Exemplo n.º 1
0
def DrawRadar(city_name):
	schema = [('最高气温', 45), ('气压', 1500), ('湿度', 100), ('最低气温', 45), ('PM2.5', 200)]
	data = qr.get_data(city_name)
	values = [[int(data['Htemperature']), int(data['QY']), int(data['SD'].strip('%')), int(data['Ltemperature']), int(data['pm25'])]]
	radar = Radar()
	radar.config(schema)
	radar.add('%s天气信息' % city_name, values, is_splitline=True, is_axisline_show=True)
	radar.render('weatherRadar.html')
Exemplo n.º 2
0
def radar_demo():
    radar = Radar()
    # data1 = [[12, 0, 2, 18, 0, 1]]
    radar_data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]#降水量
    # schema = [
    #     ("执行成功", 20), ("执行失败", 5), ("执行异常", 5),
    #     ("回滚成功", 20), ("回滚失败", 5), ("执行中断", 5)
    # ]
    schema = [
        ("Jan", 5), ("Feb", 10), ("Mar", 10),
        ("Apr", 50), ("May", 50), ("Jun", 200),
        ("Jul", 200), ("Aug", 200), ("Sep", 50),
        ("Oct", 50), ("Nov", 10), ("Dec", 5)
    ]
    radar.add_schema(schema)
    radar.add("执行状态", radar_data1)
    radar.render("/aa.html")
Exemplo n.º 3
0
def drawRadar(arr, value, valuemax, name):
    radar = Radar(init_opts=opts.InitOpts(
        width="1280px", height="720px", bg_color="#CCCCCC"))
    v_max = [list(z) for z in zip(arr, valuemax)]
    radar.add_schema(
        schema=[opts.RadarIndicatorItem(name=k, max_=v) for k, v in v_max],
        splitarea_opt=opts.SplitAreaOpts(
            is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),
        textstyle_opts=opts.TextStyleOpts(color="#fff"),
    )
    radar.add(
        series_name=name,
        data=value,
        linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
    )
    radar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    radar.set_global_opts(title_opts=opts.TitleOpts(title=name),
                          legend_opts=opts.LegendOpts())
    radar.render("{0}.html".format(name))
Exemplo n.º 4
0
def DrawRadar(title, data, savepath):
    print('正在分析评分构成...')
    radar = Radar()
    radar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    radar.set_global_opts(
        title_opts=opts.TitleOpts(title="Radar-评分分布统计雷达图", pos_left='center'),
        legend_opts=opts.LegendOpts(orient="vertical",
                                    pos_top="middle",
                                    pos_left="2%"),
    )
    values = [[data[i][1] for i in range(len(data))]]  # 把整个列表当做一个要画的东西
    attrs = [data[i][0] for i in range(len(data))]  # 改名字
    attrs = list(map(int, attrs))
    attrs = [str(i) + '星' for i in attrs]
    num = len(attrs)  # 雷达图有几项
    schema = [{"name": attrs[i], "max": 230} for i in (range(num))]
    radar.add_schema(schema=schema)
    radar.add('豆瓣评分构成', values)
    radar.render(os.path.join(savepath, '%s.html' % title))
def plot_radar(series_radiant, series_dire):
    c_schema = [{
        "name": "控制",
        "max": 15,
        "min": 0
    }, {
        "name": "核心",
        "max": 15,
        "min": 0
    }, {
        "name": "辅助",
        "max": 15,
        "min": 0
    }, {
        "name": "逃生",
        "max": 15,
        "min": 0
    }, {
        "name": "爆发",
        "max": 15,
        "min": 0
    }, {
        "name": "先手",
        "max": 15,
        "min": 0
    }, {
        "name": "耐久",
        "max": 15,
        "min": 0
    }, {
        "name": "推进",
        "max": 15,
        "min": 0
    }]
    radar = Radar()
    radar.add_schema(schema=c_schema)
    radar.add("radiant", series_radiant, color="#f9713c")
    radar.add("dire", series_dire, color="#b3e4a1")
    radar.render("Rader.html")
Exemplo n.º 6
0
def draw_radar_for_observation_result():
    value = [[43, 58, 78, 65, 86, 63]]
    min_val = 0
    max_val = 100

