Exemplo n.º 1
0
def GetHomeConfiguration(is_printing=True):
    """
    Returns a configuration of the MultibodyPlant in which point Q (defined by global variable p_EQ)
    in robot EE frame is at p_WQ_home, and orientation of frame Ea is R_WEa_ref.
    """
    # get "home" pose
    ik_scene = inverse_kinematics.InverseKinematics(plant)

    theta_bound = 0.005 * np.pi  # 0.9 degrees
    X_EEa = GetEndEffectorWorldAlignedFrame()
    R_EEa = RotationMatrix(X_EEa.rotation())

    ik_scene.AddOrientationConstraint(frameAbar=world_frame,
                                      R_AbarA=R_WL7_ref,
                                      frameBbar=l7_frame,
                                      R_BbarB=RotationMatrix.Identity(),
                                      theta_bound=theta_bound)

    p_WQ0 = p_WQ_home
    p_WQ_lower = p_WQ0 - 0.005
    p_WQ_upper = p_WQ0 + 0.005
    ik_scene.AddPositionConstraint(frameB=l7_frame,
                                   p_BQ=p_L7Q,
                                   frameA=world_frame,
                                   p_AQ_lower=p_WQ_lower,
                                   p_AQ_upper=p_WQ_upper)

    prog = ik_scene.prog()
    prog.SetInitialGuess(ik_scene.q(), np.zeros(plant.num_positions()))
    result = prog.Solve()
    if is_printing:
        print result
    return prog.GetSolution(ik_scene.q())
Exemplo n.º 2
0
def SolveOneShotIk(
        p_WQ_ref, 
        R_WL7_ref, 
        p_L7Q,
        q_initial_guess,
        position_tolerance=0.005,
        theta_bound=0.005):
    ik = inverse_kinematics.InverseKinematics(plant)

    ik.AddOrientationConstraint(
        frameAbar=world_frame, R_AbarA=R_WL7_ref,
        frameBbar=l7_frame, R_BbarB=RotationMatrix.Identity(),
        theta_bound=theta_bound)

    p_WQ_lower = p_WQ_ref - position_tolerance
    p_WQ_upper = p_WQ_ref + position_tolerance
    ik.AddPositionConstraint(
        frameB=l7_frame, p_BQ=p_L7Q,
        frameA=world_frame,
        p_AQ_lower=p_WQ_lower, p_AQ_upper=p_WQ_upper)

    prog = ik.prog()
    prog.SetInitialGuess(ik.q(), q_initial_guess)
    result = mp.Solve(prog)
    if result.get_solution_result() != SolutionResult.kSolutionFound:
        print(result.get_solution_result())
        raise RuntimeError
    
    return result.GetSolution(ik.q())
Exemplo n.º 3
0
def solve_inverse_kinematics(mbp, target_frame, target_pose,
        max_position_error=0.005, theta_bound=0.01*np.pi, initial_guess=None):
    if initial_guess is None:
        initial_guess = np.zeros(mbp.num_positions())
        for joint in prune_fixed_joints(get_joints(mbp)):
            lower, upper = get_joint_limits(joint)
            if -np.inf < lower < upper < np.inf:
                initial_guess[joint.position_start()] = random.uniform(lower, upper)
    assert mbp.num_positions() == len(initial_guess)

    ik_scene = InverseKinematics(mbp)
    world_frame = mbp.world_frame()

    ik_scene.AddOrientationConstraint(
        frameAbar=target_frame, R_AbarA=RotationMatrix.Identity(),
        frameBbar=world_frame, R_BbarB=RotationMatrix(target_pose.rotation()),
        theta_bound=theta_bound)

    lower = target_pose.translation() - max_position_error
    upper = target_pose.translation() + max_position_error
    ik_scene.AddPositionConstraint(
        frameB=target_frame, p_BQ=np.zeros(3),
        frameA=world_frame, p_AQ_lower=lower, p_AQ_upper=upper)

