Exemplo n.º 1
0
def dvs_img(cloud, shape, K, D):
    cmb = pydvs.dvs_img(cloud, shape, K=K, D=D)

    cmb[:, :, 0] *= global_scale_pp
    cmb[:, :, 1] *= 255.0 / slice_width
    cmb[:, :, 2] *= global_scale_pn

    return cmb
Exemplo n.º 2
0
def dvs_img(cloud, shape, K, D, slice_width, mode=0):
    cmb = pydvs.dvs_img(cloud, shape, K=K, D=D)

    ncnt = cmb[:, :, 0]
    time = cmb[:, :, 1]
    pcnt = cmb[:, :, 2]
    cnt = pcnt + ncnt

    # Scale up to be able to save as uint8
    # For visualization only. May cause overflow if slice_width is large
    cmb[:, :, 0] *= 50
    cmb[:, :, 1] *= 255.0 / slice_width
    cmb[:, :, 2] *= 50

    if (mode == 1):
        cmb = np.dstack((time, pcnt, ncnt))
    return cmb
Exemplo n.º 3
0
    def __init__(self, shape, cloud):
        random.seed()
        self.shape = shape
        self.width = 0
        self.dgrad = np.zeros((self.shape[0], self.shape[1], 3))
        if (cloud.shape[0] > 0):
            self.width = cloud[-1][0] - cloud[0][0]

        self.dvs_img = pydvs.dvs_img(cloud,
                                     self.shape,
                                     model=[0, 0, 0, 0],
                                     scale=1,
                                     K=None,
                                     D=None)
        #self.dvs_img[:,:,1] = cv2.medianBlur(self.dvs_img[:,:,1], 5)
        self.dvs_img[:, :, 1] = cv2.GaussianBlur(self.dvs_img[:, :, 1], (7, 7),
                                                 0)

        dgrad = np.zeros((self.dvs_img.shape[0], self.dvs_img.shape[1], 2),
                         dtype=np.float32)
        self.x_err2, self.y_err2, self.yaw_err, self.z_err2, self.e_count, self.nz_avg = \
            pydvs.dvs_flow_err(self.dvs_img, dgrad)

        dgrad = np.zeros((self.dvs_img.shape[0], self.dvs_img.shape[1], 2),
                         dtype=np.float32)
        self.x_err, self.y_err, self.yaw_err, self.z_err, self.e_count, self.nz_avg = \
            pydvs.dvs_err(self.dvs_img, dgrad)

        self.x_err *= 10
        self.y_err *= 10
        self.z_err /= 5

        self.x_err2 /= 5
        self.y_err2 /= 5
        self.z_err2 /= 500
        self.e_count /= 6250
        self.e_count -= 1
        self.nz_avg /= 4
        self.nz_avg -= 1

        self.p_count = np.sum(self.dvs_img[:, :, 0]) / 20000
        self.n_count = np.sum(self.dvs_img[:, :, 2]) / 30000
        self.g_count = self.p_count + self.n_count / 50000
        self.p_count -= 1
        self.n_count -= 1
        self.g_count -= 1

        #function image2vec
        #Important function! first one really related to HBV vectors

        dgrad[:, :, 0] = np.sqrt((dgrad[:, :, 0] * dgrad[:, :, 0]) +
                                 (dgrad[:, :, 1] * dgrad[:, :, 1])) * np.sign(
                                     dgrad[:, :, 0] * dgrad[:, :, 1])
        dgrad[:, :, 1] = dgrad[:, :, 0]
        dgrad[dgrad > 1.8] = 1.8

        self.dgrad[:, :, 0] = np.copy(dgrad[:, :, 0])
        self.dgrad[:, :, 1] = np.copy(dgrad[:, :, 0])
        self.dgrad[:, :, 2] = np.copy(dgrad[:, :, 0])
        self.vec, self.feature_list, self.rescaled_feat = self.image2vec(dgrad)
        return

        #print (self.x_err, self.y_err, self.z_err, self.yaw_err, self.e_count, self.nz_avg)

        # Visualization
        c_img = self.dvs_img[:, :, 0] + self.dvs_img[:, :, 2]
        c_img = np.dstack((c_img, c_img, c_img)) * 0.5 / (self.nz_avg + 1e-3)

        self.dvs_img[:, :, 1] *= 1.0 / self.width
        t_img = np.dstack(
            (self.dvs_img[:, :, 1], self.dvs_img[:, :, 1], self.dvs_img[:, :,
                                                                        1]))
        G_img = colorizeImage(dgrad[:, :, 0], dgrad[:, :, 1])

        self.vis = np.hstack((t_img, G_img))

        cv2.namedWindow('GUI', cv2.WINDOW_NORMAL)
        cv2.imshow('GUI', np.hstack((t_img, G_img)))
        cv2.waitKey(0)
Exemplo n.º 4
0
    def __init__(self, shape, cloud):
        random.seed()
        self.shape = shape
        self.width = 0
        if (cloud.shape[0] > 0):
            self.width = cloud[-1][0] - cloud[0][0]

        # Compute images according to the model
        self.dvs_img = pydvs.dvs_img(cloud, self.shape, model=[0, 0, 0, 0], 
                                     scale=1, K=None, D=None)
        #self.dvs_img[:,:,1] = cv2.medianBlur(self.dvs_img[:,:,1], 5)
        self.dvs_img[:,:,1] = cv2.GaussianBlur(self.dvs_img[:,:,1], (7,7), 0)

        #dvs_img = np.copy(dvs_img[:50,:50,:])
        
        # Compute errors on the images
        dgrad = np.zeros((self.dvs_img.shape[0], self.dvs_img.shape[1], 2), dtype=np.float32)
        self.x_err2, self.y_err2, self.yaw_err, self.z_err2, self.e_count, self.nz_avg = \
            pydvs.dvs_flow_err(self.dvs_img, dgrad)

        dgrad = np.zeros((self.dvs_img.shape[0], self.dvs_img.shape[1], 2), dtype=np.float32)
        self.x_err, self.y_err, self.yaw_err, self.z_err, self.e_count, self.nz_avg = \
            pydvs.dvs_err(self.dvs_img, dgrad)

        self.x_err *= 10
        self.y_err *= 10
        self.z_err /= 5

        self.x_err2 /= 5
        self.y_err2 /= 5
        self.z_err2 /= 500
        self.e_count /= 6250
        self.e_count -= 1
        self.nz_avg /= 4
        self.nz_avg -= 1
        
        self.p_count = np.sum(self.dvs_img[:,:,0]) / 20000
        self.n_count = np.sum(self.dvs_img[:,:,2]) / 30000
        self.g_count = self.p_count + self.n_count / 50000
        self.p_count -= 1
        self.n_count -= 1
        self.g_count -= 1

        self.vec = self.image2vec(dgrad)
        return

        #print (self.x_err, self.y_err, self.z_err, self.yaw_err, self.e_count, self.nz_avg)

        # Visualization
        c_img = self.dvs_img[:,:,0] + self.dvs_img[:,:,2]
        c_img = np.dstack((c_img, c_img, c_img)) * 0.5 / (self.nz_avg + 1e-3)

        self.dvs_img[:,:,1] *= 1.0 / self.width
        t_img = np.dstack((self.dvs_img[:,:,1], self.dvs_img[:,:,1], self.dvs_img[:,:,1]))
        G_img = colorizeImage(dgrad[:,:,0], dgrad[:,:,1])

        self.vis = np.hstack((t_img, G_img))

        cv2.namedWindow('GUI', cv2.WINDOW_NORMAL)
        cv2.imshow('GUI', np.hstack((t_img, G_img)))
        cv2.waitKey(0)