    # 用于调整雷达各维度的范围大小
    c_schema = [{"name": "交往能力", "max": max_val, "min": min_val, },
                {"name": "感知能力", "max": max_val, "min": min_val, "color": "#ff0000"},
                {"name": "运动能力", "max": max_val, "min": min_val, "color": "#000000"},
                {"name": "注意力", "max": max_val, "min": min_val, "color": "#00ffff"},
                {"name": "语言能力", "max": max_val, "min": min_val, "color": "#ff00ff"},
                {"name": "自我照顾能力", "max": max_val, "min": min_val, "color": "#ff00ff"}
                ]

    # 画图
    radar = Radar()
    radar.add_schema(c_schema, textstyle_opts=opts.TextStyleOpts(color="#3344ff"))
    radar.add(None, value, color="#f9713c",
              symbol='circle', label_opts=opts.LabelOpts(is_show=True),
              areastyle_opts=opts.AreaStyleOpts(opacity=0.5, color="#f9713c"))
    radar.set_global_opts(title_opts=opts.TitleOpts(title="Radar-基本示例"))

    radar.render("observation_result.html")

week = date_to_week(data['入网时间'])
week1 = [week]
radar = Radar()
schema = [{
    "name": '星期天',
    "max": 1000
}, {
    "name": '星期一',
    "max": 1000
}, {
    "name": '星期二',
    "max": 1000
}, {
    "name": '星期三',
    "max": 1000
}, {
    "name": '星期四',
    "max": 1000
}, {
    "name": '星期五',
    "max": 1000
}, {
    "name": '星期六',
    "max": 1000
}]
radar.add(data=week1, series_name='入网时间')
radar.add_schema(schema)
radar.render('render.html')
Exemplo n.º 8
0
def score_analyse_radar(chengji, stu, subject):
    score = pd.read_csv(chengji)
    radar = Radar()
    radar.render()
    pass
      [3300, 13000, 25000, 30000, 48000, 24000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.add_schema(schema=[
    opts.RadarIndicatorItem(name='销售', max_=6500),
    opts.RadarIndicatorItem(name='管理', max_=16000),
    opts.RadarIndicatorItem(name='信息技术', max_=30000),
    opts.RadarIndicatorItem(name='客服', max_=38000),
    opts.RadarIndicatorItem(name='研发', max_=52000),
    opts.RadarIndicatorItem(name='市场', max_=25000),
])
radar.add('预算分配', v1)
radar.add('实际开销', v2)
radar.set_global_opts(title_opts=opts.TitleOpts(title='Radar Sample'))
radar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
radar.render('pyecharts-radar.html')

# 词云图
words = [
    ('Sam S Club', 10000),
    ('Macys', 6181),
    ('Amy Schumer', 4386),
    ('Jurassic World', 4055),
    ('Charter Communications', 2467),
]
wordcloud = WordCloud()
wordcloud.add('', words, word_size_range=[20, 100])
wordcloud.set_global_opts(title_opts=opts.TitleOpts(title='WordCloud Sample'))
wordcloud.render('pyecharts-wordcloud.html')

# 更多图表 https://pyecharts.org/#/zh-cn/basic_charts http://gallery.pyecharts.org/#/Boxplot/boxplot_light_velocity
Exemplo n.º 10
0
def  Cartography():