    prog = ik_scene.prog()
    prog.SetInitialGuess(ik_scene.q(), initial_guess)
    result = prog.Solve()
    if result != SolutionResult.kSolutionFound:
        return None
    return prog.GetSolution(ik_scene.q())
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate",
        type=float,
        default=1.0,
        help="Desired rate relative to real time.  See documentation for "
        "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument("--duration",
                        type=float,
                        default=np.inf,
                        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware",
        action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
        "in-process simulation.")
    parser.add_argument("--test",
                        action='store_true',
                        help="Disable opening the gui window for testing.")
    parser.add_argument(
        '--setup',
        type=str,
        default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        "-w",
        "--open-window",
        dest="browser_new",
        action="store_const",
        const=1,
        default=None,
        help="Open the MeshCat display in a new browser window.")
    args = parser.parse_args()

    builder = DiagramBuilder()

    # NOTE: the meshcat instance is always created in order to create the
    # teleop controls (joint sliders and open/close gripper button).  When
    # args.hardware is True, the meshcat server will *not* display robot
    # geometry, but it will contain the joint sliders and open/close gripper
    # button in the "Open Controls" tab in the top-right of the viewing server.
    meshcat = Meshcat()

    if args.hardware:
        # TODO(russt): Replace this hard-coded camera serial number with a
        # config file.
        camera_ids = ["805212060544"]
        station = builder.AddSystem(
            ManipulationStationHardwareInterface(camera_ids))
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation()
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation()
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/" +
                "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        geometry_query_port = station.GetOutputPort("geometry_query")
        DrakeVisualizer.AddToBuilder(builder, geometry_query_port)
        meshcat_visualizer = MeshcatVisualizerCpp.AddToBuilder(
            builder=builder,
            query_object_port=geometry_query_port,
            meshcat=meshcat)

        if args.setup == 'planar':
            meshcat.Set2dRenderMode()
            pyplot_visualizer = ConnectPlanarSceneGraphVisualizer(
                builder, station.get_scene_graph(), geometry_query_port)

    if args.browser_new is not None:
        url = meshcat.web_url()
        webbrowser.open(url=url, new=args.browser_new)

    teleop = builder.AddSystem(
        JointSliders(meshcat=meshcat, plant=station.get_controller_plant()))

    num_iiwa_joints = station.num_iiwa_joints()
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=2.0, size=num_iiwa_joints))
    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    station.GetInputPort("iiwa_position"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(meshcat=meshcat))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    if args.test:
        iiwa_velocities = builder.AddSystem(VectorLogSink(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    # Eval the output port once to read the initial positions of the IIWA.
    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    teleop.SetPositions(q0)
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(filter,
                                           simulator.get_mutable_context()),
        q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        iiwa_velocities_log = iiwa_velocities.FindLog(simulator.get_context())
        for time, qdot in zip(iiwa_velocities_log.sample_times(),
                              iiwa_velocities_log.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)
Exemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate", type=float, default=1.0,
        help="Desired rate relative to real time.  See documentation for "
             "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument(
        "--duration", type=float, default=np.inf,
        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware", action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
             "in-process simulation.")
    parser.add_argument(
        "--test", action='store_true',
        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--filter_time_const", type=float, default=0.1,
        help="Time constant for the first order low pass filter applied to"
             "the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor", type=float, default=1.0,
        help="This value, typically between 0 and 1, further limits the "
             "iiwa14 joint velocities. It multiplies each of the seven "
             "pre-defined joint velocity limits. "
             "Note: The pre-defined velocity limits are specified by "
             "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument(
        '--setup', type=str, default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing', 'planar'])
    parser.add_argument(
        '--schunk_collision_model', type=str, default='box',
        help="The Schunk collision model to use for simulation. ",
        choices=['box', 'box_plus_fingertip_spheres'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        if args.schunk_collision_model == "box":
            schunk_model = SchunkCollisionModel.kBox
        elif args.schunk_collision_model == "box_plus_fingertip_spheres":
            schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/"
                + "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation(
                schunk_model=schunk_model)
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)
        elif args.setup == 'planar':
            station.SetupPlanarIiwaStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                "drake/examples/manipulation_station/models/"
                + "061_foam_brick.sdf",
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

        station.Finalize()

