Exemplo n.º 1
0
def test_est_params():
    rand_state = np.random.RandomState()
    rand_state.seed(42)

    # Generate a target series
    AR = (np.array([1, 0.3, 0.5]), np.array([3, 1, 1]))
    MA = (np.array([1, .1]), np.array([2, 1, 1]))
    arma = ARMA(A=AR, B=MA, C=None, rand_state=rand_state)
    series = arma.simulate(sampleT=1000)

    # Estimate parameters by simulated series
    AR_est = (np.array([1, .01, .01]), np.array([3, 1, 1]))
    MA_est = (np.array([1, .01]), np.array([2, 1, 1]))
    arma_est = ARMA(A=AR_est, B=MA_est, C=None)
    arma_est.fix_constants()
    arma_est.est_params(y=series)

    nptest.assert_almost_equal(arma_est.A, arma.A, decimal=1)
    nptest.assert_almost_equal(arma_est.B, arma.B, decimal=1)
Exemplo n.º 2
0
def test_est_params():
    rand_state = np.random.RandomState()
    rand_state.seed(42)

    # Generate a target series
    AR = (np.array([1, 0.3, 0.5]), np.array([3, 1, 1]))
    MA = (np.array([1, .1]), np.array([2, 1, 1]))
    arma = ARMA(A=AR, B=MA, C=None, rand_state=rand_state)
    series = arma.simulate(sampleT=1000)

    # Estimate parameters by simulated series
    AR_est = (np.array([1, .01, .01]), np.array([3, 1, 1]))
    MA_est = (np.array([1, .01]), np.array([2, 1, 1]))
    arma_est = ARMA(A=AR_est, B=MA_est, C=None)
    arma_est.fix_constants()
    arma_est.est_params(y=series)

    nptest.assert_almost_equal(arma_est.A, arma.A, decimal=1)
    nptest.assert_almost_equal(arma_est.B, arma.B, decimal=1)
Exemplo n.º 3
0
def test_simulate_arma():
    AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]),
          np.array([3, 2, 2]))
    MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2]))
    arma = ARMA(A=AR, B=MA, C=None)
    # noise generated with R for comparison
    # ( setRNG(seed=0); noise <- makeTSnoise(10, 2, 2) )
    w0_series0 = np.array([1.2629543, -0.3262334])
    w0_series1 = np.array([-1.1476570, -0.2894616])
    w_series0 = np.array(
        [1.329799263, 1.272429321, 0.414641434, -1.539950042, -0.928567035,
         -0.294720447, -0.005767173, 2.404653389, 0.763593461, -0.799009249])
    w_series1 = np.array(
        [-0.2992151, -0.4115108, 0.2522234, -0.8919211, 0.4356833, -1.2375384,
         -0.2242679, 0.3773956, 0.1333364, 0.8041895])
    noise = (np.vstack([w0_series0, w0_series1]).T,
             np.vstack([w_series0, w_series1]).T)
    # R simulation results ( arma <- ARMA(A=AR, B=MA, C=NULL);
    # R_result <- simulate(arma, noise=noise, sampleT=10) )
    series0 = np.array(
        [1.58239012, 0.85063747, -0.11981462, -1.69017627, -0.19912156,
         0.02830831, 0.16284912, 2.42364792, -0.15007052, -1.27531927])
    series1 = np.array(
        [-0.5172168, -0.4261651, 0.2958942, -0.8559883, 0.7033546, -1.0857290,
         -0.2788928, 0.7393030, -0.2999778, 0.6363970])
    R_result = np.vstack([series0, series1]).T

    result = arma.simulate(sampleT=10, noise=noise)
    nptest.assert_almost_equal(result, R_result)

    # R simulations results with trend ( TREND <- c(1,2);
    # arma_trend <- ARMA(A=AR, B=MA, C=NULL, TREND=TREND);
    # R_result_trend <- simulate(arma_trend, noise=noise, sampleT=sampleT) )
    TREND = np.array([1., 2.])
    arma = ARMA(A=AR, B=MA, C=None, TREND=TREND)
    series0 = np.array(
        [2.5823901, 0.9506375, 0.2701854, -1.1311763, 0.1139784, 0.4486183,
         0.6048481, 2.8091458, 0.2663152, -0.8590244])
    series1 = np.array(
        [1.48278321, 0.37383493, 1.17589420, 0.37601165, 1.67255459,
         -0.05844899, 0.80133515, 1.76057423, 0.74401876, 1.68619050])
    R_result = np.vstack([series0, series1]).T
    result = arma.simulate(sampleT=10, noise=noise)
    nptest.assert_almost_equal(result, R_result)