    #创建地图
    map = Map( init_opts=opts.InitOpts(width="1900px", height="900px", bg_color="#d0effa", page_title="全球新冠疫情_1"))
    map.add("确诊人数",[list(z) for z in zip(names_new, confirm)],is_map_symbol_show=False,
            maptype="world",label_opts=opts.LabelOpts(is_show=False),itemstyle_opts=opts.ItemStyleOpts(color="rgb(98,121,146)"))#地图区域颜色
    map.set_global_opts(title_opts = opts.TitleOpts(title='全球新冠疫情确诊人数'),legend_opts=opts.LegendOpts(is_show=False),
                     visualmap_opts=opts.VisualMapOpts(max_=2000000, is_piecewise=True,
                                      pieces=[
                                        {"max": 3000000,"min": 500001,"label":">500000","color":"#460303"},
                                        {"max": 500000, "min": 100001, "label": "100001-500000", "color": "#8A0808"},
                                        {"max": 100000, "min": 10001, "label": "10001-100000", "color": "#B40404"},
                                        {"max": 10000, "min": 1001, "label": "1001-10000", "color": "#DF0101"},
                                        {"max": 1000, "min": 101, "label": "101-1000", "color": "#F78181"},
                                        {"max": 100, "min": 1, "label": "1-100", "color": "#F5A9A9"},
                                        {"max": 0, "min": 0, "label": "0", "color": "#fababa"},
                                        ])  
                     )
    map.render('Global_new_crown_epidemic_map.html')

        #创建饼图
    pie = Pie(init_opts=opts.InitOpts(width='1900px', height='900px',page_title="全球新冠疫情_2",bg_color="#fee4e7"))
    # 添加数据
    pie.add("", [list(z) for z in zip(country_list, dead_list)],
            radius=['20%', '100%'],#设置内径外径
            center=['60%', '65%'],
            rosetype='area')#圆心角相同,通过半径展现数据大小#rosetype='radius'圆心角展现数据百分比,半径展现数据大小
    
    # 设置全局配置
    pie.set_global_opts(title_opts=opts.TitleOpts(title='全球新冠疫情',subtitle='死亡人数超过\n5000的国家\n  (除中国)',
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=15,color= '#f40909'),
                                               subtitle_textstyle_opts= opts.TextStyleOpts(font_size=15,color= '#8a0b0b'),
                                               pos_right= 'center',pos_left= '57%',pos_top= '60%',pos_bottom='center'),
                                legend_opts=opts.LegendOpts(is_show=False))
    # 设置系列配置和颜色
    pie.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='inside', font_size=13,
                                              formatter='{b}:{c}', font_style='italic',
                                              font_family='Microsoft YaHei'))
    pie.set_colors(color_matching)
    pie.render('Global_new_crown_epidemic_Rose.html')