        # If using meshcat, don't render the cameras, since RgbdCamera
        # rendering only works with drake-visualizer. Without this check,
        # running this code in a docker container produces libGL errors.
        if args.meshcat:
            meshcat = ConnectMeshcatVisualizer(
                builder, output_port=station.GetOutputPort("geometry_query"),
                zmq_url=args.meshcat, open_browser=args.open_browser)
            if args.setup == 'planar':
                meshcat.set_planar_viewpoint()

        elif args.setup == 'planar':
            pyplot_visualizer = builder.AddSystem(PlanarSceneGraphVisualizer(
                station.get_scene_graph()))
            builder.Connect(station.GetOutputPort("pose_bundle"),
                            pyplot_visualizer.get_input_port(0))
        else:
            DrakeVisualizer.AddToBuilder(builder,
                                         station.GetOutputPort("query_object"))
            image_to_lcm_image_array = builder.AddSystem(
                ImageToLcmImageArrayT())
            image_to_lcm_image_array.set_name("converter")
            for name in station.get_camera_names():
                cam_port = (
                    image_to_lcm_image_array
                    .DeclareImageInputPort[PixelType.kRgba8U](
                        "camera_" + name))
                builder.Connect(
                    station.GetOutputPort("camera_" + name + "_rgb_image"),
                    cam_port)

            image_array_lcm_publisher = builder.AddSystem(
                LcmPublisherSystem.Make(
                    channel="DRAKE_RGBD_CAMERA_IMAGES",
                    lcm_type=image_array_t,
                    lcm=None,
                    publish_period=0.1,
                    use_cpp_serializer=True))
            image_array_lcm_publisher.set_name("rgbd_publisher")
            builder.Connect(
                image_to_lcm_image_array.image_array_t_msg_output_port(),
                image_array_lcm_publisher.get_input_port(0))

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    time_step = 0.005
    params.set_timestep(time_step)
    # True velocity limits for the IIWA14 (in rad, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    if args.setup == 'planar':
        # Extract the 3 joints that are not welded in the planar version.
        iiwa14_velocity_limits = iiwa14_velocity_limits[1:6:2]
        # The below constant is in body frame.
        params.set_end_effector_velocity_gain([1, 0, 0, 0, 1, 1])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits,
                                      factor*iiwa14_velocity_limits))
    differential_ik = builder.AddSystem(DifferentialIK(
        robot, robot.GetFrameByName("iiwa_link_7"), params, time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(EndEffectorTeleop(args.setup == 'planar'))
    if args.test:
        teleop.window.withdraw()  # Don't display the window when testing.
    filter = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6))

    builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
    builder.Connect(filter.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window))
    builder.Connect(wsg_buttons.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    # When in regression test mode, log our joint velocities to later check
    # that they were sufficiently quiet.
    num_iiwa_joints = station.num_iiwa_joints()
    if args.test:
        iiwa_velocities = builder.AddSystem(SignalLogger(num_iiwa_joints))
        builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"),
                        iiwa_velocities.get_input_port(0))
    else:
        iiwa_velocities = None

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(num_iiwa_joints))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    q0 = station.GetOutputPort("iiwa_position_measured").Eval(
        station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter.set_initial_output_value(
        diagram.GetMutableSubsystemContext(
            filter, simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext(
            teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(diagram.GetMutableSubsystemContext(
        differential_ik, simulator.get_mutable_context()), q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.AdvanceTo(args.duration)

