Exemplo n.º 1
0
 def test_get_output(self):
     O = self.inp.get_output()
     assert types.is_list(O)
     assert len(O) == 1
     assert types.is_float_matrix(O[0])
     assert O[0].shape[0] == 100
     assert O[0].shape[1] == self.inp.dimension()
Exemplo n.º 2
0
 def test_get_output(self):
     O = self.pca_obj.get_output()
     assert types.is_list(O)
     assert len(O) == 1
     assert types.is_float_matrix(O[0])
     assert O[0].shape[0] == self.T
     assert O[0].shape[1] == self.pca_obj.dimension()
Exemplo n.º 3
0
 def test_get_output(self):
     c = self.ass
     O = c.get_output()
     assert types.is_list(O)
     assert len(O) == 1
     assert types.is_int_matrix(O[0])
     assert O[0].shape[0] == self.T
     assert O[0].shape[1] == 1
Exemplo n.º 4
0
 def test_get_output(self):
     for c in self.cl:
         O = c.get_output()
         assert types.is_list(O)
         assert len(O) == 1
         assert types.is_int_matrix(O[0])
         assert O[0].shape[0] == self.T
         assert O[0].shape[1] == 1
Exemplo n.º 5
0
    def _estimate(self, trajs):
        """
        Parameters
        ----------
        trajs : ndarray(T, 2) or list of ndarray(T_i, 2)
            Thermodynamic trajectories. Each trajectory is a (T_i, 2)-array
            with T_i time steps. The first column is the thermodynamic state
            index, the second column is the configuration state index.
        """
        # format input if needed
        if isinstance(trajs, _np.ndarray):
            trajs = [trajs]
        # validate input
        assert _types.is_list(trajs)
        for ttraj in trajs:
            _types.assert_array(ttraj, ndim=2, kind='numeric')
            assert _np.shape(ttraj)[1] >= 2

        # harvest state counts
        self.state_counts_full = _util.state_counts(
            [_np.ascontiguousarray(t[:, :2]).astype(_np.intc) for t in trajs],
            nthermo=self.nthermo,
            nstates=self.nstates_full)

        # active set
        self.active_set = _np.where(self.state_counts_full.sum(axis=0) > 0)[0]
        self.state_counts = _np.ascontiguousarray(
            self.state_counts_full[:, self.active_set].astype(_np.intc))
        self.bias_energies = _np.ascontiguousarray(
            self.bias_energies_full[:, self.active_set], dtype=_np.float64)

        # run estimator
        self.therm_energies, self.conf_energies, self.increments, self.loglikelihoods = \
            _wham.estimate(
                self.state_counts, self.bias_energies,
                maxiter=self.maxiter, maxerr=self.maxerr,
                therm_energies=self.therm_energies, conf_energies=self.conf_energies,
                save_convergence_info=self.save_convergence_info)

        # get stationary models
        models = [
            _StationaryModel(
                pi=_np.exp(self.therm_energies[K, _np.newaxis] -
                           self.bias_energies[K, :] - self.conf_energies),
                f=self.bias_energies[K, :] + self.conf_energies,
                normalize_energy=False,
                label="K=%d" % K) for K in range(self.nthermo)
        ]

        # set model parameters to self
        self.set_model_params(models=models,
                              f_therm=self.therm_energies,
                              f=self.conf_energies)

        # done
        return self
Exemplo n.º 6
0
    def _estimate(self, trajs):
        """
        Parameters
        ----------
        trajs : ndarray(T, 2) or list of ndarray(T_i, 2)
            Thermodynamic trajectories. Each trajectory is a (T_i, 2)-array
            with T_i time steps. The first column is the thermodynamic state
            index, the second column is the configuration state index.

        """
        # format input if needed
        if isinstance(trajs, _np.ndarray):
            trajs = [trajs]
        # validate input
        assert _types.is_list(trajs)
        for ttraj in trajs:
            _types.assert_array(ttraj, ndim=2, kind='numeric')
            assert _np.shape(ttraj)[1] >= 2

        # harvest transition counts
        self.count_matrices_full = _util.count_matrices(
            [_np.ascontiguousarray(t[:, :2]).astype(_np.intc) for t in trajs],
            self.lag,
            sliding=self.count_mode,
            sparse_return=False,
            nstates=self.nstates_full)
        # harvest state counts (for WHAM)
        self.state_counts_full = _util.state_counts(trajs,
                                                    nthermo=self.nthermo,
                                                    nstates=self.nstates_full)

        # restrict to connected set
        C_sum = self.count_matrices_full.sum(axis=0)
        # TODO: use improved cset
        cset = _largest_connected_set(C_sum, directed=True)
        self.active_set = cset
        # correct counts
        self.count_matrices = self.count_matrices_full[:, cset[:, _np.newaxis],
                                                       cset]
        self.count_matrices = _np.require(self.count_matrices,
                                          dtype=_np.intc,
                                          requirements=['C', 'A'])
        # correct bias matrix
        self.bias_energies = self.bias_energies_full[:, cset]
        self.bias_energies = _np.require(self.bias_energies,
                                         dtype=_np.float64,
                                         requirements=['C', 'A'])
        # correct state counts
        self.state_counts = self.state_counts_full[:, cset]
        self.state_counts = _np.require(self.state_counts,
                                        dtype=_np.intc,
                                        requirements=['C', 'A'])

        # run initialisation
        if self.init is not None:
            if self.init == 'wham':
                self.therm_energies, self.conf_energies, _increments, _loglikelihoods = \
                    _wham.estimate(
                        self.state_counts, self.bias_energies,
                        maxiter=5000, maxerr=1.0E-8, save_convergence_info=0,
                        therm_energies=self.therm_energies, conf_energies=self.conf_energies)

        # run estimator
        self.therm_energies, self.conf_energies, self.log_lagrangian_mult, \
            self.increments, self.loglikelihoods = _dtram.estimate(
                self.count_matrices, self.bias_energies,
                maxiter=self.maxiter, maxerr=self.maxerr,
                log_lagrangian_mult=self.log_lagrangian_mult,
                conf_energies=self.conf_energies,
                save_convergence_info=self.save_convergence_info)

        # compute models
        models = [
            _dtram.estimate_transition_matrix(
                self.log_lagrangian_mult, self.bias_energies,
                self.conf_energies, self.count_matrices,
                _np.zeros(shape=self.conf_energies.shape,
                          dtype=_np.float64), K) for K in range(self.nthermo)
        ]
        self.model_active_set = [
            _largest_connected_set(msm, directed=False) for msm in models
        ]
        models = [
            _np.ascontiguousarray((msm[lcc, :])[:, lcc])
            for msm, lcc in zip(models, self.model_active_set)
        ]

        # set model parameters to self
        self.set_model_params(models=[
            _MSM(msm, dt_model=self.timestep_traj.get_scaled(self.lag))
            for msm in models
        ],
                              f_therm=self.therm_energies,
                              f=self.conf_energies)

        # done
        return self