    #创建雷达图
    radar = Radar(init_opts=opts.InitOpts(width='1900px',height='900px',page_title="全球新冠疫情_3",bg_color="#d1eff3"))
    #由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
    radar_data1 = [list(dead_list)]
    radar_data2 = [list(heal_list)]
    radar.add_schema(
            schema=[
                opts.RadarIndicatorItem(name='巴西', max_=8000),
                opts.RadarIndicatorItem(name='荷兰', max_=8000),
                opts.RadarIndicatorItem(name='伊朗', max_=20000),
                opts.RadarIndicatorItem(name='德国', max_=40000),
                opts.RadarIndicatorItem(name='比利时', max_=70000),
                opts.RadarIndicatorItem(name='英国', max_=80000),
                opts.RadarIndicatorItem(name='法国 ', max_=110000),
                opts.RadarIndicatorItem(name='西班牙', max_=150000),
                opts.RadarIndicatorItem(name='意大利', max_=170000),
                opts.RadarIndicatorItem(name='美国', max_=220000),
            ]
        )
    radar.add("死亡人数",radar_data1,color='blue',areastyle_opts = opts.AreaStyleOpts(opacity = 0.2,color='blue'))
    radar.add("治愈人数",radar_data2,color='red',areastyle_opts=opts.AreaStyleOpts(opacity=0.3,color='red'))
    radar.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
    radar.set_global_opts(title_opts=opts.TitleOpts(title="死亡人数与治愈人数对比")) 
    radar.render("Death_Versus_Heal.html")
Exemplo n.º 11
0
def plt(key):
    """连接hbase"""
    connection = happybase.Connection(host="localhost", port=9090)
    """打开传输"""
    connection.open()
    """连接表"""
    basicFeaturesTable = happybase.Table('basicFeaturesTable', connection)
    socialAttributesTable = happybase.Table('socialAttributesTable',
                                            connection)
    consumptionFeaturesTable = happybase.Table('consumptionFeaturesTable',
                                               connection)
    internetFeaturesTable = happybase.Table('internetFeaturesTable',
                                            connection)
    consumptionCharacteristicsTable = happybase.Table(
        'consumptionCharacteristicsTable', connection)
    internetBehaviorTable = happybase.Table('internetBehaviorTable',
                                            connection)
    """获取信息"""
    try:
        key_name = basicFeaturesTable.row(key, columns=["name"])
    except:
        """连接hbase"""
        connection = happybase.Connection(host="localhost", port=9090)
        """打开传输"""
        connection.open()
        """连接表"""
        basicFeaturesTable = happybase.Table('basicFeaturesTable', connection)
        socialAttributesTable = happybase.Table('socialAttributesTable',
                                                connection)
        consumptionFeaturesTable = happybase.Table('consumptionFeaturesTable',
                                                   connection)
        internetFeaturesTable = happybase.Table('internetFeaturesTable',
                                                connection)
        consumptionCharacteristicsTable = happybase.Table(
            'consumptionCharacteristicsTable', connection)
        internetBehaviorTable = happybase.Table('internetBehaviorTable',
                                                connection)

        key_name = basicFeaturesTable.row(key, columns=["name"])

    key_name = list(key_name.values())
    key_name = key_name[0].decode()

    try:
        sInfo = socialAttributesTable.row(key,
                                          columns=["incLevel", "eduLevel"])
        cInfo = consumptionFeaturesTable.row(key,
                                             columns=["CMLevel", "CTLevel"])
        iInfo = internetFeaturesTable.row(key, columns=["intLevel"])
        consumptionCharacteristicsInfo = consumptionCharacteristicsTable.row(
            key, columns=["commodity", "price", "date"])
        internetBehaviorInfo = internetBehaviorTable.row \
            (key, columns=
            ["date", "news", "communications", "entertainment", "domersticServices", "busApp", "toolUse"]
             )
    except:
        """连接hbase"""
        connection = happybase.Connection(host="localhost", port=9090)
        """打开传输"""
        connection.open()
        """连接表"""
        basicFeaturesTable = happybase.Table('basicFeaturesTable', connection)
        socialAttributesTable = happybase.Table('socialAttributesTable',
                                                connection)
        consumptionFeaturesTable = happybase.Table('consumptionFeaturesTable',
                                                   connection)
        internetFeaturesTable = happybase.Table('internetFeaturesTable',
                                                connection)
        consumptionCharacteristicsTable = happybase.Table(
            'consumptionCharacteristicsTable', connection)
        internetBehaviorTable = happybase.Table('internetBehaviorTable',
                                                connection)

        sInfo = socialAttributesTable.row(key,
                                          columns=["incLevel", "eduLevel"])
        cInfo = consumptionFeaturesTable.row(key,
                                             columns=["CMLevel", "CTLevel"])
        iInfo = internetFeaturesTable.row(key, columns=["intLevel"])
        consumptionCharacteristicsInfo = consumptionCharacteristicsTable.row(
            key, columns=["commodity", "price", "date"])
        internetBehaviorInfo = internetBehaviorTable.row \
            (key, columns=
            ["date", "news", "communications", "entertainment", "domersticServices", "busApp", "toolUse"]
             )
    """消费情况图"""
    consumptionCharacteristicsValues = list(
        consumptionCharacteristicsInfo.values())
    consumptionCharacteristicsValues = list(
        map(lambda x: x.decode(), consumptionCharacteristicsValues))

