i in range(len(u)):
        mp.AddConstraint(u_decision[i] == u[i])

    dynamic_state_next = x[:] + get_nd_dynamics(x[:], u_decision[:], f[:],
                                                dim) * dt

    # can't penitrate the floor
    distances = get_corner_distances(dynamic_state_next, dim)
    mp.AddConstraint(distances[0] >= floor_offset)
    mp.AddConstraint(distances[1] >= floor_offset)
    mp.AddConstraint(distances[2] >= floor_offset)
    mp.AddConstraint(distances[3] >= floor_offset)

    # ground forces can't pull on the ground
    for j in range(8):
        # mp.AddConstraint(f[j] <= max_ground_force)
        mp.AddConstraint(f[j] >= 0)

    # add complimentary constraint
    theta = state[dim]

    distances = get_corner_distances(state, dim)

    s = sin(theta)
    c = cos(theta)

    z_0 = f[0] * c + f[1] * s
    z_1 = -f[2] * s + f[3] * c
    z_2 = -f[4] * c - f[5] * s
    z_3 = f[6] * s - f[7] * c

    xy_0 = -f[0] * s + f[1] * c
    xy_1 = -f[2] * c - f[3] * s
    xy_2 = f[4] * s - f[5] * c
    xy_3 = f[6] * c + f[7] * s

    mp.AddConstraint(xy_0 <= z_0 * mu)
    mp.AddConstraint(xy_0 >= -z_0 * mu)
    mp.AddConstraint(xy_1 <= z_1 * mu)
    mp.AddConstraint(xy_1 >= -z_1 * mu)
    mp.AddConstraint(xy_2 <= z_2 * mu)
    mp.AddConstraint(xy_2 >= -z_2 * mu)
    mp.AddConstraint(xy_3 <= z_3 * mu)
    mp.AddConstraint(xy_3 >= -z_3 * mu)

    vector_0 = f[0] * f[1]
    vector_1 = f[2] * f[3]
    vector_2 = f[4] * f[5]
    vector_3 = f[6] * f[7]

    val = np.asarray([vector_0, vector_1, vector_2, vector_3])

    mp.AddConstraint(val.dot(distances) <= complimentarity_constraint_thresh)
    mp.AddConstraint(val.dot(distances) >= -complimentarity_constraint_thresh)

    # print "Number of decision vars", mp.num_vars()
    # print(mp.Solve())
    mp.Solve()

    f_comp = mp.GetSolution(f)
    return state + get_nd_dynamics(state, u, f_comp, dim) * dt
Exemplo n.º 16
0
def rpy_to_rotation_matrix_symbolic(rpy):
    """
    Creates 3x3 rotation matrix from rpy
    See http://danceswithcode.net/engineeringnotes/rotations_in_3d/rotations_in_3d_part1.html
    """
    from pydrake.math import sin, cos
    u = rpy[0]
    v = rpy[1]
    w = rpy[2]

    R = np.zeros([3, 3], dtype=rpy.dtype)

    # first row
    R[0, 0] = cos(v) * cos(w)
    R[0, 1] = sin(u) * sin(v) * cos(w) - cos(u) * sin(w)
    R[0, 2] = sin(u) * sin(w) + cos(u) * sin(v) * cos(w)

    # second row
    R[1, 0] = cos(v) * sin(w)
    R[1, 1] = cos(u) * cos(w) + sin(u) * sin(v) * sin(w)
    R[1, 2] = cos(u) * sin(v) * sin(w) - sin(u) * cos(w)

    # third row
    R[2, 0] = -sin(v)
    R[2, 1] = sin(u) * cos(v)
    R[2, 2] = cos(u) * cos(v)

    return R
Exemplo n.º 17
0
def periodic_motion(dim=2):

    # print("Initial State: {}".format(initial_state))
    # print("Final State: {}".format(final_state))

    # a few checks
    min_time = 0.5
    max_time = 15.0
    max_torque = 1000.0

    # some values that can be changed if desired
    N = 50  # number knot points
    dynamics_error_thresh = 0.01  # error thresh on xdot = f(x,u,f)
    floor_offset = -.01  # used to allow a little penitration
    final_state_error_thresh = 0.01  # final state error thresh
    max_ground_force = 100
    # impose contraint to stay on the ground
    stay_on_ground = True
    stay_on_ground_tolerance = 0.1  # tolerance for leaving the ground if contstraint is used
    complimentarity_constraint_thresh = 0.0001

    fix_corner_on_ground = True
    corner_fix = [0, -0.5]  # corner index, location

    mu = 0.1  # friction force

    # use SNOPT in Drake
    mp = MathematicalProgram()

    # state length
    state_len = 8

    # total time used (assuming equal time steps)
    time_used = mp.NewContinuousVariables(1, "time_used")
    dt = time_used / (N + 1)

    # input torque decision variables
    u = mp.NewContinuousVariables(1, "u_%d" % 0)  # only one input for the cube
    u_over_time = u
    for k in range(1, N):
        u = mp.NewContinuousVariables(1, "u_%d" % k)
        u_over_time = np.vstack((u_over_time, u))
    total_u = u_over_time

    # contact force decision variables
    f = mp.NewContinuousVariables(8, "f_%d" % 0)  # only one input for the cube
    f_over_time = f
    for k in range(1, N):
        f = mp.NewContinuousVariables(8, "f_%d" % k)
        f_over_time = np.vstack((f_over_time, f))
    total_f = f_over_time