    # Ensure that our initialization logic was correct, by inspecting our
    # logged joint velocities.
    if args.test:
        for time, qdot in zip(iiwa_velocities.sample_times(),
                              iiwa_velocities.data().transpose()):
            # TODO(jwnimmer-tri) We should be able to do better than a 40
            # rad/sec limit, but that's the best we can enforce for now.
            if qdot.max() > 0.1:
                print(f"ERROR: large qdot {qdot} at time {time}")
                sys.exit(1)
Exemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate", type=float, default=1.0,
        help="Desired rate relative to real time.  See documentation for "
             "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument(
        "--duration", type=float, default=np.inf,
        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware", action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
             "in-process simulation.")
    parser.add_argument(
        "--test", action='store_true',
        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--time_step", type=float, default=0.005,
        help="Time constant for the differential IK solver and first order"
             "low pass filter applied to the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor", type=float, default=1.0,
        help="This value, typically between 0 and 1, further limits the "
             "iiwa14 joint velocities. It multiplies each of the seven "
             "pre-defined joint velocity limits. "
             "Note: The pre-defined velocity limits are specified by "
             "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument(
        '--setup', type=str, default='manipulation_class',
        help="The manipulation station setup to simulate. ",
        choices=['manipulation_class', 'clutter_clearing'])
    parser.add_argument(
        '--schunk_collision_model', type=str, default='box',
        help="The Schunk collision model to use for simulation. ",
        choices=['box', 'box_plus_fingertip_spheres'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    if args.test:
        # Don't grab mouse focus during testing.
        # See: https://stackoverflow.com/a/52528832/7829525
        os.environ["SDL_VIDEODRIVER"] = "dummy"

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        if args.schunk_collision_model == "box":
            schunk_model = SchunkCollisionModel.kBox
        elif args.schunk_collision_model == "box_plus_fingertip_spheres":
            schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres

    # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation(
                schunk_model=schunk_model)
            station.AddManipulandFromFile(
                ("drake/examples/manipulation_station/models/"
                 "061_foam_brick.sdf"),
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation(
                schunk_model=schunk_model)
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)

        station.Finalize()
        DrakeVisualizer.AddToBuilder(builder,
                                     station.GetOutputPort("query_object"))
        if args.meshcat:
            meshcat = ConnectMeshcatVisualizer(
                builder, output_port=station.GetOutputPort("geometry_query"),
                zmq_url=args.meshcat, open_browser=args.open_browser)
            if args.setup == 'planar':
                meshcat.set_planar_viewpoint()

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    params.set_timestep(args.time_step)
    # True velocity limits for the IIWA14 (in rad/s, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits,
                                      factor*iiwa14_velocity_limits))

    differential_ik = builder.AddSystem(DifferentialIK(
        robot, robot.GetFrameByName("iiwa_link_7"), params, args.time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(DualShock4Teleop(initialize_joystick()))
    filter_ = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.time_step, size=6))

    builder.Connect(teleop.get_output_port(0), filter_.get_input_port(0))
    builder.Connect(filter_.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    builder.Connect(teleop.GetOutputPort("position"), station.GetInputPort(
        "wsg_position"))
    builder.Connect(teleop.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(7))

    # If the diagram is only the hardware interface, then we must advance it a
    # little bit so that first LCM messages get processed. A simulated plant is
    # already publishing correct positions even without advancing, and indeed
    # we must not advance a simulated plant until the sliders and filters have
    # been initialized to match the plant.
    if args.hardware:
        simulator.AdvanceTo(1e-6)

    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter_.set_initial_output_value(
        diagram.GetMutableSubsystemContext(
            filter_, simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext(
            teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(diagram.GetMutableSubsystemContext(
        differential_ik, simulator.get_mutable_context()), q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)

    print_instructions()
    simulator.AdvanceTo(args.duration)
Exemplo n.º 7
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--target_realtime_rate",
        type=float,
        default=1.0,
        help="Desired rate relative to real time.  See documentation for "
        "Simulator::set_target_realtime_rate() for details.")
    parser.add_argument("--duration",
                        type=float,
                        default=np.inf,
                        help="Desired duration of the simulation in seconds.")
    parser.add_argument(
        "--hardware",
        action='store_true',
        help="Use the ManipulationStationHardwareInterface instead of an "
        "in-process simulation.")
    parser.add_argument("--test",
                        action='store_true',
                        help="Disable opening the gui window for testing.")
    parser.add_argument(
        "--filter_time_const",
        type=float,
        default=0.005,
        help="Time constant for the first order low pass filter applied to"
        "the teleop commands")
    parser.add_argument(
        "--velocity_limit_factor",
        type=float,
        default=1.0,
        help="This value, typically between 0 and 1, further limits the "
        "iiwa14 joint velocities. It multiplies each of the seven "
        "pre-defined joint velocity limits. "
        "Note: The pre-defined velocity limits are specified by "
        "iiwa14_velocity_limits, found in this python file.")
    parser.add_argument('--setup',
                        type=str,
                        default='manipulation_class',
                        help="The manipulation station setup to simulate. ",
                        choices=['manipulation_class', 'clutter_clearing'])
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    if args.test:
        # Don't grab mouse focus during testing.
        grab_focus = False
        # See: https://stackoverflow.com/a/52528832/7829525
        os.environ["SDL_VIDEODRIVER"] = "dummy"
    else:
        grab_focus = True