    # R simulations results with trend and external series
    # arma_trend_ext <- ARMA(A=AR, B=MA, C=X, TREND=TREND)
    # input0 <- array(c(0.1, 0.2, 0.15, 0.05), dim=c(2,2))
    # input <- array(c(0.1*c(1:10), 0.05*c(1:10)), dim=c(10,2))
    # R_result_trend_ext <- simulate(arma_trend_ext, noise=noise,
    # sampleT=sampleT, input0=input0, input=input)
    X = (np.array([1, .3, 0, .05, 0, 0.1, 1, .3]), np.array([2, 2, 2]))
    arma = ARMA(A=AR, B=MA, C=X, TREND=TREND)
    input0 = np.array([0.1, 0.2, 0.15, 0.05]).reshape((2, 2), order='F')
    input = np.hstack([0.1*np.arange(1, 11), 0.05*np.arange(1, 11)])
    input = input.reshape((10, 2), order='F')
    series0 = np.array(
        [2.7273901, 1.0931375, 0.5122354, -0.8113013, 0.4892429, 0.9042891,
         1.1312726, 3.4036172, 0.9345114, -0.1201090])
    series1 = np.array(
        [1.5827832, 0.4148349, 1.2723942, 0.5128017, 1.8170296, 0.1212361,
         1.0094895, 1.9917395, 1.0044531, 1.9735374])
    R_result = np.vstack([series0, series1]).T
    result = arma.simulate(sampleT=10, noise=noise, u0=input0, u=input)
    nptest.assert_almost_equal(result, R_result)
Exemplo n.º 4
0
def test_simulate_arma():
    AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5,
                    .3]), np.array([3, 2, 2]))
    MA = (np.array([1, .2, 0, .1, 0, 0, 1, .3]), np.array([2, 2, 2]))
    arma = ARMA(A=AR, B=MA, C=None)
    # noise generated with R for comparison
    # ( setRNG(seed=0); noise <- makeTSnoise(10, 2, 2) )
    w0_series0 = np.array([1.2629543, -0.3262334])
    w0_series1 = np.array([-1.1476570, -0.2894616])
    w_series0 = np.array([
        1.329799263, 1.272429321, 0.414641434, -1.539950042, -0.928567035,
        -0.294720447, -0.005767173, 2.404653389, 0.763593461, -0.799009249
    ])
    w_series1 = np.array([
        -0.2992151, -0.4115108, 0.2522234, -0.8919211, 0.4356833, -1.2375384,
        -0.2242679, 0.3773956, 0.1333364, 0.8041895
    ])
    noise = (np.vstack([w0_series0,
                        w0_series1]).T, np.vstack([w_series0, w_series1]).T)
    # R simulation results ( arma <- ARMA(A=AR, B=MA, C=NULL);
    # R_result <- simulate(arma, noise=noise, sampleT=10) )
    series0 = np.array([
        1.58239012, 0.85063747, -0.11981462, -1.69017627, -0.19912156,
        0.02830831, 0.16284912, 2.42364792, -0.15007052, -1.27531927
    ])
    series1 = np.array([
        -0.5172168, -0.4261651, 0.2958942, -0.8559883, 0.7033546, -1.0857290,
        -0.2788928, 0.7393030, -0.2999778, 0.6363970
    ])
    R_result = np.vstack([series0, series1]).T

    result = arma.simulate(sampleT=10, noise=noise)
    nptest.assert_almost_equal(result, R_result)

    # R simulations results with trend ( TREND <- c(1,2);
    # arma_trend <- ARMA(A=AR, B=MA, C=NULL, TREND=TREND);
    # R_result_trend <- simulate(arma_trend, noise=noise, sampleT=sampleT) )
    TREND = np.array([1., 2.])
    arma = ARMA(A=AR, B=MA, C=None, TREND=TREND)
    series0 = np.array([
        2.5823901, 0.9506375, 0.2701854, -1.1311763, 0.1139784, 0.4486183,
        0.6048481, 2.8091458, 0.2663152, -0.8590244
    ])
    series1 = np.array([
        1.48278321, 0.37383493, 1.17589420, 0.37601165, 1.67255459,
        -0.05844899, 0.80133515, 1.76057423, 0.74401876, 1.68619050
    ])
    R_result = np.vstack([series0, series1]).T
    result = arma.simulate(sampleT=10, noise=noise)
    nptest.assert_almost_equal(result, R_result)

    # R simulations results with trend and external series
    # arma_trend_ext <- ARMA(A=AR, B=MA, C=X, TREND=TREND)
    # input0 <- array(c(0.1, 0.2, 0.15, 0.05), dim=c(2,2))
    # input <- array(c(0.1*c(1:10), 0.05*c(1:10)), dim=c(10,2))
    # R_result_trend_ext <- simulate(arma_trend_ext, noise=noise,
    # sampleT=sampleT, input0=input0, input=input)
    X = (np.array([1, .3, 0, .05, 0, 0.1, 1, .3]), np.array([2, 2, 2]))
    arma = ARMA(A=AR, B=MA, C=X, TREND=TREND)
    input0 = np.array([0.1, 0.2, 0.15, 0.05]).reshape((2, 2), order='F')
    input = np.hstack([0.1 * np.arange(1, 11), 0.05 * np.arange(1, 11)])
    input = input.reshape((10, 2), order='F')
    series0 = np.array([
        2.7273901, 1.0931375, 0.5122354, -0.8113013, 0.4892429, 0.9042891,
        1.1312726, 3.4036172, 0.9345114, -0.1201090
    ])
    series1 = np.array([
        1.5827832, 0.4148349, 1.2723942, 0.5128017, 1.8170296, 0.1212361,
        1.0094895, 1.9917395, 1.0044531, 1.9735374
    ])
    R_result = np.vstack([series0, series1]).T
    result = arma.simulate(sampleT=10, noise=noise, u0=input0, u=input)
    nptest.assert_almost_equal(result, R_result)