Exemplo n.º 1
0
 def SetPose(self, pose):
     """
     @param pose is an Isometry3.
     """
     tf = RigidTransform(pose)
     self.SetRPY(RollPitchYaw(tf.rotation()))
     self.SetXYZ(pose.translation())
Exemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate",
        type=float,
        default=1.0,
        help="Desired rate relative to real time.  See documentation for "
        "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument("--duration",
                        type=float,
                        default=np.inf,
                        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware",
        action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
        "in-process simulation.")
    parser.add_argument("--test",
                        action='store_true',
                        help="Disable opening the gui window for testing.")
    parser.add_argument(
        '--setup',
        type=str,
        default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        "-w",
        "--open-window",
        dest="browser_new",
        action="store_const",
        const=1,
        default=None,
        help="Open the MeshCat display in a new browser window.")
    args = parser.parse_args()

    builder = DiagramBuilder()

    # NOTE: the meshcat instance is always created in order to create the
    # teleop controls (joint sliders and open/close gripper button).  When
    # args.hardware is True, the meshcat server will *not* display robot
    # geometry, but it will contain the joint sliders and open/close gripper
    # button in the "Open Controls" tab in the top-right of the viewing server.
    meshcat = Meshcat()

    if args.hardware:
        # TODO(russt): Replace this hard-coded camera serial number with a
        # config file.
        camera_ids = ["805212060544"]
        station = builder.AddSystem(
            ManipulationStationHardwareInterface(camera_ids))
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation()
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        geometry_query_port = station.GetOutputPort("geometry_query")
        DrakeVisualizer.AddToBuilder(builder, geometry_query_port)
        meshcat_visualizer = MeshcatVisualizerCpp.AddToBuilder(
            builder=builder,
            query_object_port=geometry_query_port,
            meshcat=meshcat)

        if args.setup == 'planar':
            meshcat.Set2dRenderMode()
            pyplot_visualizer = ConnectPlanarSceneGraphVisualizer(
                builder, station.get_scene_graph(), geometry_query_port)

    if args.browser_new is not None:
        url = meshcat.web_url()
        webbrowser.open(url=url, new=args.browser_new)

    teleop = builder.AddSystem(
        JointSliders(meshcat=meshcat, plant=station.get_controller_plant()))

    num_iiwa_joints = station.num_iiwa_joints()
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=2.0, size=num_iiwa_joints))
    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    station.GetInputPort("iiwa_position"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(meshcat=meshcat))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    if args.test:
        iiwa_velocities = builder.AddSystem(VectorLogSink(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    # Eval the output port once to read the initial positions of the IIWA.
    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    teleop.SetPositions(q0)
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(filter,
                                           simulator.get_mutable_context()),
        q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        iiwa_velocities_log = iiwa_velocities.FindLog(simulator.get_context())
        for time, qdot in zip(iiwa_velocities_log.sample_times(),
                              iiwa_velocities_log.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)
Exemplo n.º 3
0
    def test_rgbd_sensor(self):
        def check_ports(system):
            self.assertIsInstance(system.query_object_input_port(), InputPort)
            self.assertIsInstance(system.color_image_output_port(), OutputPort)
            self.assertIsInstance(system.depth_image_32F_output_port(),
                                  OutputPort)
            self.assertIsInstance(system.depth_image_16U_output_port(),
                                  OutputPort)
            self.assertIsInstance(system.label_image_output_port(), OutputPort)

        # Use HDTV size.
        width = 1280
        height = 720

        color_properties = CameraProperties(width=width,
                                            height=height,
                                            fov_y=np.pi / 6,
                                            renderer_name="renderer")
        depth_properties = DepthCameraProperties(width=width,
                                                 height=height,
                                                 fov_y=np.pi / 6,
                                                 renderer_name="renderer",
                                                 z_near=0.1,
                                                 z_far=5.5)

        # Put it at the origin.
        X_WB = RigidTransform()
        # This id would fail if we tried to render; no such id exists.
        parent_id = FrameId.get_new_id()
        camera_poses = mut.RgbdSensor.CameraPoses(X_BC=RigidTransform(),
                                                  X_BD=RigidTransform())
        sensor = mut.RgbdSensor(parent_id=parent_id,
                                X_PB=X_WB,
                                color_properties=color_properties,
                                depth_properties=depth_properties,
                                camera_poses=camera_poses,
                                show_window=False)

        def check_info(camera_info):
            self.assertIsInstance(camera_info, mut.CameraInfo)
            self.assertEqual(camera_info.width(), width)
            self.assertEqual(camera_info.height(), height)

        check_info(sensor.color_camera_info())
        check_info(sensor.depth_camera_info())
        self.assertIsInstance(sensor.X_BC(), RigidTransform)
        self.assertIsInstance(sensor.X_BD(), RigidTransform)
        self.assertEqual(sensor.parent_frame_id(), parent_id)
        check_ports(sensor)

        # Test discrete camera, reconstructing using single-properties
        # constructor.
        color_and_depth_properties = depth_properties
        sensor = mut.RgbdSensor(parent_id=parent_id,
                                X_PB=X_WB,
                                properties=color_and_depth_properties,
                                camera_poses=camera_poses,
                                show_window=False)
        period = mut.RgbdSensorDiscrete.kDefaultPeriod
        discrete = mut.RgbdSensorDiscrete(sensor=sensor,
                                          period=period,
                                          render_label_image=True)
        self.assertTrue(discrete.sensor() is sensor)
        self.assertEqual(discrete.period(), period)
        check_ports(discrete)

        # That we can access the state as images.
        context = discrete.CreateDefaultContext()
        values = context.get_abstract_state()
        self.assertIsInstance(values.get_value(0), Value[mut.ImageRgba8U])
        self.assertIsInstance(values.get_value(1), Value[mut.ImageDepth32F])
        self.assertIsInstance(values.get_value(2), Value[mut.ImageDepth16U])
        self.assertIsInstance(values.get_value(3), Value[mut.ImageLabel16I])
Exemplo n.º 4
0
    def test_optimization(self):
        """Tests geometry::optimization bindings"""
        A = np.eye(3)
        b = [1.0, 1.0, 1.0]
        prog = MathematicalProgram()
        x = prog.NewContinuousVariables(3, "x")
        t = prog.NewContinuousVariables(1, "t")

        # Test Point.
        p = np.array([11.1, 12.2, 13.3])
        point = mut.optimization.Point(p)
        self.assertEqual(point.ambient_dimension(), 3)
        np.testing.assert_array_equal(point.x(), p)
        point.set_x(x=2*p)
        np.testing.assert_array_equal(point.x(), 2*p)
        point.set_x(x=p)

        # Test HPolyhedron.
        hpoly = mut.optimization.HPolyhedron(A=A, b=b)
        self.assertEqual(hpoly.ambient_dimension(), 3)
        np.testing.assert_array_equal(hpoly.A(), A)
        np.testing.assert_array_equal(hpoly.b(), b)
        self.assertTrue(hpoly.PointInSet(x=[0, 0, 0], tol=0.0))
        hpoly.AddPointInSetConstraints(prog, x)
        with self.assertRaisesRegex(
                RuntimeError, ".*not implemented yet for HPolyhedron.*"):
            hpoly.ToShapeWithPose()

        h_box = mut.optimization.HPolyhedron.MakeBox(
            lb=[-1, -1, -1], ub=[1, 1, 1])
        h_unit_box = mut.optimization.HPolyhedron.MakeUnitBox(dim=3)
        np.testing.assert_array_equal(h_box.A(), h_unit_box.A())
        np.testing.assert_array_equal(h_box.b(), h_unit_box.b())
        self.assertIsInstance(
            h_box.MaximumVolumeInscribedEllipsoid(),
            mut.optimization.Hyperellipsoid)
        np.testing.assert_array_almost_equal(
            h_box.ChebyshevCenter(), [0, 0, 0])

        # Test Hyperellipsoid.
        ellipsoid = mut.optimization.Hyperellipsoid(A=A, center=b)
        self.assertEqual(ellipsoid.ambient_dimension(), 3)
        np.testing.assert_array_equal(ellipsoid.A(), A)
        np.testing.assert_array_equal(ellipsoid.center(), b)
        self.assertTrue(ellipsoid.PointInSet(x=b, tol=0.0))
        ellipsoid.AddPointInSetConstraints(prog, x)
        shape, pose = ellipsoid.ToShapeWithPose()
        self.assertIsInstance(shape, mut.Ellipsoid)
        self.assertIsInstance(pose, RigidTransform)
        scale, witness = ellipsoid.MinimumUniformScalingToTouch(point)
        self.assertTrue(scale > 0.0)
        np.testing.assert_array_almost_equal(witness, p)
        e_ball = mut.optimization.Hyperellipsoid.MakeAxisAligned(
            radius=[1, 1, 1], center=b)
        np.testing.assert_array_equal(e_ball.A(), A)
        np.testing.assert_array_equal(e_ball.center(), b)
        e_ball2 = mut.optimization.Hyperellipsoid.MakeHypersphere(
            radius=1, center=b)
        np.testing.assert_array_equal(e_ball2.A(), A)
        np.testing.assert_array_equal(e_ball2.center(), b)
        e_ball3 = mut.optimization.Hyperellipsoid.MakeUnitBall(dim=3)
        np.testing.assert_array_equal(e_ball3.A(), A)
        np.testing.assert_array_equal(e_ball3.center(), [0, 0, 0])

        # Test VPolytope.
        vertices = np.array([[0.0, 1.0, 2.0], [3.0, 7.0, 5.0]])
        vpoly = mut.optimization.VPolytope(vertices=vertices)
        self.assertEqual(vpoly.ambient_dimension(), 2)
        np.testing.assert_array_equal(vpoly.vertices(), vertices)
        self.assertTrue(vpoly.PointInSet(x=[1.0, 5.0], tol=1e-8))
        vpoly.AddPointInSetConstraints(prog, x[0:2])
        v_box = mut.optimization.VPolytope.MakeBox(
            lb=[-1, -1, -1], ub=[1, 1, 1])
        self.assertTrue(v_box.PointInSet([0, 0, 0]))
        v_unit_box = mut.optimization.VPolytope.MakeUnitBox(dim=3)
        self.assertTrue(v_unit_box.PointInSet([0, 0, 0]))

        # Test remaining ConvexSet methods using these instances.
        self.assertIsInstance(hpoly.Clone(), mut.optimization.HPolyhedron)
        self.assertTrue(ellipsoid.IsBounded())
        hpoly.AddPointInNonnegativeScalingConstraints(prog=prog, x=x, t=t[0])

        # Test MakeFromSceneGraph methods.
        scene_graph = mut.SceneGraph()
        source_id = scene_graph.RegisterSource("source")
        frame_id = scene_graph.RegisterFrame(
            source_id=source_id, frame=mut.GeometryFrame("frame"))
        box_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=mut.GeometryInstance(X_PG=RigidTransform(),
                                          shape=mut.Box(1., 1., 1.),
                                          name="sphere"))
        sphere_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=mut.GeometryInstance(X_PG=RigidTransform(),
                                          shape=mut.Sphere(1.), name="sphere"))
        context = scene_graph.CreateDefaultContext()
        pose_vector = mut.FramePoseVector()
        pose_vector.set_value(frame_id, RigidTransform())
        scene_graph.get_source_pose_port(source_id).FixValue(
            context, pose_vector)
        query_object = scene_graph.get_query_output_port().Eval(context)
        H = mut.optimization.HPolyhedron(
            query_object=query_object, geometry_id=box_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(H.ambient_dimension(), 3)
        E = mut.optimization.Hyperellipsoid(
            query_object=query_object, geometry_id=sphere_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(E.ambient_dimension(), 3)
        P = mut.optimization.Point(
            query_object=query_object, geometry_id=sphere_geometry_id,
            reference_frame=scene_graph.world_frame_id(),
            maximum_allowable_radius=1.5)
        self.assertEqual(P.ambient_dimension(), 3)
        V = mut.optimization.VPolytope(
            query_object=query_object, geometry_id=box_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(V.ambient_dimension(), 3)

        # Test Iris.
        obstacles = mut.optimization.MakeIrisObstacles(
            query_object=query_object,
            reference_frame=scene_graph.world_frame_id())
        options = mut.optimization.IrisOptions()
        options.require_sample_point_is_contained = True
        options.iteration_limit = 1
        options.termination_threshold = 0.1
        region = mut.optimization.Iris(
            obstacles=obstacles, sample=[2, 3.4, 5],
            domain=mut.optimization.HPolyhedron.MakeBox(
                lb=[-5, -5, -5], ub=[5, 5, 5]), options=options)
        self.assertIsInstance(region, mut.optimization.HPolyhedron)

        obstacles = [
            mut.optimization.HPolyhedron.MakeUnitBox(3),
            mut.optimization.Hyperellipsoid.MakeUnitBall(3),
            mut.optimization.Point([0, 0, 0]),
            mut.optimization.VPolytope.MakeUnitBox(3)]
        region = mut.optimization.Iris(
            obstacles=obstacles, sample=[2, 3.4, 5],
            domain=mut.optimization.HPolyhedron.MakeBox(
                lb=[-5, -5, -5], ub=[5, 5, 5]), options=options)
        self.assertIsInstance(region, mut.optimization.HPolyhedron)
Exemplo n.º 5
0
    def test_query_object(self, T):
        RigidTransform = RigidTransform_[float]
        SceneGraph = mut.SceneGraph_[T]
        QueryObject = mut.QueryObject_[T]
        SceneGraphInspector = mut.SceneGraphInspector_[T]
        FramePoseVector = mut.FramePoseVector_[T]