    consumptionCharacteristicsValues[
    int(len(consumptionCharacteristicsValues) / 3):-int(len(consumptionCharacteristicsValues) / 3)] \
        = list(map(int, consumptionCharacteristicsValues[int(len(consumptionCharacteristicsValues) / 3):
                                                         -int(len(consumptionCharacteristicsValues) / 3)]))
    consumptionCharacteristicsValues[-int(len(consumptionCharacteristicsValues) / 3):] \
        = list(map(int, consumptionCharacteristicsValues[-int(len(consumptionCharacteristicsValues) / 3):]))

    consumptionCharacteristicsData = []
    consumptionCharacteristicsData.append(
        consumptionCharacteristicsValues[:int(
            len(consumptionCharacteristicsValues) / 3)])
    consumptionCharacteristicsData.append(consumptionCharacteristicsValues[
        int(len(consumptionCharacteristicsValues) /
            3):-int(len(consumptionCharacteristicsValues) / 3)])
    consumptionCharacteristicsData.append(consumptionCharacteristicsValues[
        -int(len(consumptionCharacteristicsValues) / 3):])

    consumptionCharacteristicsData = pd.DataFrame(
        consumptionCharacteristicsData).T
    consumptionCharacteristicsData.columns = ["commodity", "date", "price"]
    consumptionCharacteristicsData.sort_values(by="date", inplace=True)
    consumptionCharacteristicsData_y = consumptionCharacteristicsData.loc[:,
                                                                          "date"].tolist(
                                                                          )
    consumptionCharacteristicsData_y = list(
        map(str, consumptionCharacteristicsData_y))
    consumptionCharacteristicsData_x = consumptionCharacteristicsData.loc[:,
                                                                          "price"].tolist(
                                                                          )
    consumptionCharacteristicsData_commodity = consumptionCharacteristicsData.loc[:,
                                                                                  "commodity"].tolist(
                                                                                  )

    quzhong_consumptionCharacteristicsData_y = list(
        set(consumptionCharacteristicsData_y))
    if len(quzhong_consumptionCharacteristicsData_y) != len(
            consumptionCharacteristicsData_y):
        for i in range(len(quzhong_consumptionCharacteristicsData_y)):
            count_consumptionCharacteristicsData_y = consumptionCharacteristicsData_y. \
                count(quzhong_consumptionCharacteristicsData_y[i])
            if count_consumptionCharacteristicsData_y != 1:
                index = consumptionCharacteristicsData_y.index(
                    quzhong_consumptionCharacteristicsData_y[i])
                consumptionCharacteristicsData_y = consumptionCharacteristicsData_y[:index + 1] + \
                                                   consumptionCharacteristicsData_y[
                                                   index + count_consumptionCharacteristicsData_y:]
                consumptionCharacteristicsData_x[index] = sum(
                    consumptionCharacteristicsData_x[
                        index:index + count_consumptionCharacteristicsData_y])
                consumptionCharacteristicsData_x = consumptionCharacteristicsData_x[:index + 1] + \
                                                   consumptionCharacteristicsData_x[
                                                   index + count_consumptionCharacteristicsData_y:]
                consumptionCharacteristicsData_commodity[index] = \
                    ",".join(
                        consumptionCharacteristicsData_commodity[index:index + count_consumptionCharacteristicsData_y])
                consumptionCharacteristicsData_commodity \
                    = consumptionCharacteristicsData_commodity[:index + 1] + \
                      consumptionCharacteristicsData_commodity[index + count_consumptionCharacteristicsData_y:]

    consumptionCharacteristicsData_xx = \
        [list(z) for z in zip(consumptionCharacteristicsData_x, consumptionCharacteristicsData_commodity)]