    builder = DiagramBuilder()

    if args.hardware:
        station = builder.AddSystem(ManipulationStationHardwareInterface())
        station.Connect(wait_for_cameras=False)
    else:
        station = builder.AddSystem(ManipulationStation())

        # Initializes the chosen station type.
        if args.setup == 'manipulation_class':
            station.SetupManipulationClassStation()
            station.AddManipulandFromFile(
                ("drake/examples/manipulation_station/models/"
                 "061_foam_brick.sdf"),
                RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
        elif args.setup == 'clutter_clearing':
            station.SetupClutterClearingStation()
            ycb_objects = CreateClutterClearingYcbObjectList()
            for model_file, X_WObject in ycb_objects:
                station.AddManipulandFromFile(model_file, X_WObject)

        station.Finalize()
        ConnectDrakeVisualizer(builder, station.get_scene_graph(),
                               station.GetOutputPort("pose_bundle"))
        if args.meshcat:
            meshcat = builder.AddSystem(
                MeshcatVisualizer(station.get_scene_graph(),
                                  zmq_url=args.meshcat))
            builder.Connect(station.GetOutputPort("pose_bundle"),
                            meshcat.get_input_port(0))

    robot = station.get_controller_plant()
    params = DifferentialInverseKinematicsParameters(robot.num_positions(),
                                                     robot.num_velocities())

    time_step = 0.005
    params.set_timestep(time_step)
    # True velocity limits for the IIWA14 (in rad, rounded down to the first
    # decimal)
    iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
    # Stay within a small fraction of those limits for this teleop demo.
    factor = args.velocity_limit_factor
    params.set_joint_velocity_limits(
        (-factor * iiwa14_velocity_limits, factor * iiwa14_velocity_limits))

    differential_ik = builder.AddSystem(
        DifferentialIK(robot, robot.GetFrameByName("iiwa_link_7"), params,
                       time_step))

    builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
                    station.GetInputPort("iiwa_position"))

    teleop = builder.AddSystem(MouseKeyboardTeleop(grab_focus=grab_focus))
    filter_ = builder.AddSystem(
        FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6))

    builder.Connect(teleop.get_output_port(0), filter_.get_input_port(0))
    builder.Connect(filter_.get_output_port(0),
                    differential_ik.GetInputPort("rpy_xyz_desired"))

    builder.Connect(teleop.GetOutputPort("position"),
                    station.GetInputPort("wsg_position"))
    builder.Connect(teleop.GetOutputPort("force_limit"),
                    station.GetInputPort("wsg_force_limit"))

    diagram = builder.Build()
    simulator = Simulator(diagram)

    # This is important to avoid duplicate publishes to the hardware interface:
    simulator.set_publish_every_time_step(False)

    station_context = diagram.GetMutableSubsystemContext(
        station, simulator.get_mutable_context())

    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros(7))

    simulator.AdvanceTo(1e-6)
    q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context)
    differential_ik.parameters.set_nominal_joint_position(q0)

    teleop.SetPose(differential_ik.ForwardKinematics(q0))
    filter_.set_initial_output_value(
        diagram.GetMutableSubsystemContext(filter_,
                                           simulator.get_mutable_context()),
        teleop.get_output_port(0).Eval(
            diagram.GetMutableSubsystemContext(
                teleop, simulator.get_mutable_context())))
    differential_ik.SetPositions(
        diagram.GetMutableSubsystemContext(differential_ik,
                                           simulator.get_mutable_context()),
        q0)

    simulator.set_target_realtime_rate(args.target_realtime_rate)

    print_instructions()
    simulator.AdvanceTo(args.duration)
Exemplo n.º 8
0
if args.hardware:
    # TODO(russt): Replace this hard-coded camera serial number with a config
    # file.
    camera_ids = ["805212060544"]
    station = builder.AddSystem(
        ManipulationStationHardwareInterface(camera_ids))
    station.Connect(wait_for_cameras=False)
else:
    station = builder.AddSystem(ManipulationStation())