        # First, ensure we can default-construct it.
        model = QueryObject()
        self.assertIsInstance(model, QueryObject)

        scene_graph = SceneGraph()
        source_id = scene_graph.RegisterSource("source")
        frame_id = scene_graph.RegisterFrame(
            source_id=source_id, frame=mut.GeometryFrame("frame"))
        geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=mut.GeometryInstance(X_PG=RigidTransform(),
                                          shape=mut.Sphere(1.), name="sphere"))
        render_params = mut.render.RenderEngineVtkParams()
        renderer_name = "test_renderer"
        scene_graph.AddRenderer(renderer_name,
                                mut.render.MakeRenderEngineVtk(render_params))

        context = scene_graph.CreateDefaultContext()
        pose_vector = FramePoseVector()
        pose_vector.set_value(frame_id, RigidTransform_[T]())
        scene_graph.get_source_pose_port(source_id).FixValue(
            context, pose_vector)
        query_object = scene_graph.get_query_output_port().Eval(context)

        self.assertIsInstance(query_object.inspector(), SceneGraphInspector)
        self.assertIsInstance(
            query_object.GetPoseInWorld(frame_id=frame_id), RigidTransform_[T])
        self.assertIsInstance(
            query_object.GetPoseInParent(frame_id=frame_id),
            RigidTransform_[T])
        self.assertIsInstance(
            query_object.GetPoseInWorld(geometry_id=geometry_id),
            RigidTransform_[T])

        # Proximity queries -- all of these will produce empty results.
        results = query_object.ComputeSignedDistancePairwiseClosestPoints()
        self.assertEqual(len(results), 0)
        results = query_object.ComputePointPairPenetration()
        self.assertEqual(len(results), 0)
        results = query_object.ComputeSignedDistanceToPoint(p_WQ=(1, 2, 3))
        self.assertEqual(len(results), 0)
        results = query_object.FindCollisionCandidates()
        self.assertEqual(len(results), 0)
        self.assertFalse(query_object.HasCollisions())

        # ComputeSignedDistancePairClosestPoints() requires two valid geometry
        # ids. There are none in this SceneGraph instance. Rather than
        # populating the SceneGraph, we look for the exception thrown in
        # response to invalid ids as evidence of correct binding.
        with self.assertRaisesRegex(
            RuntimeError,
            r"The geometry given by id \d+ does not reference a geometry"
                + " that can be used in a signed distance query"):
            query_object.ComputeSignedDistancePairClosestPoints(
                geometry_id_A=mut.GeometryId.get_new_id(),
                geometry_id_B=mut.GeometryId.get_new_id())

        # Confirm rendering API returns images of appropriate type.
        camera_core = mut.render.RenderCameraCore(
            renderer_name=renderer_name,
            intrinsics=CameraInfo(width=10, height=10, fov_y=pi/6),
            clipping=mut.render.ClippingRange(0.1, 10.0),
            X_BS=RigidTransform())
        color_camera = mut.render.ColorRenderCamera(
            core=camera_core, show_window=False)
        depth_camera = mut.render.DepthRenderCamera(
            core=camera_core, depth_range=mut.render.DepthRange(0.1, 5.0))
        image = query_object.RenderColorImage(
                camera=color_camera, parent_frame=SceneGraph.world_frame_id(),
                X_PC=RigidTransform())
        self.assertIsInstance(image, ImageRgba8U)
        image = query_object.RenderDepthImage(
            camera=depth_camera, parent_frame=SceneGraph.world_frame_id(),
            X_PC=RigidTransform())
        self.assertIsInstance(image, ImageDepth32F)
        image = query_object.RenderLabelImage(
            camera=color_camera, parent_frame=SceneGraph.world_frame_id(),
            X_PC=RigidTransform())
        self.assertIsInstance(image, ImageLabel16I)
def _xyz_rpy_deg(xyz, rpy_deg):
    return RigidTransform(RollPitchYaw(np.asarray(rpy_deg) * np.pi / 180), xyz)
    def _build_body_patches(self, use_random_colors,
                            substitute_collocated_mesh_files):
        """
        Generates body patches. self._patch_Blist stores a list of patches for
        each body (starting at body id 1). A body patch is a list of all 3D
        vertices of a piece of visual geometry.
        """
        self._patch_Blist = {}
        self._patch_Blist_colors = {}

        mock_lcm = DrakeMockLcm()
        mock_lcm_subscriber = Subscriber(lcm=mock_lcm,
                                         channel="DRAKE_VIEWER_LOAD_ROBOT",
                                         lcm_type=lcmt_viewer_load_robot)
        # TODO(SeanCurtis-TRI): Use SceneGraph inspection instead of mocking
        # LCM and inspecting the generated message.
        DispatchLoadMessage(self._scene_graph, mock_lcm)
        mock_lcm.HandleSubscriptions(0)
        assert mock_lcm_subscriber.count > 0
        load_robot_msg = mock_lcm_subscriber.message

        # Spawn a random color generator, in case we need to pick random colors
        # for some bodies. Each body will be given a unique color when using
        # this random generator, with each visual element of the body colored
        # the same.
        color = iter(
            plt.cm.rainbow(np.linspace(0, 1, load_robot_msg.num_links)))

        for i in range(load_robot_msg.num_links):
            link = load_robot_msg.link[i]

            this_body_patches = []
            this_body_colors = []
            this_color = next(color)

            for j in range(link.num_geom):
                geom = link.geom[j]
                # MultibodyPlant currently sets alpha=0 to make collision
                # geometry "invisible".  Ignore those geometries here.
                if geom.color[3] == 0:
                    continue

                X_BG = RigidTransform(
                    RotationMatrix(Quaternion(geom.quaternion)), geom.position)

                if geom.type == geom.BOX:
                    assert geom.num_float_data == 3

                    # Draw a bounding box.
                    patch_G = np.vstack(
                        (geom.float_data[0] / 2. *
                         np.array([-1, -1, 1, 1, -1, -1, 1, 1]),
                         geom.float_data[1] / 2. *
                         np.array([-1, 1, -1, 1, -1, 1, -1, 1]),
                         geom.float_data[2] / 2. *
                         np.array([-1, -1, -1, -1, 1, 1, 1, 1])))

                elif geom.type == geom.SPHERE:
                    assert geom.num_float_data == 1
                    radius = geom.float_data[0]
                    lati, longi = np.meshgrid(np.arange(0., 2. * math.pi, 0.5),
                                              np.arange(0., 2. * math.pi, 0.5))
                    lati = lati.ravel()
                    longi = longi.ravel()
                    patch_G = np.vstack([
                        np.sin(lati) * np.cos(longi),
                        np.sin(lati) * np.sin(longi),
                        np.cos(lati)
                    ])
                    patch_G *= radius

                elif geom.type == geom.CYLINDER:
                    assert geom.num_float_data == 2
                    radius = geom.float_data[0]
                    length = geom.float_data[1]

                    # In the lcm geometry, cylinders are along +z
                    # https://github.com/RobotLocomotion/drake/blob/last_sha_with_original_matlab/drake/matlab/systems/plants/RigidBodyCylinder.m
                    # Two circles: one at bottom, one at top.
                    sample_pts = np.arange(0., 2. * math.pi, 0.25)
                    patch_G = np.hstack([
                        np.array([[
                            radius * math.cos(pt), radius * math.sin(pt),
                            -length / 2.
                        ],
                                  [
                                      radius * math.cos(pt),
                                      radius * math.sin(pt), length / 2.
                                  ]]).T for pt in sample_pts
                    ])

                elif geom.type == geom.MESH:
                    filename = geom.string_data
                    base, ext = os.path.splitext(filename)
                    if (ext.lower() is not ".obj") and \
                       substitute_collocated_mesh_files:
                        # Check for a co-located .obj file (case insensitive).
                        for f in glob.glob(base + '.*'):
                            if f[-4:].lower() == '.obj':
                                filename = f
                                break
                        if filename[-4:].lower() != '.obj':
                            raise RuntimeError("The given file " + filename +
                                               " is not "
                                               "supported and no alternate " +
                                               base + ".obj could be found.")
                    if not os.path.exists(filename):
                        raise FileNotFoundError(errno.ENOENT,
                                                os.strerror(errno.ENOENT),
                                                filename)
                    mesh = ReadObjToSurfaceMesh(filename)
                    patch_G = np.vstack([v.r_MV() for v in mesh.vertices()]).T

                else:
                    print("UNSUPPORTED GEOMETRY TYPE {} IGNORED".format(
                        geom.type))
                    continue

                # Compute pose in body.
                patch_B = X_BG @ patch_G

                # Close path if not closed.
                if (patch_B[:, -1] != patch_B[:, 0]).any():
                    patch_B = np.hstack((patch_B, patch_B[:, 0][np.newaxis].T))

                this_body_patches.append(patch_B)
                if use_random_colors:
                    this_body_colors.append(this_color)
                else:
                    this_body_colors.append(geom.color)

            self._patch_Blist[link.name] = this_body_patches
            self._patch_Blist_colors[link.name] = this_body_colors
Exemplo n.º 8
0
    def test_exploding_iiwa_sim(self):
        """
        Shows a simulation of a falling + exploding IIWA which "changes
        topology" by being rebuilt without joints.
        """
        builder = DiagramBuilder()
        plant, scene_graph = AddMultibodyPlantSceneGraph(builder,
                                                         time_step=1e-3)
        iiwa_file = FindResourceOrThrow(
            "drake/manipulation/models/iiwa_description/urdf/"
            "iiwa14_spheres_dense_elbow_collision.urdf")
        Parser(plant).AddModelFromFile(iiwa_file, "iiwa")
        # Add ground plane.
        X_FH = HalfSpace.MakePose([0, 0, 1], [0, 0, 0])
        plant.RegisterCollisionGeometry(plant.world_body(), X_FH, HalfSpace(),
                                        "ground_plane_collision",
                                        CoulombFriction(0.8, 0.3))
        plant.Finalize()
        # Loosey-goosey - no control.
        for model in me.get_model_instances(plant):
            util.build_with_no_control(builder, plant, model)
        if VISUALIZE:
            print("test_exploding_iiwa_sim")
            role = Role.kIllustration
            DrakeVisualizer.AddToBuilder(
                builder, scene_graph, params=DrakeVisualizerParams(role=role))
            ConnectContactResultsToDrakeVisualizer(builder, plant, scene_graph)
        diagram = builder.Build()
        # Set up context.
        d_context = diagram.CreateDefaultContext()
        context = plant.GetMyContextFromRoot(d_context)
        # - Hoist IIWA up in the air.
        plant.SetFreeBodyPose(context, plant.GetBodyByName("base"),
                              RigidTransform([0, 0, 1.]))
        # - Set joint velocities to "spin" it in the air.
        for joint in me.get_joints(plant):
            if isinstance(joint, RevoluteJoint):
                me.set_joint_positions(plant, context, joint, 0.7)
                me.set_joint_velocities(plant, context, joint, -5.)

        def monitor(d_context):
            # Stop the simulation once there's any contact.
            context = plant.GetMyContextFromRoot(d_context)
            query_object = plant.get_geometry_query_input_port().Eval(context)
            if query_object.HasCollisions():
                return EventStatus.ReachedTermination(plant, "Contact")
            else:
                return EventStatus.DidNothing()

        # Forward simulate.
        simulator = Simulator(diagram, d_context)
        simulator.Initialize()
        simulator.set_monitor(monitor)
        if VISUALIZE:
            simulator.set_target_realtime_rate(1.)
        simulator.AdvanceTo(2.)
        # Try to push a bit further.
        simulator.clear_monitor()
        simulator.AdvanceTo(d_context.get_time() + 0.05)
        diagram.Publish(d_context)