    scatter = Scatter(init_opts=opts.InitOpts(width="850px", height="380px"))
    scatter.add_xaxis(consumptionCharacteristicsData_y)
    scatter.add_yaxis("", consumptionCharacteristicsData_xx, color="red")
    scatter.set_global_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item",
            axis_pointer_type="cross",
            formatter=JsCode(
                "function (params) {return '消费日期:' + params.name + ' <br/>消费金额:' + params.value[1] + '元 <br/>消费产品:' + params.value[2];}"
            )),
        yaxis_opts=opts.AxisOpts(
            name="消费金额",
            type_="value",
            name_textstyle_opts=opts.TextStyleOpts(color="white"),  ###########
            axislabel_opts=opts.LabelOpts(formatter="{value} 元",
                                          border_color="white",
                                          color="white"),  ########
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
        xaxis_opts=opts.AxisOpts(
            name="消费日期",
            type_="category",
            name_textstyle_opts=opts.TextStyleOpts(color="white"),  ###########
            axislabel_opts=opts.LabelOpts(border_color="white",
                                          color="white"),  ##############
            axispointer_opts=opts.AxisPointerOpts(is_show=True,
                                                  type_="shadow"),
        ),
        legend_opts=opts.LegendOpts(is_show=False))
    scatter.set_series_opts(label_opts=opts.LabelOpts(is_show=False))

    line = Line(init_opts=opts.InitOpts(width="850px", height="380px"))
    line.add_xaxis(consumptionCharacteristicsData_y)
    line.add_yaxis(series_name="",
                   y_axis=consumptionCharacteristicsData_x,
                   color="red")

    scatter.overlap(line)
    scatter.render("./static/html/pictureConsumptionCharacteristics.html")
    """互联网行为图"""
    internetBehaviorInfoKeys = list(internetBehaviorInfo.keys())
    internetBehaviorInfoKeys = list(
        map(lambda x: x.decode(), internetBehaviorInfoKeys))
    internetBehaviorInfoKeys = list(
        map(lambda x: x[:x.index(':')], internetBehaviorInfoKeys))
    internetBehaviorInfoValues = list(internetBehaviorInfo.values())
    internetBehaviorInfoValues = list(
        map(lambda x: x.decode(), internetBehaviorInfoValues))
    internetBehaviorInfoValues = list(map(int, internetBehaviorInfoValues))

    internetBehaviorData = []
    splitNum = int(len(internetBehaviorInfoValues) / 7)
    internetBehaviorData.append(internetBehaviorInfoValues[:splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[splitNum:2 *
                                                           splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[2 * splitNum:3 *
                                                           splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[3 * splitNum:4 *
                                                           splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[4 * splitNum:5 *
                                                           splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[5 * splitNum:6 *
                                                           splitNum])
    internetBehaviorData.append(internetBehaviorInfoValues[6 * splitNum:7 *
                                                           splitNum])

    internetBehaviorData = pd.DataFrame(internetBehaviorData).T
    internetBehaviorData.columns = [
        internetBehaviorInfoKeys[0], internetBehaviorInfoKeys[splitNum],
        internetBehaviorInfoKeys[2 * splitNum],
        internetBehaviorInfoKeys[3 * splitNum],
        internetBehaviorInfoKeys[4 * splitNum],
        internetBehaviorInfoKeys[5 * splitNum],
        internetBehaviorInfoKeys[6 * splitNum]
    ]

    internetBehaviorData.sort_values(by="date", inplace=True)
    internetBehaviorData_y = internetBehaviorData.loc[:, "date"].tolist()
    internetBehaviorData_y = list(map(str, internetBehaviorData_y))