    # Initializes the chosen station type.
    if args.setup == 'manipulation_class':
        station.SetupManipulationClassStation()
        station.AddManipulandFromFile(
            "drake/examples/manipulation_station/models/061_foam_brick.sdf",
            RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))
    elif args.setup == 'clutter_clearing':
        station.SetupClutterClearingStation()
        ycb_objects = CreateClutterClearingYcbObjectList()
        for model_file, X_WObject in ycb_objects:
            station.AddManipulandFromFile(model_file, X_WObject)
    elif args.setup == 'planar':
        station.SetupPlanarIiwaStation()
        station.AddManipulandFromFile(
            "drake/examples/manipulation_station/models/061_foam_brick.sdf",
            RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0]))

    station.Finalize()

    ConnectDrakeVisualizer(builder, station.get_scene_graph(),
                           station.GetOutputPort("pose_bundle"))
Exemplo n.º 9
0
def InverseKinPointwise(
        p_WQ_start,
        p_WQ_end,
        duration,
        num_knot_points,
        q_initial_guess,
        InterpolatePosition=None,
        InterpolateOrientation=None,
        position_tolerance=0.005,
        theta_bound=0.005 * np.pi,  # 0.9 degrees
        is_printing=True):
    """
    Calculates a joint space trajectory for iiwa by repeatedly calling IK. The first IK is initialized (seeded)
    with q_initial_guess. Subsequent IKs are seeded with the solution from the previous IK.

    Positions for point Q (p_EQ) and orientations for the end effector, generated respectively by
    InterpolatePosition and InterpolateOrientation, are added to the IKs as constraints.

    @param p_WQ_start: The first argument of function InterpolatePosition (defined below).
    @param p_WQ_end: The second argument of function InterpolatePosition (defined below).
    @param duration: The duration of the trajectory returned by this function in seconds.
    @param num_knot_points: number of knot points in the trajectory.
    @param q_initial_guess: initial guess for the first IK.
    @param InterpolatePosition: A function with signature (start, end, num_knot_points, i). It returns
       p_WQ, a (3,) numpy array which describes the desired position of Q at knot point i in world frame.
    @param InterpolateOrientation: A function with signature
    @param position_tolerance: tolerance for IK position constraints in meters.
    @param theta_bound: tolerance for IK orientation constraints in radians.
    @param is_printing: whether the solution results of IKs are printed.
    @return: qtraj: a 7-dimensional cubic polynomial that describes a trajectory for the iiwa arm.
    @return: q_knots: a (n, num_knot_points) numpy array (where n = plant.num_positions()) that stores solutions
        returned by all IKs. It can be used to initialize IKs for the next trajectory.
    """
    q_knots = np.zeros((num_knot_points + 1, plant.num_positions()))
    q_knots[0] = q_initial_guess

    for i in range(num_knot_points):
        ik = inverse_kinematics.InverseKinematics(plant)
        q_variables = ik.q()

        # Orientation constraint
        R_WL7_ref = InterpolateOrientation(i, num_knot_points)
        ik.AddOrientationConstraint(frameAbar=world_frame,
                                    R_AbarA=R_WL7_ref,
                                    frameBbar=l7_frame,
                                    R_BbarB=RotationMatrix.Identity(),
                                    theta_bound=theta_bound)