        # Recreate simulator.
        builder_new = DiagramBuilder()
        plant_new, scene_graph_new = AddMultibodyPlantSceneGraph(
            builder_new, time_step=plant.time_step())
        subgraph = mut.MultibodyPlantSubgraph(
            mut.get_elements_from_plant(plant, scene_graph))
        # Remove all joints; make them floating bodies.
        for joint in me.get_joints(plant):
            subgraph.remove_joint(joint)
        # Remove massless bodies.
        # For more info, see: https://stackoverflow.com/a/62035705/7829525
        for body in me.get_bodies(plant):
            if body is plant.world_body():
                continue
            if body.default_mass() == 0.:
                subgraph.remove_body(body)
        # Finalize.
        to_new = subgraph.add_to(plant_new, scene_graph_new)
        plant_new.Finalize()
        if VISUALIZE:
            DrakeVisualizer.AddToBuilder(
                builder_new,
                scene_graph_new,
                params=DrakeVisualizerParams(role=role))
            ConnectContactResultsToDrakeVisualizer(builder_new, plant_new,
                                                   scene_graph_new)
        diagram_new = builder_new.Build()
        # Remap state.
        d_context_new = diagram_new.CreateDefaultContext()
        d_context_new.SetTime(d_context.get_time())
        context_new = plant_new.GetMyContextFromRoot(d_context_new)
        to_new.copy_state(context, context_new)
        # Simulate.
        simulator_new = Simulator(diagram_new, d_context_new)
        simulator_new.Initialize()
        diagram_new.Publish(d_context_new)
        if VISUALIZE:
            simulator_new.set_target_realtime_rate(1.)
        simulator_new.AdvanceTo(context_new.get_time() + 2)
        if VISUALIZE:
            input("    Press enter...")
def main():
    goal_position = np.array([0.5, 0., 0.025])
    blue_box_clean_position = [0.4, 0., 0.05]
    red_box_clean_position = [0.6, 0., 0.05]
    goal_delta = 0.05

    parser = argparse.ArgumentParser(description=__doc__)
    MeshcatVisualizer.add_argparse_argument(parser)
    parser.add_argument('--use_meshcat',
                        action='store_true',
                        help="Must be set for meshcat to be used.")
    parser.add_argument('--disable_planar_viz',
                        action='store_true',
                        help="Don't create a planar visualizer. Probably"
                        " breaks something that assumes the planar"
                        " vis exists.")
    parser.add_argument('--teleop',
                        action='store_true',
                        help="Enable teleop, so *don't* use the state machine"
                        " and motion primitives.")

    args = parser.parse_args()

    builder = DiagramBuilder()

    # Set up the ManipulationStation
    station = builder.AddSystem(ManipulationStation(0.001))
    mbp = station.get_multibody_plant()
    station.SetupManipulationClassStation()
    add_goal_region_visual_geometry(mbp, goal_position, goal_delta)
    add_box_at_location(mbp,
                        name="blue_box",
                        color=[0.25, 0.25, 1., 1.],
                        pose=RigidTransform(p=[0.4, 0.0, 0.025]))
    add_box_at_location(mbp,
                        name="red_box",
                        color=[1., 0.25, 0.25, 1.],
                        pose=RigidTransform(p=[0.6, 0.0, 0.025]))
    station.Finalize()
    iiwa_q0 = np.array([0.0, 0.6, 0.0, -1.75, 0., 1., np.pi / 2.])

    # Attach a visualizer.
    if args.use_meshcat:
        meshcat = builder.AddSystem(
            MeshcatVisualizer(station.get_scene_graph(), zmq_url=args.meshcat))
        builder.Connect(station.GetOutputPort("pose_bundle"),
                        meshcat.get_input_port(0))

    if not args.disable_planar_viz:
        plt.gca().clear()
        viz = builder.AddSystem(
            PlanarSceneGraphVisualizer(station.get_scene_graph(),
                                       xlim=[0.25, 0.8],
                                       ylim=[-0.1, 0.5],
                                       ax=plt.gca()))
        builder.Connect(station.GetOutputPort("pose_bundle"),
                        viz.get_input_port(0))
        plt.draw()

    # Hook up DifferentialIK, since both control modes use it.
    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())
    time_step = 0.005
    params.set_timestep(time_step)
    # True velocity limits for the IIWA14 (in rad, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = 1.0
    params.set_joint_velocity_limits(
        (-factor * iiwa14_velocity_limits, factor * iiwa14_velocity_limits))
    differential_ik = builder.AddSystem(
        DifferentialIK(robot, robot.GetFrameByName("iiwa_link_7"), params,
                       time_step))
    differential_ik.set_name("Differential IK")
    differential_ik.parameters.set_nominal_joint_position(iiwa_q0)
    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    if not args.teleop:
        symbol_list = [
            SymbolL2Close("blue_box_in_goal", "blue_box", goal_position,
                          goal_delta),
            SymbolL2Close("red_box_in_goal", "red_box", goal_position,
                          goal_delta),
            SymbolRelativePositionL2("blue_box_on_red_box",
                                     "blue_box",
                                     "red_box",
                                     l2_thresh=0.01,
                                     offset=np.array([0., 0., 0.05])),
            SymbolRelativePositionL2("red_box_on_blue_box",
                                     "red_box",
                                     "blue_box",
                                     l2_thresh=0.01,
                                     offset=np.array([0., 0., 0.05])),
        ]
        primitive_list = [
            MoveBoxPrimitive("put_blue_box_in_goal", mbp, "blue_box",
                             goal_position),
            MoveBoxPrimitive("put_red_box_in_goal", mbp, "red_box",
                             goal_position),
            MoveBoxPrimitive("put_blue_box_away", mbp, "blue_box",
                             blue_box_clean_position),
            MoveBoxPrimitive("put_red_box_away", mbp, "red_box",
                             red_box_clean_position),
            MoveBoxPrimitive("put_red_box_on_blue_box", mbp, "red_box",
                             np.array([0., 0., 0.05]), "blue_box"),
            MoveBoxPrimitive("put_blue_box_on_red_box", mbp, "blue_box",
                             np.array([0., 0., 0.05]), "red_box"),
        ]
        task_execution_system = builder.AddSystem(
            TaskExectionSystem(
                mbp,
                symbol_list=symbol_list,
                primitive_list=primitive_list,
                dfa_json_file="specifications/red_and_blue_boxes_stacking.json"
            ))

        builder.Connect(station.GetOutputPort("plant_continuous_state"),
                        task_execution_system.GetInputPort("mbp_state_vector"))
        builder.Connect(task_execution_system.get_output_port(0),
                        differential_ik.GetInputPort("rpy_xyz_desired"))
        builder.Connect(task_execution_system.get_output_port(1),
                        station.GetInputPort("wsg_position"))

        #movebox = MoveBoxPrimitive("test_move_box", mbp, "red_box", goal_position)
        #rpy_xyz_trajectory, gripper_traj = movebox.generate_rpyxyz_and_gripper_trajectory(mbp.CreateDefaultContext())
        #rpy_xyz_trajectory_source = builder.AddSystem(TrajectorySource(rpy_xyz_trajectory))
        #builder.Connect(rpy_xyz_trajectory_source.get_output_port(0),
        #                differential_ik.GetInputPort("rpy_xyz_desired"))
        #wsg_position_source = builder.AddSystem(TrajectorySource(gripper_traj))
        #builder.Connect(wsg_position_source.get_output_port(0),
        #                station.GetInputPort("wsg_position"))

        # Target zero feedforward residual torque at all times.
        fft = builder.AddSystem(ConstantVectorSource(np.zeros(7)))
        builder.Connect(fft.get_output_port(0),
                        station.GetInputPort("iiwa_feedforward_torque"))

        input_force_fix = builder.AddSystem(ConstantVectorSource([40.0]))
        builder.Connect(input_force_fix.get_output_port(0),
                        station.GetInputPort("wsg_force_limit"))

        end_time = 10000

    else:  # Set up teleoperation.
        # Hook up a pygame-based keyboard+mouse interface for
        # teleoperation, and low pass its output to drive the EE target
        # for the differential IK.
        print_instructions()
        teleop = builder.AddSystem(MouseKeyboardTeleop(grab_focus=True))
        filter_ = builder.AddSystem(
            FirstOrderLowPassFilter(time_constant=0.005, size=6))
        builder.Connect(teleop.get_output_port(0), filter_.get_input_port(0))
        builder.Connect(filter_.get_output_port(0),
                        differential_ik.GetInputPort("rpy_xyz_desired"))
        builder.Connect(teleop.GetOutputPort("position"),
                        station.GetInputPort("wsg_position"))
        builder.Connect(teleop.GetOutputPort("force_limit"),
                        station.GetInputPort("wsg_force_limit"))

        # Target zero feedforward residual torque at all times.
        fft = builder.AddSystem(ConstantVectorSource(np.zeros(7)))
        builder.Connect(fft.get_output_port(0),
                        station.GetInputPort("iiwa_feedforward_torque"))
        # Simulate functionally forever.
        end_time = 10000

    # Create symbol log
    #symbol_log = SymbolFromTransformLog(
    #    [SymbolL2Close('at_goal', 'red_box', goal_position, .025),
    #     SymbolL2Close('at_goal', 'blue_box', goal_position, .025)])


#
#symbol_logger_system = builder.AddSystem(
#    SymbolLoggerSystem(
#        station.get_multibody_plant(), symbol_logger=symbol_log))
#builder.Connect(
#    station.GetOutputPort("plant_continuous_state"),
#    symbol_logger_system.GetInputPort("mbp_state_vector"))

# Remaining input ports need to be tied up.
    diagram = builder.Build()

    g = pydot.graph_from_dot_data(diagram.GetGraphvizString())[0]
    g.write_png("system_diagram.png")

    diagram_context = diagram.CreateDefaultContext()
    station_context = diagram.GetMutableSubsystemContext(
        station, diagram_context)

    station.SetIiwaPosition(station_context, iiwa_q0)
    differential_ik.SetPositions(
        diagram.GetMutableSubsystemContext(differential_ik, diagram_context),
        iiwa_q0)

    if args.teleop:
        teleop.SetPose(differential_ik.ForwardKinematics(iiwa_q0))
        filter_.set_initial_output_value(
            diagram.GetMutableSubsystemContext(filter_, diagram_context),
            teleop.get_output_port(0).Eval(
                diagram.GetMutableSubsystemContext(teleop, diagram_context)))

    simulator = Simulator(diagram, diagram_context)
    simulator.set_publish_every_time_step(False)
    simulator.set_target_realtime_rate(1.0)
    simulator.AdvanceTo(end_time)
Exemplo n.º 10
0
    def test_rgbd_sensor(self):
        def check_ports(system):
            self.assertIsInstance(system.query_object_input_port(), InputPort)
            self.assertIsInstance(system.color_image_output_port(), OutputPort)
            self.assertIsInstance(system.depth_image_32F_output_port(),
                                  OutputPort)
            self.assertIsInstance(system.depth_image_16U_output_port(),
                                  OutputPort)
            self.assertIsInstance(system.label_image_output_port(), OutputPort)

        # Use HDTV size.
        width = 1280
        height = 720

        # There are *two* variants of the constructor for each camera
        # representation: one with color and depth explicitly specified and one
        # with only depth. We enumerate all four here.

        def construct_deprecated(parent_id, X_PB):
            # One deprecation warning for CameraPoses and one for RgbdSensor.
            with catch_drake_warnings(expected_count=4):
                color_properties = CameraProperties(width=width,
                                                    height=height,
                                                    fov_y=np.pi / 6,
                                                    renderer_name="renderer")
                depth_properties = DepthCameraProperties(
                    width=width,
                    height=height,
                    fov_y=np.pi / 6,
                    renderer_name="renderer",
                    z_near=0.1,
                    z_far=5.5)
                camera_poses = mut.RgbdSensor.CameraPoses(
                    X_BC=RigidTransform(), X_BD=RigidTransform())
                return mut.RgbdSensor(parent_id=parent_id,
                                      X_PB=X_PB,
                                      color_properties=color_properties,
                                      depth_properties=depth_properties,
                                      camera_poses=camera_poses,
                                      show_window=False)

        def construct(parent_id, X_PB):
            color_camera = ColorRenderCamera(
                RenderCameraCore("renderer",
                                 mut.CameraInfo(width, height, np.pi / 6),
                                 ClippingRange(0.1, 6.0), RigidTransform()),
                False)
            depth_camera = DepthRenderCamera(color_camera.core(),
                                             DepthRange(0.1, 5.5))
            return mut.RgbdSensor(parent_id=parent_id,
                                  X_PB=X_PB,
                                  color_camera=color_camera,
                                  depth_camera=depth_camera)

        def construct_single_deprecated(parent_id, X_PB):
            with catch_drake_warnings(expected_count=3):
                depth_properties = DepthCameraProperties(
                    width=width,
                    height=height,
                    fov_y=np.pi / 6,
                    renderer_name="renderer",
                    z_near=0.1,
                    z_far=5.5)
                return mut.RgbdSensor(
                    parent_id=parent_id,
                    X_PB=X_PB,
                    properties=depth_properties,
                    camera_poses=mut.RgbdSensor.CameraPoses(),
                    show_window=False)

        def construct_single(parent_id, X_PB):
            depth_camera = DepthRenderCamera(
                RenderCameraCore("renderer",
                                 mut.CameraInfo(width, height, np.pi / 6),
                                 ClippingRange(0.1, 6.0), RigidTransform()),
                DepthRange(0.1, 5.5))
            return mut.RgbdSensor(parent_id=parent_id,
                                  X_PB=X_PB,
                                  depth_camera=depth_camera)