    bar = Bar(init_opts=opts.InitOpts(width="800px", height="380px"))
    bar.add_xaxis(internetBehaviorData_y)
    bar.add_yaxis(series_name="新闻资讯",
                  yaxis_data=internetBehaviorData.loc[:, "news"].tolist(),
                  stack="stack")
    bar.add_yaxis(
        series_name="通信交流",
        yaxis_data=internetBehaviorData.loc[:, "communications"].tolist(),
        stack="stack")
    bar.add_yaxis(
        series_name="娱乐休闲",
        yaxis_data=internetBehaviorData.loc[:, "entertainment"].tolist(),
        stack="stack")
    bar.add_yaxis(
        series_name="生活服务",
        yaxis_data=internetBehaviorData.loc[:, "domersticServices"].tolist(),
        stack="stack")
    bar.add_yaxis(series_name="商务应用",
                  yaxis_data=internetBehaviorData.loc[:, "busApp"].tolist(),
                  stack="stack")
    bar.add_yaxis(series_name="工具使用",
                  yaxis_data=internetBehaviorData.loc[:, "toolUse"].tolist(),
                  stack="stack")
    bar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    bar.set_global_opts(
        tooltip_opts=opts.TooltipOpts(is_show=True,
                                      trigger="axis",
                                      axis_pointer_type="cross"),
        xaxis_opts=opts.AxisOpts(
            name="日期",
            name_textstyle_opts=opts.TextStyleOpts(color="white"),  ###########
            type_="category",
            axislabel_opts=opts.LabelOpts(border_color="white",
                                          color="white"),  #############
            axispointer_opts=opts.AxisPointerOpts(is_show=True),
        ),
        yaxis_opts=opts.AxisOpts(
            name="时间",
            name_textstyle_opts=opts.TextStyleOpts(color="white"),
            type_="value",
            min_=0,
            max_=24,
            interval=4,
            axislabel_opts=opts.LabelOpts(formatter="{value} 小时",
                                          border_color="white",
                                          color="white"),  ###########
            axistick_opts=opts.AxisTickOpts(is_show=True),
        ),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),
        legend_opts=opts.LegendOpts(is_show=True,
                                    textstyle_opts=opts.TextStyleOpts(
                                        border_color="white", color="wihte"),
                                    orient='horizontal'))
    bar.render("./static/html/pictureInternetBehavior.html")
    """个人特征图"""
    sValue = list(sInfo.values())
    sValue = list(map(lambda x: x.decode(), sValue))
    cValue = list(cInfo.values())
    cValue = list(map(lambda x: x.decode(), cValue))
    iValue = list(iInfo.values())
    iValue = list(map(lambda x: x.decode(), iValue))
    value = sValue + cValue + iValue
    value = list(map(int, value))

    value = [value[1], value[2], value[3], value[0], value[4]]
    value = [value]