        # Position constraint
        p_WQ = InterpolatePosition(p_WQ_start, p_WQ_end, num_knot_points, i)
        ik.AddPositionConstraint(frameB=l7_frame,
                                 p_BQ=p_L7Q,
                                 frameA=world_frame,
                                 p_AQ_lower=p_WQ - position_tolerance,
                                 p_AQ_upper=p_WQ + position_tolerance)

        prog = ik.prog()
        # use the robot posture at the previous knot point as
        # an initial guess.
        prog.SetInitialGuess(q_variables, q_knots[i])
        result = prog.Solve()
        if is_printing:
            print i, ": ", result
        q_knots[i + 1] = prog.GetSolution(q_variables)

    t_knots = np.linspace(0, duration, num_knot_points + 1)
    q_knots_kuka = GetKukaQKnots(q_knots)
    qtraj = PiecewisePolynomial.Cubic(t_knots, q_knots_kuka.T, np.zeros(7),
                                      np.zeros(7))

    return qtraj, q_knots
Exemplo n.º 10
0
def InverseKinPointwise(InterpolatePosition,
                        InterpolateOrientation,
                        p_L7Q,
                        duration,
                        num_knot_points,
                        q_initial_guess,
                        position_tolerance=0.005,
                        theta_bound=0.005 * np.pi):
    """
    Calculates a joint space trajectory for iiwa by repeatedly calling IK.
    The returned trajectory has (num_knot_points) knot points. To improve 
    the continuity of the trajectory, the IK from which q_knots[i] is
    solved is initialized with q_knots[i-1].

    Positions for point Q (p_EQ) and orientations for the end effector, generated
        respectively by InterpolatePosition and InterpolateOrientation,
        are added to the IKs as constraints.

    :param InterpolatePosition: A function with signature (tau) with
            0 <= tau <= 1.
        It returns p_WQ, a (3,) numpy array which describes the desired
        position of Q. For example, to get p_WQ for knot point i, use
            tau = i / (num_knot_points - 1).
    :param InterpolateOrientation: A function with the same signature as
                InterpolatePosition.
        It returns R_WL7, a RotationMatrix which describes the desired
        orientation of frame L7.
    :param num_knot_points: number of knot points in the trajectory.
    :param q_initial_guess: initial guess for the first IK.

    :param position_tolerance: tolerance for IK position constraints in meters.
    :param theta_bound: tolerance for IK orientation constraints in radians.
    :param is_printing: whether the solution results of IKs are printed.
    :return: qtraj: a 7-dimensional cubic polynomial that describes a
        trajectory for the iiwa arm.
    :return: q_knots: a (n, num_knot_points) numpy array (where n =
        plant.num_positions()) that stores solutions returned by all IKs. It
        can be used to initialize IKs for the next trajectory.
    """
    q_knots = np.zeros((num_knot_points, plant.num_positions()))

    ################### Your code here ###################
    for i in range(num_knot_points):
        ik = inverse_kinematics.InverseKinematics(plant)
        q_variables = ik.q()

        # Orientation constraint
        R_WL7_ref = InterpolateOrientation(i / (num_knot_points - 1))
        ik.AddOrientationConstraint(
            frameAbar=world_frame, R_AbarA=R_WL7_ref,
            frameBbar=l7_frame, R_BbarB=RotationMatrix.Identity(),
            theta_bound=theta_bound)

        # Position constraint
        p_WQ = InterpolatePosition(i / (num_knot_points - 1))
        ik.AddPositionConstraint(
            frameB=l7_frame, p_BQ=p_L7Q,
            frameA=world_frame,
            p_AQ_lower=p_WQ - position_tolerance,
            p_AQ_upper=p_WQ + position_tolerance)

        prog = ik.prog()
        # use the robot configuration at the previous knot point as
        # an initial guess.
        if i > 0:
            prog.SetInitialGuess(q_variables, q_knots[i-1])
        else:
            prog.SetInitialGuess(q_variables, q_initial_guess)
        result = mp.Solve(prog)

        # throw if no solution found.
        if result.get_solution_result() != SolutionResult.kSolutionFound:
            print(i, result.get_solution_result())
            raise RuntimeError

        q_knots[i] = result.GetSolution(q_variables)

    t_knots = np.linspace(0, duration, num_knot_points)
    qtraj = PiecewisePolynomial.Cubic(
        t_knots, q_knots.T, np.zeros(7), np.zeros(7))

    return qtraj, q_knots
    ########################################################
    raise NotImplementedError