        # Put it at the origin.
        X_WB = RigidTransform()
        # This id would fail if we tried to render; no such id exists.
        parent_id = FrameId.get_new_id()

        def check_info(camera_info):
            self.assertIsInstance(camera_info, mut.CameraInfo)
            self.assertEqual(camera_info.width(), width)
            self.assertEqual(camera_info.height(), height)

        for constructor in [
                construct_deprecated, construct, construct_single_deprecated,
                construct_single
        ]:
            sensor = constructor(parent_id, X_WB)
            check_info(sensor.color_camera_info())
            check_info(sensor.depth_camera_info())
            self.assertIsInstance(sensor.X_BC(), RigidTransform)
            self.assertIsInstance(sensor.X_BD(), RigidTransform)
            self.assertEqual(sensor.parent_frame_id(), parent_id)
            check_ports(sensor)

        # Test discrete camera. We'll simply use the last sensor constructed.

        period = mut.RgbdSensorDiscrete.kDefaultPeriod
        discrete = mut.RgbdSensorDiscrete(sensor=sensor,
                                          period=period,
                                          render_label_image=True)
        self.assertTrue(discrete.sensor() is sensor)
        self.assertEqual(discrete.period(), period)
        check_ports(discrete)

        # That we can access the state as images.
        context = discrete.CreateDefaultContext()
        values = context.get_abstract_state()
        self.assertIsInstance(values.get_value(0), Value[mut.ImageRgba8U])
        self.assertIsInstance(values.get_value(1), Value[mut.ImageDepth32F])
        self.assertIsInstance(values.get_value(2), Value[mut.ImageDepth16U])
        self.assertIsInstance(values.get_value(3), Value[mut.ImageLabel16I])
Exemplo n.º 11
0
def construct_environment(masses: typing.List, box_sizes: typing.List):
    """
    Construct an environment with many free boxes.
    @param masses masses[i] is the mass of box i.
    @param box_sizes box_sizes[i] is the size of box i.
    """
    builder = DiagramBuilder_[AutoDiffXd]()
    plant, scene_graph = AddMultibodyPlantSceneGraph(builder, 0.0)
    # Add the ground as a big box.
    ground_box = plant.AddRigidBody(
        "ground", SpatialInertia(1, np.array([0, 0, 0]), UnitInertia(1, 1, 1)))
    X_WG = RigidTransform([0, 0, -0.05])
    ground_geometry_id = plant.RegisterCollisionGeometry(
        ground_box, RigidTransform(), Box(10, 10, 0.1), "ground",
        CoulombFriction(0.9, 0.8))
    plant.RegisterVisualGeometry(ground_box, RigidTransform(),
                                 Box(10, 10,
                                     0.1), "ground", [0.5, 0.5, 0.5, 1.])
    plant.WeldFrames(plant.world_frame(), ground_box.body_frame(), X_WG)

    # Add boxes
    assert isinstance(masses, list)
    assert isinstance(box_sizes, list)
    assert len(masses) == len(box_sizes)
    num_boxes = len(masses)
    boxes = []
    boxes_geometry_id = []
    for i in range(num_boxes):
        box_name = f"box{i}"
        boxes.append(
            plant.AddRigidBody(
                box_name,
                SpatialInertia(masses[i], np.array([0, 0, 0]),
                               UnitInertia(1, 1, 1))))
        box_shape = Box(box_sizes[i][0], box_sizes[i][1], box_sizes[i][2])
        boxes_geometry_id.append(
            plant.RegisterCollisionGeometry(boxes[i], RigidTransform(),
                                            box_shape, f"{box_name}_box",
                                            CoulombFriction(0.9, 0.8)))
        plant.RegisterVisualGeometry(ground_box, RigidTransform(), box_shape,
                                     f"{box_name}_box", [0.5, 0.5, 0.5, 1.])
        # Add small spheres at the corners of the box.
        vertices = np.array([
            [1, 1, 1], [1, 1, -1], [1, -1, 1], [1, -1, -1], [-1, 1, 1],
            [-1, -1, 1], [-1, 1, -1], [-1, -1, -1]]) *\
            np.tile(box_sizes[i]/2, (8, 1))
        sphere_shape = Sphere(0.001)
        for j in range(8):
            plant.RegisterCollisionGeometry(boxes[i],
                                            RigidTransform(vertices[j]),
                                            sphere_shape,
                                            f"{box_name}_sphere{j}",
                                            CoulombFriction(0.9, 0.8))
            plant.RegisterVisualGeometry(boxes[i], RigidTransform(vertices[j]),
                                         sphere_shape, f"{box_name}_sphere{j}",
                                         [0.5, 0.5, 0.5, 1])

    plant.Finalize()
    diagram = builder.Build()

    return plant, scene_graph, diagram, boxes, ground_geometry_id,\
        boxes_geometry_id
Exemplo n.º 12
0
    def __init__(self,
                 visible=Visible(),
                 min_range=MinRange(),
                 max_range=MaxRange(),
                 value=Value()):
        """
        Args:
            visible: An object with boolean elements for 'roll', 'pitch',
                     'yaw', 'x', 'y', 'z'; the intention is for this to be the
                     PoseSliders.Visible() namedtuple.  Defaults to all true.
            min_range, max_range, value: Objects with float values for 'roll',
                      'pitch', 'yaw', 'x', 'y', 'z'; the intention is for the
                      caller to use the PoseSliders.MinRange, MaxRange, and
                      Value namedtuples.  See those tuples for default values.
        """
        LeafSystem.__init__(self)
        port = self.DeclareAbstractOutputPort(
            "pose", lambda: AbstractValue.Make(RigidTransform()),
            self.DoCalcOutput)

        # The widgets themselves have undeclared state.  For now, we accept it,
        # and simply disable caching on the output port.
        # TODO(russt): consider implementing the more elaborate methods seen
        # in, e.g., LcmMessageSubscriber.
        port.disable_caching_by_default()

        # Note: This timing affects the keyboard teleop performance. A larger
        #       time step causes more lag in the response.
        self.DeclarePeriodicPublish(0.01, 0.0)

        self._roll = FloatSlider(min=min_range.roll,
                                 max=max_range.roll,
                                 value=value.roll,
                                 step=0.01,
                                 continuous_update=True,
                                 description="roll",
                                 layout=Layout(width='90%'))
        self._pitch = FloatSlider(min=min_range.pitch,
                                  max=max_range.pitch,
                                  value=value.pitch,
                                  step=0.01,
                                  continuous_update=True,
                                  description="pitch",
                                  layout=Layout(width='90%'))
        self._yaw = FloatSlider(min=min_range.yaw,
                                max=max_range.yaw,
                                value=value.yaw,
                                step=0.01,
                                continuous_update=True,
                                description="yaw",
                                layout=Layout(width='90%'))
        self._x = FloatSlider(min=min_range.x,
                              max=max_range.x,
                              value=value.x,
                              step=0.01,
                              continuous_update=True,
                              description="x",
                              orient='horizontal',
                              layout=Layout(width='90%'))
        self._y = FloatSlider(min=min_range.y,
                              max=max_range.y,
                              value=value.y,
                              step=0.01,
                              continuous_update=True,
                              description="y",
                              layout=Layout(width='90%'))
        self._z = FloatSlider(min=min_range.z,
                              max=max_range.z,
                              value=value.z,
                              step=0.01,
                              continuous_update=True,
                              description="z",
                              layout=Layout(width='90%'))

        if visible.roll:
            display(self._roll)
        if visible.pitch:
            display(self._pitch)
        if visible.yaw:
            display(self._yaw)
        if visible.x:
            display(self._x)
        if visible.y:
            display(self._y)
        if visible.z:
            display(self._z)
Exemplo n.º 13
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate", type=float, default=1.0,
        help="Desired rate relative to real time.  See documentation for "
             "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument(
        "--duration", type=float, default=np.inf,
        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware", action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
             "in-process simulation.")
    parser.add_argument(
        "--test", action='store_true',
        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--time_step", type=float, default=0.005,
        help="Time constant for the differential IK solver and first order"
             "low pass filter applied to the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor", type=float, default=1.0,
        help="This value, typically between 0 and 1, further limits the "
             "iiwa14 joint velocities. It multiplies each of the seven "
             "pre-defined joint velocity limits. "
             "Note: The pre-defined velocity limits are specified by "
             "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument(
        '--setup', type=str, default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing'])
    parser.add_argument(
        '--schunk_collision_model', type=str, default='box',
        help="The Schunk collision model to use for simulation. ",
        choices=['box', 'box_plus_fingertip_spheres'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    if args.test:
        # Don't grab mouse focus during testing.
        # See: https://stackoverflow.com/a/52528832/7829525
        os.environ["SDL_VIDEODRIVER"] = "dummy"

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        if args.schunk_collision_model == "box":
            schunk_model = SchunkCollisionModel.kBox
        elif args.schunk_collision_model == "box_plus_fingertip_spheres":
            schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres

    # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                ("drake/examples/manipulation_station/models/"
                 "061_foam_brick.sdf"),
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation(
                schunk_model=schunk_model)
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)

        station.Finalize()
        DrakeVisualizer.AddToBuilder(builder,
                                     station.GetOutputPort("query_object"))
        if args.meshcat:
            meshcat = ConnectMeshcatVisualizer(
                builder, output_port=station.GetOutputPort("geometry_query"),
                zmq_url=args.meshcat, open_browser=args.open_browser)
            if args.setup == 'planar':
                meshcat.set_planar_viewpoint()

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    params.set_timestep(args.time_step)
    # True velocity limits for the IIWA14 (in rad/s, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits,
                                      factor*iiwa14_velocity_limits))

    differential_ik = builder.AddSystem(DifferentialIK(
        robot, robot.GetFrameByName("iiwa_link_7"), params, args.time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(DualShock4Teleop(initialize_joystick()))
    filter_ = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.time_step, size=6))

    builder.Connect(teleop.get_output_port(0), filter_.get_input_port(0))
    builder.Connect(filter_.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    builder.Connect(teleop.GetOutputPort("position"), station.GetInputPort(
        "wsg_position"))
    builder.Connect(teleop.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(7))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter_.set_initial_output_value(
        diagram.GetMutableSubsystemContext(
            filter_, simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext(
            teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(diagram.GetMutableSubsystemContext(
        differential_ik, simulator.get_mutable_context()), q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)

    print_instructions()
    simulator.AdvanceTo(args.duration)
Exemplo n.º 14
0
def plot_mathematical_program(meshcat,
                              path,
                              prog,
                              X,
                              Y,
                              result=None,
                              point_size=0.05):
    assert prog.num_vars() == 2
    assert X.size == Y.size

    N = X.size
    values = np.vstack((X.reshape(-1), Y.reshape(-1)))
    costs = prog.GetAllCosts()

    # Vectorized multiply for the quadratic form.
    # Z = (D*np.matmul(Q,D)).sum(0).reshape(nx, ny)

    if costs:
        Z = prog.EvalBindingVectorized(costs[0], values)
        for b in costs[1:]:
            Z = Z + prog.EvalBindingVectorized(b, values)

    cv = f"{path}/constraints"
    for binding in prog.GetAllConstraints():
        if isinstance(binding.evaluator(), BoundingBoxConstraint):
            c = binding.evaluator()
            var_indices = [
                int(prog.decision_variable_index()[v.get_id()])
                for v in binding.variables()
            ]
            satisfied = np.array(
                c.CheckSatisfiedVectorized(values[var_indices, :],
                                           0.001)).reshape(1, -1)
            if costs:
                Z[~satisfied] = np.nan

            v = f"{cv}/{type(c).__name__}"
            Zc = np.zeros(Z.shape)
            Zc[satisfied] = np.nan
            plot_surface(meshcat,
                         v,
                         X,
                         Y,
                         Zc.reshape(X.shape),
                         rgba=Rgba(1.0, .2, .2, 1.0),
                         wireframe=True)
        else:
            Zc = prog.EvalBindingVectorized(binding, values)
            evaluator = binding.evaluator()
            low = evaluator.lower_bound()
            up = evaluator.upper_bound()
            cvb = f"{cv}/{type(evaluator).__name__}"
            for index in range(Zc.shape[0]):
                # TODO(russt): Plot infeasible points in a different color.
                infeasible = np.logical_or(Zc[index, :] < low[index],
                                           Zc[index, :] > up[index])
                plot_surface(meshcat,
                             f"{cvb}/{index}",
                             X,
                             Y,
                             Zc[index, :].reshape(X.shape),
                             rgba=Rgba(1.0, .3, 1.0, 1.0),
                             wireframe=True)

    if costs:
        plot_surface(meshcat,
                     f"{path}/objective",
                     X,
                     Y,
                     Z.reshape(X.shape),
                     rgba=Rgba(.3, 1.0, .3, 1.0),
                     wireframe=True)

    if result:
        v = f"{path}/solution"
        meshcat.SetObject(v, Sphere(point_size), Rgba(.3, 1.0, .3, 1.0))
        x_solution = result.get_x_val()
        meshcat.SetTransform(
            v,
            RigidTransform(
                [x_solution[0], x_solution[1],
                 result.get_optimal_cost()]))
Exemplo n.º 15
0
 def _get_transform(self):
     return RigidTransform(
         RollPitchYaw(self._value[0], self._value[1], self._value[2]),
         self._value[3:])
Exemplo n.º 16
0
    def test_composition_gripper_workflow(self):
        """Tests subgraphs (pre-finalize) for composition, with a scene graph,
        welding bodies together across different subgraphs."""