    rader = Radar(init_opts=opts.InitOpts(width="350px", height="350px"))
    rader.add_schema(schema=[
        opts.RadarIndicatorItem(name="收入指数", max_=5),
        opts.RadarIndicatorItem(name="消费金\n额指数", max_=5),
        opts.RadarIndicatorItem(name="消费次数指数", max_=5),
        opts.RadarIndicatorItem(name="学历指数", max_=5),
        opts.RadarIndicatorItem(name="网络依\n赖指数", max_=5),
    ],
                     shape='polygon')
    rader.add(series_name=key_name, data=value)
    rader.set_global_opts(legend_opts=opts.LegendOpts(is_show=False))
    rader.render("./static/html/pictureCompositiveInfo.html")
Exemplo n.º 12
0
def draw_radar(season_x, season_name, filechart, seasonareacolor, seasonlinecolor):
    # 建立schema的json文件  season_x.columns = [season_name]
    season_index = season_x.index.to_list()
    # print(season_index)
    # n_max, n_min = max(season_x), min(season_x)
    n_max = max(enumerate(season_x[0]), key=operator.itemgetter(1))[1]
    n_min = min(enumerate(season_x[0]), key=operator.itemgetter(1))[1]
    # 用于获取对象的哪些维的数据
    # print(n_max, n_min)
    df_season = pd.DataFrame({'name': season_index})
    df_season['max'], df_season['min'] = n_max, n_min
    # season_js = df_season.to_json(orient='records')
    # print(season_js)
    # 设置16方位, 逆时针排序
    season_js = [
        {"name": "N", "max": n_max, "min": n_min},
        {"name": "NNW", "max": n_max, "min": n_min},
        {"name": "NW", "max": n_max, "min": n_min},
        {"name": "WNW", "max": n_max, "min": n_min},
        {"name": "W", "max": n_max, "min": n_min},
        {"name": "WSW", "max": n_max, "min": n_min},
        {"name": "SW", "max": n_max, "min": n_min},
        {"name": "SSW", "max": n_max, "min": n_min},
        {"name": "S", "max": n_max, "min": n_min},
        {"name": "SSE", "max": n_max, "min": n_min},
        {"name": "SE", "max": n_max, "min": n_min},
        {"name": "ESE", "max": n_max, "min": n_min},
        {"name": "E", "max": n_max, "min": n_min},
        {"name": "ENE", "max": n_max, "min": n_min},
        {"name": "NE", "max": n_max, "min": n_min},
        {"name": "NNE", "max": n_max, "min": n_min},
    ]
    # 设置数据
    fengsus = season_x[0].to_list()
    data_fengsu = [{'value': fengsus, 'name': '风频数'}]
    # print(data_fengsu)
    charts = Radar()
    charts.set_colors(['#4587E7'])  # 设置颜色
    charts.add_schema(schema=season_js,
                      shape='circle',
                      center=['50%', '50%'],
                      radius='80%',
                      angleaxis_opts=opts.AngleAxisOpts(
                          min_=0,  # 坐标轴刻度最小值
                          max_=360,  # 坐标轴刻度最大值
                          is_clockwise=True,
                          interval=22.5,  # 强制设置坐标轴分割间隔
                          axistick_opts=opts.AxisTickOpts(is_show=False),
                          axislabel_opts=opts.LabelOpts(is_show=False,),   # 坐标轴线标签配置项
                          axisline_opts=opts.AxisLineOpts(is_show=True),  # 坐标轴线风格配置项
                          splitline_opts=opts.SplitLineOpts(is_show=True)  # 分割线配置项
                      ),
                      radiusaxis_opts=opts.RadiusAxisOpts(
                          min_=n_min,  # 坐标轴刻度最小值
                          max_=n_max,   # 坐标轴刻度最大值
                          interval=2,  # 强制设置坐标轴分割间隔
                          splitarea_opts=opts.SplitAreaOpts(
                              is_show=True,
                              areastyle_opts=opts.AreaStyleOpts(opacity=0.2,
                                                                )
                          ),
                          splitline_opts=opts.SplitLineOpts(is_show=True,
                                                            linestyle_opts=opts.LineStyleOpts(is_show=True,
                                                                                              width=0.5,
                                                                                              color='grey')),
                          axislabel_opts=opts.LabelOpts(is_show=True,
                                                        font_size=12,
                                                        color='grey'),  # 坐标轴线标签配置项
                      ),
                      polar_opts=opts.PolarOpts(),
                      splitarea_opt=opts.SplitAreaOpts(is_show=True),
                      splitline_opt=opts.SplitLineOpts(is_show=False),  # 分割线配置项
                      textstyle_opts=opts.TextStyleOpts(color='black',
                                                        font_size=14)
                      )
    charts.add(series_name='%s玫瑰图' % season_name,  # 系列名称
               data=data_fengsu,  # 系列数据
               areastyle_opts=opts.AreaStyleOpts(opacity=0.5,  # 系列面样式设置
                                                 color=seasonareacolor),
               linestyle_opts=opts.LineStyleOpts(width=2,  # 系列线样式设置
                                                 color=seasonlinecolor),
               label_opts=opts.LabelOpts(is_show=False),
               )  # 系列标签设置
    charts.render(filechart)