    # state decision variables
    x = mp.NewContinuousVariables(state_len,
                                  "x_%d" % 0)  # for both input thrusters
    x_over_time = x
    for k in range(1, N + 1):
        x = mp.NewContinuousVariables(state_len, "x_%d" % k)
        x_over_time = np.vstack((x_over_time, x))
    total_x = x_over_time

    # impose dynamic constraints
    for n in range(N):
        state_next = total_x[n + 1]
        dynamic_state_next = total_x[n, :] + get_nd_dynamics(
            total_x[n, :], total_u[n, :], total_f[n, :], dim) * dt
        # make sure the actual and predicted align to follow dynamics
        for j in range(state_len):
            state_error = state_next[j] - dynamic_state_next[j]
            mp.AddConstraint(state_error <= dynamics_error_thresh)
            mp.AddConstraint(state_error >= -dynamics_error_thresh)

    # can't penitrate the floor and can't leave the floor
    for n in range(N):
        distances = get_corner_distances(total_x[n, :], dim)

        mp.AddConstraint(distances[0] >= floor_offset)
        mp.AddConstraint(distances[1] >= floor_offset)
        mp.AddConstraint(distances[2] >= floor_offset)
        mp.AddConstraint(distances[3] >= floor_offset)

        # don't leave the ground if specified
        if stay_on_ground == True:
            mp.AddConstraint(
                distances[0] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[1] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[2] <= np.sqrt(2) + stay_on_ground_tolerance)
            mp.AddConstraint(
                distances[3] <= np.sqrt(2) + stay_on_ground_tolerance)

        if fix_corner_on_ground == True:
            x_pos = get_corner_x_positions(total_x[n, :], dim)
            # make left corner on the ground
            mp.AddConstraint(distances[0] == 0.0)
            num, loc = corner_fix
            mp.AddConstraint(x_pos[num] == loc)

    # ground forces can't pull on the ground
    for n in range(N):
        force = total_f[n]
        for j in range(8):
            mp.AddConstraint(force[j] <= max_ground_force)
            mp.AddConstraint(force[j] >= 0)

    # add complimentary constraint
    for n in range(N):
        force = total_f[n]
        state = total_x[n]
        theta = state[dim]

        distances = get_corner_distances(total_x[n + 1, :], dim)

        s = sin(theta)
        c = cos(theta)

        z_0 = force[0] * c + force[1] * s
        z_1 = -force[2] * s + force[3] * c
        z_2 = -force[4] * c - force[5] * s
        z_3 = force[6] * s - force[7] * c

        xy_0 = -force[0] * s + force[1] * c
        xy_1 = -force[2] * c - force[3] * s
        xy_2 = force[4] * s - force[5] * c
        xy_3 = force[6] * c + force[7] * s

        mp.AddConstraint(xy_0 <= z_0 * mu)
        mp.AddConstraint(xy_0 >= -z_0 * mu)
        mp.AddConstraint(xy_1 <= z_1 * mu)
        mp.AddConstraint(xy_1 >= -z_1 * mu)
        mp.AddConstraint(xy_2 <= z_2 * mu)
        mp.AddConstraint(xy_2 >= -z_2 * mu)
        mp.AddConstraint(xy_3 <= z_3 * mu)
        mp.AddConstraint(xy_3 >= -z_3 * mu)

        val_0 = np.asarray([force[0], force[2], force[4], force[6]])
        val_1 = np.asarray([force[1], force[3], force[5], force[7]])
        mp.AddConstraint(
            val_0.dot(distances) <= complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_0.dot(distances) >= -complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_1.dot(distances) <= complimentarity_constraint_thresh)
        mp.AddConstraint(
            val_1.dot(distances) >= -complimentarity_constraint_thresh)

    # initial
    mp.AddConstraint(x_over_time[0, 0] == 0.0)  # x
    mp.AddConstraint(x_over_time[0, 1] == 0.0)  # y
    mp.AddConstraint(x_over_time[0, 2] == 0.0)  # 0 angle
    mp.AddConstraint(x_over_time[0, 3] == 0.0)  # alpha angle
    # final
    mp.AddConstraint(x_over_time[-1, 0] == -1.0)  # x
    mp.AddConstraint(x_over_time[-1, 1] == 0.0)  # y
    mp.AddConstraint(x_over_time[-1, 2] == np.pi / 2.0)  # y

    # connection constraint, don't care about inner wheel angle
    for i in [4, 5, 6, 7]:
        mp.AddConstraint(x_over_time[0, i] == x_over_time[-1, i])

    # add time constraint
    mp.AddConstraint(time_used[0] >= min_time)
    mp.AddConstraint(time_used[0] <= max_time)

    # add torque constraints
    for n in range(N):
        mp.AddConstraint(u_over_time[n, 0] <= max_torque)
        mp.AddConstraint(u_over_time[n, 0] >= -max_torque)

    # minimize input
    # mp.AddQuadraticCost(u_over_time[:,0].dot(u_over_time[:,0]))

    # maximize velocity in correct direction (left)
    mp.AddLinearCost(-x_over_time[:, 4].sum())

    # minimize the time
    # mp.AddLinearCost(time_used[0])

    print "Number of decision vars", mp.num_vars()
    print(mp.Solve())

    trajectory = mp.GetSolution(x_over_time)
    input_trajectory = mp.GetSolution(u_over_time)
    force_trajectory = mp.GetSolution(f_over_time)
    t = mp.GetSolution(time_used)
    time_array = np.arange(0.0, t, t / (N + 1))

    return trajectory, input_trajectory, force_trajectory, time_array