        # N.B. The frame-welding is done so that we can easily set the
        # positions of the IIWA / WSG without having to worry about / work
        # around the floating body coordinates.

        # Create IIWA.
        iiwa_builder = DiagramBuilder()
        iiwa_plant, iiwa_scene_graph = AddMultibodyPlantSceneGraph(
            iiwa_builder, time_step=0.)
        iiwa_file = FindResourceOrThrow(
            "drake/manipulation/models/iiwa_description/urdf/"
            "iiwa14_spheres_dense_elbow_collision.urdf")
        iiwa_model = Parser(iiwa_plant).AddModelFromFile(iiwa_file, "iiwa")
        iiwa_plant.WeldFrames(iiwa_plant.world_frame(),
                              iiwa_plant.GetFrameByName("base"))
        iiwa_plant.Finalize()
        if VISUALIZE:
            print("test_composition")
            DrakeVisualizer.AddToBuilder(iiwa_builder, iiwa_scene_graph)
        iiwa_diagram = iiwa_builder.Build()

        iiwa_subgraph = mut.MultibodyPlantSubgraph(
            mut.get_elements_from_plant(iiwa_plant, iiwa_scene_graph))
        self.assertIsInstance(iiwa_subgraph, mut.MultibodyPlantSubgraph)
        iiwa_subgraph.remove_body(iiwa_plant.world_body())

        # Create WSG.
        wsg_builder = DiagramBuilder()
        wsg_plant, wsg_scene_graph = AddMultibodyPlantSceneGraph(wsg_builder,
                                                                 time_step=0.)
        wsg_file = FindResourceOrThrow(
            "drake/manipulation/models/wsg_50_description/sdf/"
            "schunk_wsg_50.sdf")
        wsg_model = Parser(wsg_plant).AddModelFromFile(wsg_file,
                                                       "gripper_model")
        wsg_plant.WeldFrames(wsg_plant.world_frame(),
                             wsg_plant.GetFrameByName("__model__"))
        wsg_plant.Finalize()
        if VISUALIZE:
            DrakeVisualizer.AddToBuilder(wsg_builder, wsg_scene_graph)
        wsg_diagram = wsg_builder.Build()

        wsg_subgraph = mut.MultibodyPlantSubgraph(
            mut.get_elements_from_plant(wsg_plant, wsg_scene_graph))
        self.assertIsInstance(wsg_subgraph, mut.MultibodyPlantSubgraph)
        wsg_subgraph.remove_body(wsg_plant.world_body())

        builder = DiagramBuilder()
        plant, scene_graph = AddMultibodyPlantSceneGraph(builder,
                                                         time_step=1e-3)

        iiwa_to_plant = iiwa_subgraph.add_to(plant, scene_graph)
        self.assertIsInstance(iiwa_to_plant, mut.MultibodyPlantElementsMap)
        wsg_to_plant = wsg_subgraph.add_to(plant, scene_graph)
        self.assertIsInstance(wsg_to_plant, mut.MultibodyPlantElementsMap)

        if VISUALIZE:
            DrakeVisualizer.AddToBuilder(builder, scene_graph)

        rpy_deg = np.array([90., 0., 90])
        X_7G = RigidTransform(p=[0, 0, 0.114],
                              rpy=RollPitchYaw(rpy_deg * np.pi / 180))
        frame_7 = plant.GetFrameByName("iiwa_link_7")
        frame_G = plant.GetFrameByName("body")
        plant.WeldFrames(frame_7, frame_G, X_7G)
        plant.Finalize()

        q_iiwa = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        q_wsg = [-0.03, 0.03]

        iiwa_d_context = iiwa_diagram.CreateDefaultContext()
        iiwa_context = iiwa_plant.GetMyContextFromRoot(iiwa_d_context)
        iiwa_plant.SetPositions(iiwa_context, iiwa_model, q_iiwa)

        wsg_d_context = wsg_diagram.CreateDefaultContext()
        wsg_context = wsg_plant.GetMyContextFromRoot(wsg_d_context)
        wsg_plant.SetPositions(wsg_context, wsg_model, q_wsg)

        # Transfer state and briefly compare.
        diagram = builder.Build()
        d_context = diagram.CreateDefaultContext()
        context = plant.GetMyContextFromRoot(d_context)

        iiwa_to_plant.copy_state(iiwa_context, context)
        wsg_to_plant.copy_state(wsg_context, context)

        # Compare frames from sub-plants.
        util.compare_frame_poses(plant, context, iiwa_plant, iiwa_context,
                                 "base", "iiwa_link_7")
        util.compare_frame_poses(plant, context, wsg_plant, wsg_context,
                                 "body", "left_finger")

        # Visualize.
        if VISUALIZE:
            print("  Visualize IIWA")
            Simulator(iiwa_diagram, iiwa_d_context.Clone()).Initialize()
            input("    Press enter...")
            print("  Visualize WSG")
            Simulator(wsg_diagram, wsg_d_context.Clone()).Initialize()
            input("    Press enter...")
            print("  Visualize Composite")
            Simulator(diagram, d_context.Clone()).Initialize()
            input("    Press enter...")
Exemplo n.º 17
0
def _write_pose_msg(X_AB, p, q):
    # p - position message
    # q - quaternion message
    X_AB = RigidTransform(X_AB)
    p.x, p.y, p.z = X_AB.translation()
    q.w, q.x, q.y, q.z = X_AB.rotation().ToQuaternion().wxyz()
    def buildViewPatches(self, use_random_colors):
        ''' Generates view patches. self.viewPatches stores a list of
        viewPatches for each body (starting at body id 1). A viewPatch is a
        list of all 3D vertices of a piece of visual geometry. '''

        self.viewPatches = {}
        self.viewPatchColors = {}

        mock_lcm = DrakeMockLcm()
        mock_lcm_subscriber = Subscriber(lcm=mock_lcm,
                                         channel="DRAKE_VIEWER_LOAD_ROBOT",
                                         lcm_type=lcmt_viewer_load_robot)
        DispatchLoadMessage(self._scene_graph, mock_lcm)
        mock_lcm.HandleSubscriptions(0)
        assert mock_lcm_subscriber.count > 0
        load_robot_msg = mock_lcm_subscriber.message

        # Spawn a random color generator, in case we need to pick
        # random colors for some bodies. Each body will be given
        # a unique color when using this random generator, with
        # each visual element of the body colored the same.
        color = iter(
            plt.cm.rainbow(np.linspace(0, 1, load_robot_msg.num_links)))

        for i in range(load_robot_msg.num_links):
            link = load_robot_msg.link[i]

            this_body_patches = []
            this_body_colors = []
            this_color = next(color)

            for j in range(link.num_geom):
                geom = link.geom[j]
                # MultibodyPlant currently sets alpha=0 to make collision
                # geometry "invisible".  Ignore those geometries here.
                if geom.color[3] == 0:
                    continue

                element_local_tf = RigidTransform(
                    RotationMatrix(Quaternion(geom.quaternion)), geom.position)

                if geom.type == geom.BOX:
                    assert geom.num_float_data == 3

                    # Draw a bounding box.
                    patch = np.vstack((geom.float_data[0] / 2. *
                                       np.array([-1, -1, 1, 1, -1, -1, 1, 1]),
                                       geom.float_data[1] / 2. *
                                       np.array([-1, 1, -1, 1, -1, 1, -1, 1]),
                                       geom.float_data[2] / 2. *
                                       np.array([-1, -1, -1, -1, 1, 1, 1, 1])))

                elif geom.type == geom.SPHERE:
                    assert geom.num_float_data == 1
                    radius = geom.float_data[0]
                    lati, longi = np.meshgrid(np.arange(0., 2. * math.pi, 0.5),
                                              np.arange(0., 2. * math.pi, 0.5))
                    lati = lati.ravel()
                    longi = longi.ravel()
                    patch = np.vstack([
                        np.sin(longi) * np.cos(lati),
                        np.sin(longi) * np.sin(lati),
                        np.cos(lati)
                    ])
                    patch *= radius

                elif geom.type == geom.CYLINDER:
                    assert geom.num_float_data == 2
                    radius = geom.float_data[0]
                    length = geom.float_data[1]

                    # In the lcm geometry, cylinders are along +z
                    # https://github.com/RobotLocomotion/drake/blob/last_sha_with_original_matlab/drake/matlab/systems/plants/RigidBodyCylinder.m
                    # Two circles: one at bottom, one at top.
                    sample_pts = np.arange(0., 2. * math.pi, 0.25)
                    patch = np.hstack([
                        np.array([[
                            radius * math.cos(pt), radius * math.sin(pt),
                            -length / 2.
                        ],
                                  [
                                      radius * math.cos(pt),
                                      radius * math.sin(pt), length / 2.
                                  ]]).T for pt in sample_pts
                    ])

                elif geom.type == geom.MESH:
                    # TODO(gizatt): Remove trimesh and shapely dependency when
                    # vertex information is accessible from the SceneGraph
                    # interface.
                    mesh = trimesh.load(geom.string_data)
                    patch = mesh.vertices.T
                    # Apply scaling
                    for i in range(3):
                        patch[i, :] *= geom.float_data[i]

                else:
                    print("UNSUPPORTED GEOMETRY TYPE {} IGNORED".format(
                        geom.type))
                    continue

                patch = np.vstack((patch, np.ones((1, patch.shape[1]))))
                patch = np.dot(element_local_tf.GetAsMatrix4(), patch)

                # Close path if not closed
                if (patch[:, -1] != patch[:, 0]).any():
                    patch = np.hstack((patch, patch[:, 0][np.newaxis].T))

                this_body_patches.append(patch)
                if use_random_colors:
                    this_body_colors.append(this_color)
                else:
                    this_body_colors.append(geom.color)

            self.viewPatches[link.name] = this_body_patches
            self.viewPatchColors[link.name] = this_body_colors
Exemplo n.º 19
0
def _read_pose_msg(p, q):
    # p - position message
    # q - quaternion message
    return RigidTransform(Quaternion(wxyz=[q.w, q.x, q.y, q.z]),
                          [p.x, p.y, p.z])
    def __init__(self,
                 scene_graph,
                 draw_period=1. / 30,
                 T_VW=np.array([[1., 0., 0., 0.], [0., 0., 1., 0.],
                                [0., 0., 0., 1.]]),
                 xlim=[-1., 1],
                 ylim=[-1, 1],
                 facecolor=[1, 1, 1],
                 use_random_colors=False,
                 substitute_collocated_mesh_files=True,
                 ax=None,
                 show=None):
        """
        Args:
            scene_graph: A SceneGraph object.
            draw_period: The rate at which this class publishes to the
                visualizer.
            T_VW: The view projection matrix from world to view coordinates.
            xlim: View limit into the scene.
            ylim: View limit into the scene.
            facecolor: Passed through to figure() and sets background color.
                Both color name strings and RGB triplets are allowed. Defaults
                to white.
            use_random_colors: If set to True, will render each body with a
                different color. (Multiple visual elements on the same body
                will be the same color.)
            substitute_collocated_mesh_files: If True, then a mesh file
                specified with an unsupported filename extension may be
                replaced by a file of the same base name in the same directory,
                but with a supported filename extension.  Currently only .obj
                files are supported.
            ax: If supplied, the visualizer will draw onto those axes instead
                of creating a new set of axes. The visualizer will still change
                the view range and figure size of those axes.
            show: Opens a window during initialization / publish iff True.
                Default is None, which implies show=True unless
                matplotlib.get_backend() is 'template'.
        """
        default_size = matplotlib.rcParams['figure.figsize']
        scalefactor = (ylim[1] - ylim[0]) / (xlim[1] - xlim[0])
        figsize = (default_size[0], default_size[0] * scalefactor)

        PyPlotVisualizer.__init__(self,
                                  facecolor=facecolor,
                                  figsize=figsize,
                                  ax=ax,
                                  draw_period=draw_period,
                                  show=show)
        self.set_name('planar_multibody_visualizer')

        self._scene_graph = scene_graph
        self._T_VW = T_VW

        # Pose bundle (from SceneGraph) input port.
        # TODO(tehbelinda): Rename the `lcm_visualization` port to match
        # SceneGraph once its output port has been updated. See #12214.
        self._pose_bundle_port = self.DeclareAbstractInputPort(
            "lcm_visualization", AbstractValue.Make(PoseBundle(0)))

        self.ax.axis('equal')
        self.ax.axis('off')

        # Achieve the desired view limits.
        self.ax.set_xlim(xlim)
        self.ax.set_ylim(ylim)
        default_size = self.fig.get_size_inches()
        self.fig.set_size_inches(figsize[0], figsize[1])

        # Populate body patches.
        self._build_body_patches(use_random_colors,
                                 substitute_collocated_mesh_files)

        # Populate the body fill list -- which requires doing most of a draw
        # pass, but with an ax.fill() command to initialize the draw patches.
        # After initialization, we can then use in-place replacement of vertex
        # positions. The body fill list stores the ax patch objects in the
        # order they were spawned (i.e. by body, and then by order of view_
        # patches). Drawing the tree should update them by iterating over
        # bodies and patches in the same order.
        self._body_fill_dict = {}
        X_WB_initial = RigidTransform.Identity()
        for full_name in self._patch_Blist.keys():
            patch_Wlist, view_colors = self._get_view_patches(
                full_name, X_WB_initial)
            self._body_fill_dict[full_name] = []
            for patch_W, color in zip(patch_Wlist, view_colors):
                # Project the full patch the first time, to initialize a vertex
                # list with enough space for any possible convex hull of this
                # vertex set.
                patch_V = self._project_patch(patch_W)
                body_fill = self.ax.fill(patch_V[0, :],
                                         patch_V[1, :],
                                         zorder=0,
                                         edgecolor='k',
                                         facecolor=color,
                                         closed=True)[0]
                self._body_fill_dict[full_name].append(body_fill)
                # Then update the vertices for a more accurate initial draw.
                self._update_body_fill_verts(body_fill, patch_V)
Exemplo n.º 21
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate", type=float, default=1.0,
        help="Desired rate relative to real time.  See documentation for "
             "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument(
        "--duration", type=float, default=np.inf,
        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware", action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
             "in-process simulation.")
    parser.add_argument(
        "--test", action='store_true',
        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--filter_time_const", type=float, default=0.1,
        help="Time constant for the first order low pass filter applied to"
             "the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor", type=float, default=1.0,
        help="This value, typically between 0 and 1, further limits the "
             "iiwa14 joint velocities. It multiplies each of the seven "
             "pre-defined joint velocity limits. "
             "Note: The pre-defined velocity limits are specified by "
             "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument(
        '--setup', type=str, default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        '--schunk_collision_model', type=str, default='box',
        help="The Schunk collision model to use for simulation. ",
        choices=['box', 'box_plus_fingertip_spheres'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        if args.schunk_collision_model == "box":
            schunk_model = SchunkCollisionModel.kBox
        elif args.schunk_collision_model == "box_plus_fingertip_spheres":
            schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/"
                + "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation(
                schunk_model=schunk_model)
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/"
                + "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        # If using meshcat, don't render the cameras, since RgbdCamera
        # rendering only works with drake-visualizer. Without this check,
        # running this code in a docker container produces libGL errors.
        if args.meshcat:
            meshcat = ConnectMeshcatVisualizer(
                builder, output_port=station.GetOutputPort("geometry_query"),
                zmq_url=args.meshcat, open_browser=args.open_browser)
            if args.setup == 'planar':
                meshcat.set_planar_viewpoint()

        elif args.setup == 'planar':
            pyplot_visualizer = builder.AddSystem(PlanarSceneGraphVisualizer(
                station.get_scene_graph()))
            builder.Connect(station.GetOutputPort("pose_bundle"),
                            pyplot_visualizer.get_input_port(0))
        else:
            DrakeVisualizer.AddToBuilder(builder,
                                         station.GetOutputPort("query_object"))
            image_to_lcm_image_array = builder.AddSystem(
                ImageToLcmImageArrayT())
            image_to_lcm_image_array.set_name("converter")
            for name in station.get_camera_names():
                cam_port = (
                    image_to_lcm_image_array
                    .DeclareImageInputPort[PixelType.kRgba8U](
                        "camera_" + name))
                builder.Connect(
                    station.GetOutputPort("camera_" + name + "_rgb_image"),
                    cam_port)

            image_array_lcm_publisher = builder.AddSystem(
                LcmPublisherSystem.Make(
                    channel="DRAKE_RGBD_CAMERA_IMAGES",
                    lcm_type=image_array_t,
                    lcm=None,
                    publish_period=0.1,
                    use_cpp_serializer=True))
            image_array_lcm_publisher.set_name("rgbd_publisher")
            builder.Connect(
                image_to_lcm_image_array.image_array_t_msg_output_port(),
                image_array_lcm_publisher.get_input_port(0))

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    time_step = 0.005
    params.set_timestep(time_step)
    # True velocity limits for the IIWA14 (in rad, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    if args.setup == 'planar':
        # Extract the 3 joints that are not welded in the planar version.
        iiwa14_velocity_limits = iiwa14_velocity_limits[1:6:2]
        # The below constant is in body frame.
        params.set_end_effector_velocity_gain([1, 0, 0, 0, 1, 1])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits,
                                      factor*iiwa14_velocity_limits))
    differential_ik = builder.AddSystem(DifferentialIK(
        robot, robot.GetFrameByName("iiwa_link_7"), params, time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(EndEffectorTeleop(args.setup == 'planar'))
    if args.test:
        teleop.window.withdraw()  # Don't display the window when testing.
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6))

    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    num_iiwa_joints = station.num_iiwa_joints()
    if args.test:
        iiwa_velocities = builder.AddSystem(SignalLogger(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    q0 = station.GetOutputPort("iiwa_position_measured").Eval(
        station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(
            filter, simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext(
            teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(diagram.GetMutableSubsystemContext(
        differential_ik, simulator.get_mutable_context()), q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        for time, qdot in zip(iiwa_velocities.sample_times(),
                              iiwa_velocities.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)
Exemplo n.º 22
0
    def __init__(self, config=None):
        if config is None:
            config_path = os.path.join(os.path.dirname(__file__),
                                       "config.yaml")
            config = yaml.safe_load(open(config_path, 'r'))

        self._config = config
        self._step_dt = config["step_dt"]
        self._model_name = config["model_name"]

        self._sim_diagram = DrakeSimDiagram(config)
        mbp = self._sim_diagram.mbp
        builder = self._sim_diagram.builder
        # === Add table =====
        dims = config["table"]["size"]
        color = np.array(config["table"]["color"])
        friction_params = config["table"]["coulomb_friction"]
        box_shape = Box(*dims)
        X_W_T = RigidTransform(p=np.array([0., 0., -dims[2] / 2.]))

        # This rigid body will be added to the world model instance since
        # the model instance is not specified.
        box_body = mbp.AddRigidBody(
            "table",
            SpatialInertia(mass=1.0,
                           p_PScm_E=np.array([0., 0., 0.]),
                           G_SP_E=UnitInertia(1.0, 1.0, 1.0)))
        mbp.WeldFrames(mbp.world_frame(), box_body.body_frame(), X_W_T)
        mbp.RegisterVisualGeometry(box_body, RigidTransform(), box_shape,
                                   "table_vis", color)
        mbp.RegisterCollisionGeometry(box_body, RigidTransform(), box_shape,
                                      "table_collision",
                                      CoulombFriction(*friction_params))

        # === Add pusher ====
        parser = Parser(mbp, self._sim_diagram.sg)
        self._pusher_model_id = parser.AddModelFromFile(
            path_util.pusher_peg, "pusher")
        base_link = mbp.GetBodyByName("base", self._pusher_model_id)
        mbp.WeldFrames(mbp.world_frame(), base_link.body_frame())

        def pusher_port_func():
            actuation_input_port = mbp.get_actuation_input_port(
                self._pusher_model_id)
            state_output_port = mbp.get_state_output_port(
                self._pusher_model_id)
            builder.ExportInput(actuation_input_port, "pusher_actuation_input")
            builder.ExportOutput(state_output_port, "pusher_state_output")

        self._sim_diagram.finalize_functions.append(pusher_port_func)

        # === Add slider ====
        parser = Parser(mbp, self._sim_diagram.sg)
        self._slider_model_id = parser.AddModelFromFile(
            path_util.model_paths[self._model_name], self._model_name)

        def slider_port_func():
            state_output_port = mbp.get_state_output_port(
                self._slider_model_id)
            builder.ExportOutput(state_output_port, "slider_state_output")

        self._sim_diagram.finalize_functions.append(slider_port_func)

        if "rgbd_sensors" in config and config["rgbd_sensors"]["enabled"]:
            self._sim_diagram.add_rgbd_sensors_from_config(config)

        if "visualization" in config:
            if not config["visualization"]:
                pass
            elif config["visualization"] == "meshcat":
                self._sim_diagram.connect_to_meshcat()
            elif config["visualization"] == "drake_viz":
                self._sim_diagram.connect_to_drake_visualizer()
            else:
                raise ValueError("Unknown visualization:",
                                 config["visualization"])

        self._sim_diagram.finalize()

        builder = DiagramBuilder()
        builder.AddSystem(self._sim_diagram)

        pid = builder.AddSystem(
            PidController(kp=[0, 0], kd=[1000, 1000], ki=[0, 0]))
        builder.Connect(self._sim_diagram.GetOutputPort("pusher_state_output"),
                        pid.get_input_port_estimated_state())
        builder.Connect(
            pid.get_output_port_control(),
            self._sim_diagram.GetInputPort("pusher_actuation_input"))
        builder.ExportInput(pid.get_input_port_desired_state(),
                            "pid_input_port_desired_state")

        self._diagram = builder.Build()
        self._pid_desired_state_port = self._diagram.get_input_port(0)
        self._simulator = Simulator(self._diagram)
        self.reset()

        self.action_space = spaces.Box(low=-1.,
                                       high=1.,
                                       shape=(2, ),
                                       dtype=np.float32)
        # TODO: Observation space for images is currently too loose
        self.observation_space = convert_observation_to_space(
            self.get_observation())
Exemplo n.º 23
0
    def test_make_from_scene_graph_and_iris(self):
        """
        Tests the make from scene graph and iris functionality together as
        the Iris code makes obstacles from geometries registered in SceneGraph.
        """
        scene_graph = SceneGraph()
        source_id = scene_graph.RegisterSource("source")
        frame_id = scene_graph.RegisterFrame(
            source_id=source_id, frame=GeometryFrame("frame"))
        box_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=GeometryInstance(X_PG=RigidTransform(),
                                      shape=Box(1., 1., 1.),
                                      name="box"))
        cylinder_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=GeometryInstance(X_PG=RigidTransform(),
                                      shape=Cylinder(1., 1.),
                                      name="cylinder"))
        sphere_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id, frame_id=frame_id,
            geometry=GeometryInstance(X_PG=RigidTransform(),
                                      shape=Sphere(1.), name="sphere"))
        capsule_geometry_id = scene_graph.RegisterGeometry(
            source_id=source_id,
            frame_id=frame_id,
            geometry=GeometryInstance(X_PG=RigidTransform(),
                                      shape=Capsule(1., 1.0),
                                      name="capsule"))
        context = scene_graph.CreateDefaultContext()
        pose_vector = FramePoseVector()
        pose_vector.set_value(frame_id, RigidTransform())
        scene_graph.get_source_pose_port(source_id).FixValue(
            context, pose_vector)
        query_object = scene_graph.get_query_output_port().Eval(context)
        H = mut.HPolyhedron(
            query_object=query_object, geometry_id=box_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(H.ambient_dimension(), 3)
        C = mut.CartesianProduct(
            query_object=query_object, geometry_id=cylinder_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(C.ambient_dimension(), 3)
        E = mut.Hyperellipsoid(
            query_object=query_object, geometry_id=sphere_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(E.ambient_dimension(), 3)
        S = mut.MinkowskiSum(
            query_object=query_object, geometry_id=capsule_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(S.ambient_dimension(), 3)
        P = mut.Point(
            query_object=query_object, geometry_id=sphere_geometry_id,
            reference_frame=scene_graph.world_frame_id(),
            maximum_allowable_radius=1.5)
        self.assertEqual(P.ambient_dimension(), 3)
        V = mut.VPolytope(
            query_object=query_object, geometry_id=box_geometry_id,
            reference_frame=scene_graph.world_frame_id())
        self.assertEqual(V.ambient_dimension(), 3)

        obstacles = mut.MakeIrisObstacles(
            query_object=query_object,
            reference_frame=scene_graph.world_frame_id())
        options = mut.IrisOptions()
        options.require_sample_point_is_contained = True
        options.iteration_limit = 1
        options.termination_threshold = 0.1
        options.relative_termination_threshold = 0.01
        self.assertNotIn("object at 0x", repr(options))
        region = mut.Iris(
            obstacles=obstacles, sample=[2, 3.4, 5],
            domain=mut.HPolyhedron.MakeBox(
                lb=[-5, -5, -5], ub=[5, 5, 5]), options=options)
        self.assertIsInstance(region, mut.HPolyhedron)

        obstacles = [
            mut.HPolyhedron.MakeUnitBox(3),
            mut.Hyperellipsoid.MakeUnitBall(3),
            mut.Point([0, 0, 0]),
            mut.VPolytope.MakeUnitBox(3)]
        region = mut.Iris(
            obstacles=obstacles, sample=[2, 3.4, 5],
            domain=mut.HPolyhedron.MakeBox(
                lb=[-5, -5, -5], ub=[5, 5, 5]), options=options)
        self.assertIsInstance(region, mut.HPolyhedron)
Exemplo n.º 24
0
    def test_render_engine_api(self):
        class DummyRenderEngine(mut.render.RenderEngine):
            """Mirror of C++ DummyRenderEngine."""

            # See comment below about `rgbd_sensor_test.cc`.
            latest_instance = None

            def __init__(self, render_label=None):
                mut.render.RenderEngine.__init__(self)
                # N.B. We do not hide these because this is a test class.
                # Normally, you would want to hide this.
                self.force_accept = False
                self.registered_geometries = set()
                self.updated_ids = {}
                self.include_group_name = "in_test"
                self.X_WC = RigidTransform_[float]()
                self.color_count = 0
                self.depth_count = 0
                self.label_count = 0
                self.color_camera = None
                self.depth_camera = None
                self.label_camera = None

            def UpdateViewpoint(self, X_WC):
                DummyRenderEngine.latest_instance = self
                self.X_WC = X_WC

            def ImplementGeometry(self, shape, user_data):
                DummyRenderEngine.latest_instance = self

            def DoRegisterVisual(self, id, shape, properties, X_WG):
                DummyRenderEngine.latest_instance = self
                mut.GetRenderLabelOrThrow(properties)
                if self.force_accept or properties.HasGroup(
                    self.include_group_name
                ):
                    self.registered_geometries.add(id)
                    return True
                return False

            def DoUpdateVisualPose(self, id, X_WG):
                DummyRenderEngine.latest_instance = self
                self.updated_ids[id] = X_WG

            def DoRemoveGeometry(self, id):
                DummyRenderEngine.latest_instance = self
                self.registered_geometries.remove(id)

            def DoClone(self):
                DummyRenderEngine.latest_instance = self
                new = DummyRenderEngine()
                new.force_accept = copy.copy(self.force_accept)
                new.registered_geometries = copy.copy(
                    self.registered_geometries)
                new.updated_ids = copy.copy(self.updated_ids)
                new.include_group_name = copy.copy(self.include_group_name)
                new.X_WC = copy.copy(self.X_WC)
                new.color_count = copy.copy(self.color_count)
                new.depth_count = copy.copy(self.depth_count)
                new.label_count = copy.copy(self.label_count)
                new.color_camera = copy.copy(self.color_camera)
                new.depth_camera = copy.copy(self.depth_camera)
                new.label_camera = copy.copy(self.label_camera)
                return new

            def DoRenderColorImage(self, camera, color_image_out):
                DummyRenderEngine.latest_instance = self
                self.color_count += 1
                self.color_camera = camera

            def DoRenderDepthImage(self, camera, depth_image_out):
                DummyRenderEngine.latest_instance = self
                self.depth_count += 1
                self.depth_camera = camera

            def DoRenderLabelImage(self, camera, label_image_out):
                DummyRenderEngine.latest_instance = self
                self.label_count += 1
                self.label_camera = camera

        engine = DummyRenderEngine()
        self.assertIsInstance(engine, mut.render.RenderEngine)
        self.assertIsInstance(engine.Clone(), DummyRenderEngine)

        # Test implementation of C++ interface by using RgbdSensor.
        renderer_name = "renderer"
        builder = DiagramBuilder()
        scene_graph = builder.AddSystem(mut.SceneGraph())
        # N.B. This passes ownership.
        scene_graph.AddRenderer(renderer_name, engine)
        sensor = builder.AddSystem(RgbdSensor(
            parent_id=scene_graph.world_frame_id(),
            X_PB=RigidTransform(),
            depth_camera=mut.render.DepthRenderCamera(
                mut.render.RenderCameraCore(
                    renderer_name, CameraInfo(640, 480, np.pi/4),
                    mut.render.ClippingRange(0.1, 5.0), RigidTransform()),
                mut.render.DepthRange(0.1, 5.0))))
        builder.Connect(
            scene_graph.get_query_output_port(),
            sensor.query_object_input_port(),
        )
        diagram = builder.Build()
        diagram_context = diagram.CreateDefaultContext()
        sensor_context = sensor.GetMyContextFromRoot(diagram_context)
        image = sensor.color_image_output_port().Eval(sensor_context)
        # N.B. Because there's context cloning going on under the hood, we
        # won't be interacting with our originally registered instance.
        # See `rgbd_sensor_test.cc` as well.
        current_engine = DummyRenderEngine.latest_instance
        self.assertIsNot(current_engine, engine)
        self.assertIsInstance(image, ImageRgba8U)
        self.assertEqual(current_engine.color_count, 1)

        image = sensor.depth_image_32F_output_port().Eval(sensor_context)
        self.assertIsInstance(image, ImageDepth32F)
        self.assertEqual(current_engine.depth_count, 1)

        image = sensor.depth_image_16U_output_port().Eval(sensor_context)
        self.assertIsInstance(image, ImageDepth16U)
        self.assertEqual(current_engine.depth_count, 2)

        image = sensor.label_image_output_port().Eval(sensor_context)
        self.assertIsInstance(image, ImageLabel16I)
        self.assertEqual(current_engine.label_count, 1)
Exemplo n.º 25
0
def xyz_rpy_deg(xyz, rpy_deg):
    """Shorthand for defining a pose."""
    rpy_deg = np.asarray(rpy_deg)
    return RigidTransform(RollPitchYaw(rpy_deg * np.pi / 180), xyz)
Exemplo n.º 26
0
    def test_pose_aggregator(self):
        aggregator = PoseAggregator()
        # - Set-up.
        instance_id1 = 5  # Supply a random instance id.
        port1 = aggregator.AddSingleInput("pose_only", instance_id1)
        self.assertEqual(port1.get_data_type(), PortDataType.kVectorValued)
        self.assertEqual(port1.size(), PoseVector.kSize)
        instance_id2 = 42  # Supply another random, but unique, id.
        ports2 = aggregator.AddSinglePoseAndVelocityInput(
            "pose_and_velocity", instance_id2)
        self.assertEqual(ports2.pose_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.pose_input_port.size(), PoseVector.kSize)
        self.assertEqual(ports2.velocity_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.velocity_input_port.size(),
                         FrameVelocity.kSize)
        num_poses = 1
        port3 = aggregator.AddBundleInput("pose_bundle", num_poses)
        self.assertEqual(port3.get_data_type(), PortDataType.kAbstractValued)

        # - CalcOutput.
        self.assertEqual(
            aggregator.get_output_port(0).get_data_type(),
            PortDataType.kAbstractValued)
        context = aggregator.CreateDefaultContext()
        output = aggregator.AllocateOutput()

        p1 = [0, 1, 2]
        pose1 = PoseVector()
        pose1.set_translation(p1)
        p2 = [5, 7, 9]
        pose2 = PoseVector()
        pose2.set_translation(p2)
        w = [0.3, 0.4, 0.5]
        v = [0.5, 0.6, 0.7]
        velocity = FrameVelocity()
        velocity.set_velocity(SpatialVelocity(w=w, v=v))
        p3 = [50, 70, 90]
        q3 = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
        bundle = PoseBundle(num_poses)
        bundle.set_transform(0, RigidTransform(quaternion=q3, p=p3))
        bundle_value = AbstractValue.Make(bundle)

        aggregator.get_input_port(0).FixValue(context, pose1)
        aggregator.get_input_port(1).FixValue(context, pose2)
        aggregator.get_input_port(2).FixValue(context, velocity)
        aggregator.get_input_port(3).FixValue(context, bundle_value)

        aggregator.CalcOutput(context, output)

        value = output.get_data(0).get_value()
        self.assertEqual(value.get_num_poses(), 3)
        pose1_actual = RigidTransform(p=p1)
        self.assertTrue((value.get_transform(0).GetAsMatrix34() ==
                         pose1_actual.GetAsMatrix34()).all())
        pose2_actual = RigidTransform(p=p2)
        self.assertTrue((value.get_transform(1).GetAsMatrix34() ==
                         pose2_actual.GetAsMatrix34()).all())
        vel_actual = value.get_velocity(1).get_velocity()
        self.assertTrue(np.allclose(vel_actual.rotational(), w))
        self.assertTrue(np.allclose(vel_actual.translational(), v))
        pose3_actual = RigidTransform(quaternion=q3, p=p3)
        self.assertTrue((value.get_transform(2).GetAsMatrix34() ==
                         pose3_actual.GetAsMatrix34()).all())
Exemplo n.º 27
0
    def test_multibody_tree_kinematics(self):
        file_name = FindResourceOrThrow(
            "drake/examples/double_pendulum/models/double_pendulum.sdf")
        plant = MultibodyPlant()
        Parser(plant).AddModelFromFile(file_name)
        plant.Finalize()
        context = plant.CreateDefaultContext()
        world_frame = plant.world_frame()
        base = plant.GetBodyByName("base")
        base_frame = plant.GetFrameByName("base")
        X_WL = plant.CalcRelativeTransform(context,
                                           frame_A=world_frame,
                                           frame_B=base_frame)
        self.assertIsInstance(X_WL, RigidTransform)

        p_AQi = plant.CalcPointsPositions(context=context,
                                          frame_B=base_frame,
                                          p_BQi=np.array([[0, 1, 2],
                                                          [10, 11, 12]]).T,
                                          frame_A=world_frame).T
        self.assertTupleEqual(p_AQi.shape, (2, 3))

        Jv_WL = plant.CalcFrameGeometricJacobianExpressedInWorld(
            context=context, frame_B=base_frame, p_BoFo_B=[0, 0, 0])
        self.assertTupleEqual(Jv_WL.shape, (6, plant.num_velocities()))

        nq = plant.num_positions()
        nv = plant.num_velocities()
        wrt_list = [
            (JacobianWrtVariable.kQDot, nq),
            (JacobianWrtVariable.kV, nv),
        ]
        for wrt, nw in wrt_list:
            Jw_ABp_E = plant.CalcJacobianSpatialVelocity(context=context,
                                                         with_respect_to=wrt,
                                                         frame_B=base_frame,
                                                         p_BP=np.zeros(3),
                                                         frame_A=world_frame,
                                                         frame_E=world_frame)
            self.assert_sane(Jw_ABp_E)
            self.assertEqual(Jw_ABp_E.shape, (6, nw))

        # Compute body pose.
        X_WBase = plant.EvalBodyPoseInWorld(context, base)
        self.assertIsInstance(X_WBase, RigidTransform)

        # Set pose for the base.
        X_WB_desired = RigidTransform.Identity()
        X_WB = plant.CalcRelativeTransform(context, world_frame, base_frame)
        plant.SetFreeBodyPose(context=context, body=base, X_WB=X_WB_desired)
        self.assertTrue(np.allclose(X_WB.matrix(), X_WB_desired.matrix()))

        # Set a spatial velocity for the base.
        v_WB = SpatialVelocity(w=[1, 2, 3], v=[4, 5, 6])
        plant.SetFreeBodySpatialVelocity(context=context, body=base, V_WB=v_WB)
        v_base = plant.EvalBodySpatialVelocityInWorld(context, base)
        self.assertTrue(np.allclose(v_base.rotational(), v_WB.rotational()))
        self.assertTrue(
            np.allclose(v_base.translational(), v_WB.translational()))

        # Compute accelerations.
        vdot = np.zeros(nv)
        A_WB_array = plant.CalcSpatialAccelerationsFromVdot(context=context,
                                                            known_vdot=vdot)
        self.assertEqual(len(A_WB_array), plant.num_bodies())
Exemplo n.º 28
0
 def setUp(self):
     self.points = np.array([[1, 1, 0], [2, 1, 0]]).T
     self.translation = RigidTransform(p=[1, 2, 3])
     self.rotation = RigidTransform(
         RotationMatrix(RollPitchYaw(0, 0, np.pi / 2)))
Exemplo n.º 29
0
    def test_model_instance_state_access(self):
        # Create a MultibodyPlant with a kuka arm and a schunk gripper.
        # the arm is welded to the world, the gripper is welded to the
        # arm's end effector.
        wsg50_sdf_path = FindResourceOrThrow(
            "drake/manipulation/models/" +
            "wsg_50_description/sdf/schunk_wsg_50.sdf")
        iiwa_sdf_path = FindResourceOrThrow(
            "drake/manipulation/models/" +
            "iiwa_description/sdf/iiwa14_no_collision.sdf")

        plant = MultibodyPlant()
        parser = Parser(plant)

        iiwa_model = parser.AddModelFromFile(file_name=iiwa_sdf_path,
                                             model_name='robot')
        gripper_model = parser.AddModelFromFile(file_name=wsg50_sdf_path,
                                                model_name='gripper')

        # Weld the base of arm and gripper to reduce the number of states.
        X_EeGripper = RigidTransform(RollPitchYaw(np.pi / 2, 0, np.pi / 2),
                                     [0, 0, 0.081])
        plant.WeldFrames(A=plant.world_frame(),
                         B=plant.GetFrameByName("iiwa_link_0", iiwa_model))
        plant.WeldFrames(A=plant.GetFrameByName("iiwa_link_7", iiwa_model),
                         B=plant.GetFrameByName("body", gripper_model),
                         X_AB=X_EeGripper)
        plant.Finalize()

        # Create a context of the MBP and set the state of the context
        # to desired values.
        context = plant.CreateDefaultContext()

        nq = plant.num_positions()
        nv = plant.num_velocities()

        nq_iiwa = 7
        nv_iiwa = 7
        nq_gripper = 2
        nv_gripper = 2
        q_iiwa_desired = np.zeros(nq_iiwa)
        v_iiwa_desired = np.zeros(nv_iiwa)
        q_gripper_desired = np.zeros(nq_gripper)
        v_gripper_desired = np.zeros(nv_gripper)

        q_iiwa_desired[2] = np.pi / 3
        q_gripper_desired[0] = 0.1
        v_iiwa_desired[1] = 5.0
        q_gripper_desired[0] = -0.3

        x_iiwa_desired = np.zeros(nq_iiwa + nv_iiwa)
        x_iiwa_desired[0:nq_iiwa] = q_iiwa_desired
        x_iiwa_desired[nq_iiwa:nq_iiwa + nv_iiwa] = v_iiwa_desired

        x_gripper_desired = np.zeros(nq_gripper + nv_gripper)
        x_gripper_desired[0:nq_gripper] = q_gripper_desired
        x_gripper_desired[nq_gripper:nq_gripper +
                          nv_gripper] = v_gripper_desired

        x_desired = np.zeros(nq + nv)
        x_desired[0:7] = q_iiwa_desired
        x_desired[7:9] = q_gripper_desired
        x_desired[nq:nq + 7] = v_iiwa_desired
        x_desired[nq + 7:nq + nv] = v_gripper_desired

        # Check SetPositionsAndVelocities() for each model instance.
        # Do the iiwa model first.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetPositionsAndVelocities(context, iiwa_model, x_iiwa_desired)
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context, iiwa_model),
                        x_iiwa_desired))
        self.assertTrue(
            np.allclose(
                plant.GetPositionsAndVelocities(context, gripper_model),
                np.zeros(nq_gripper + nv_gripper)))
        # Do the gripper model.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetPositionsAndVelocities(context, gripper_model,
                                        x_gripper_desired)
        self.assertTrue(
            np.allclose(
                plant.GetPositionsAndVelocities(context, gripper_model),
                x_gripper_desired))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context, iiwa_model),
                        np.zeros(nq_iiwa + nv_iiwa)))

        # Check SetPositions() for each model instance.
        # Do the iiwa model first.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetPositions(context, iiwa_model, q_iiwa_desired)
        self.assertTrue(
            np.allclose(plant.GetPositions(context, iiwa_model),
                        q_iiwa_desired))
        self.assertTrue(
            np.allclose(plant.GetVelocities(context, iiwa_model),
                        np.zeros(nv_iiwa)))
        self.assertTrue(
            np.allclose(
                plant.GetPositionsAndVelocities(context, gripper_model),
                np.zeros(nq_gripper + nv_gripper)))
        # Do the gripper model.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetPositions(context, gripper_model, q_gripper_desired)
        self.assertTrue(
            np.allclose(plant.GetPositions(context, gripper_model),
                        q_gripper_desired))
        self.assertTrue(
            np.allclose(plant.GetVelocities(context, gripper_model),
                        np.zeros(nq_gripper)))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context, iiwa_model),
                        np.zeros(nq_iiwa + nv_iiwa)))

        # Check SetVelocities() for each model instance.
        # Do the iiwa model first.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetVelocities(context, iiwa_model, v_iiwa_desired)
        self.assertTrue(
            np.allclose(plant.GetVelocities(context, iiwa_model),
                        v_iiwa_desired))
        self.assertTrue(
            np.allclose(plant.GetPositions(context, iiwa_model),
                        np.zeros(nq_iiwa)))
        self.assertTrue(
            np.allclose(
                plant.GetPositionsAndVelocities(context, gripper_model),
                np.zeros(nq_gripper + nv_gripper)))
        # Do the gripper model.
        plant.SetPositionsAndVelocities(context, np.zeros(nq + nv))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context),
                        np.zeros(nq + nv)))
        plant.SetVelocities(context, gripper_model, v_gripper_desired)
        self.assertTrue(
            np.allclose(plant.GetVelocities(context, gripper_model),
                        v_gripper_desired))
        self.assertTrue(
            np.allclose(plant.GetPositions(context, gripper_model),
                        np.zeros(nv_gripper)))
        self.assertTrue(
            np.allclose(plant.GetPositionsAndVelocities(context, iiwa_model),
                        np.zeros(nq_iiwa + nv_iiwa)))
Exemplo n.º 30
0
    def test_contact_force(self):
        """A block sitting on a table."""
        object_file_path = FindResourceOrThrow(
            "drake/examples/manipulation_station/models/061_foam_brick.sdf")
        table_file_path = FindResourceOrThrow(
            "drake/examples/kuka_iiwa_arm/models/table/"
            "extra_heavy_duty_table_surface_only_collision.sdf")

        # T: tabletop frame.
        X_TObject = RigidTransform([0, 0, 0.2])

        builder = DiagramBuilder()
        plant = MultibodyPlant(0.002)
        _, scene_graph = AddMultibodyPlantSceneGraph(builder, plant)
        object_model = Parser(plant=plant).AddModelFromFile(object_file_path)
        table_model = Parser(plant=plant).AddModelFromFile(table_file_path)

        # Weld table to world.
        plant.WeldFrames(A=plant.world_frame(),
                         B=plant.GetFrameByName("link", table_model))

        plant.Finalize()

        # Add meshcat visualizer.
        viz = builder.AddSystem(
            MeshcatVisualizer(scene_graph, zmq_url=ZMQ_URL,
                              open_browser=False))
        builder.Connect(scene_graph.get_pose_bundle_output_port(),
                        viz.get_input_port(0))

        # Add contact visualizer.
        contact_viz = builder.AddSystem(
            MeshcatContactVisualizer(meshcat_viz=viz,
                                     force_threshold=0,
                                     contact_force_scale=10,
                                     plant=plant))
        contact_input_port = contact_viz.GetInputPort("contact_results")
        builder.Connect(plant.GetOutputPort("contact_results"),
                        contact_input_port)
        builder.Connect(scene_graph.get_pose_bundle_output_port(),
                        contact_viz.GetInputPort("pose_bundle"))

        diagram = builder.Build()

        diagram_context = diagram.CreateDefaultContext()
        mbp_context = diagram.GetMutableSubsystemContext(
            plant, diagram_context)

        X_WT = plant.CalcRelativeTransform(mbp_context, plant.world_frame(),
                                           plant.GetFrameByName("top_center"))

        plant.SetFreeBodyPose(mbp_context,
                              plant.GetBodyByName("base_link", object_model),
                              X_WT.multiply(X_TObject))

        simulator = Simulator(diagram, diagram_context)
        simulator.set_publish_every_time_step(False)
        simulator.AdvanceTo(1.0)

        contact_viz_context = (diagram.GetMutableSubsystemContext(
            contact_viz, diagram_context))
        contact_results = contact_viz.EvalAbstractInput(
            contact_viz_context, contact_input_port.get_index()).get_value()

        self.assertGreater(contact_results.num_point_pair_contacts(), 0)
        self.assertEqual(contact_viz._contact_key_counter, 4)
Exemplo n.º 31
0
    def test_model_instance_state_access_by_array(self):
        # Create a MultibodyPlant with a kuka arm and a schunk gripper.
        # the arm is welded to the world, the gripper is welded to the
        # arm's end effector.
        wsg50_sdf_path = FindResourceOrThrow(
            "drake/manipulation/models/" +
            "wsg_50_description/sdf/schunk_wsg_50.sdf")
        iiwa_sdf_path = FindResourceOrThrow(
            "drake/manipulation/models/" +
            "iiwa_description/sdf/iiwa14_no_collision.sdf")

        timestep = 0.0002
        plant = MultibodyPlant(timestep)
        parser = Parser(plant)

        iiwa_model = parser.AddModelFromFile(file_name=iiwa_sdf_path,
                                             model_name='robot')
        gripper_model = parser.AddModelFromFile(file_name=wsg50_sdf_path,
                                                model_name='gripper')

        # Weld the base of arm and gripper to reduce the number of states.
        X_EeGripper = RigidTransform(RollPitchYaw(np.pi / 2, 0, np.pi / 2),
                                     [0, 0, 0.081])
        plant.WeldFrames(A=plant.world_frame(),
                         B=plant.GetFrameByName("iiwa_link_0", iiwa_model))
        plant.WeldFrames(A=plant.GetFrameByName("iiwa_link_7", iiwa_model),
                         B=plant.GetFrameByName("body", gripper_model),
                         X_AB=X_EeGripper)
        plant.Finalize()

        # Create a context of the MBP and set the state of the context
        # to desired values.
        context = plant.CreateDefaultContext()

        nq = plant.num_positions()
        nq_iiwa = plant.num_positions(iiwa_model)
        nv = plant.num_velocities()
        nv_iiwa = plant.num_velocities(iiwa_model)

        q_iiwa_desired = np.linspace(0, 0.3, 7)
        v_iiwa_desired = q_iiwa_desired + 0.4
        q_gripper_desired = [0.4, 0.5]
        v_gripper_desired = [-1., -2.]

        x_desired = np.zeros(nq + nv)
        x_desired[0:7] = q_iiwa_desired
        x_desired[7:9] = q_gripper_desired
        x_desired[nq:nq + 7] = v_iiwa_desired
        x_desired[nq + 7:nq + nv] = v_gripper_desired

        x = plant.GetMutablePositionsAndVelocities(context=context)
        x[:] = x_desired
        q = plant.GetPositions(context=context)
        v = plant.GetVelocities(context=context)

        # Get state from context.
        x = plant.GetPositionsAndVelocities(context=context)
        x_tmp = plant.GetMutablePositionsAndVelocities(context=context)
        self.assertTrue(np.allclose(x_desired, x_tmp))

        # Get positions and velocities of specific model instances
        # from the position/velocity vector of the plant.
        q_iiwa = plant.GetPositions(context=context, model_instance=iiwa_model)
        q_iiwa_array = plant.GetPositionsFromArray(model_instance=iiwa_model,
                                                   q=q)
        self.assertTrue(np.allclose(q_iiwa, q_iiwa_array))
        q_gripper = plant.GetPositions(context=context,
                                       model_instance=gripper_model)
        v_iiwa = plant.GetVelocities(context=context,
                                     model_instance=iiwa_model)
        v_iiwa_array = plant.GetVelocitiesFromArray(model_instance=iiwa_model,
                                                    v=v)
        self.assertTrue(np.allclose(v_iiwa, v_iiwa_array))
        v_gripper = plant.GetVelocities(context=context,
                                        model_instance=gripper_model)

        # Assert that the `GetPositions` and `GetVelocities` return
        # the desired values set earlier.
        self.assertTrue(np.allclose(q_iiwa_desired, q_iiwa))
        self.assertTrue(np.allclose(v_iiwa_desired, v_iiwa))
        self.assertTrue(np.allclose(q_gripper_desired, q_gripper))
        self.assertTrue(np.allclose(v_gripper_desired, v_gripper))

        # Verify that SetPositionsInArray() and SetVelocitiesInArray() works.
        plant.SetPositionsInArray(model_instance=iiwa_model,
                                  q_instance=np.zeros(nq_iiwa),
                                  q=q)
        self.assertTrue(
            np.allclose(
                plant.GetPositionsFromArray(model_instance=iiwa_model, q=q),
                np.zeros(nq_iiwa)))
        plant.SetVelocitiesInArray(model_instance=iiwa_model,
                                   v_instance=np.zeros(nv_iiwa),
                                   v=v)
        self.assertTrue(
            np.allclose(
                plant.GetVelocitiesFromArray(model_instance=iiwa_model, v=v),
                np.zeros(nv_iiwa)))

        # Check actuation.
        nu = plant.num_actuated_dofs()
        u = np.zeros(nu)
        u_iiwa = np.arange(nv_iiwa)
        plant.SetActuationInArray(model_instance=iiwa_model,
                                  u_instance=u_iiwa,
                                  u=u)
        self.assertTrue(np.allclose(u[:7], u_iiwa))