Exemplo n.º 1
0
def enforce_test():
    import os
    import pyemu

    mc = pyemu.MonteCarlo(jco=os.path.join("mc", "freyberg_ord.jco"),
                          verbose=True)

    cov = pyemu.Cov(x=mc.parcov.x * 0.1,
                    names=mc.parcov.row_names,
                    isdiagonal=True)
    mc = pyemu.MonteCarlo(jco=os.path.join("mc", "freyberg_ord.jco"),
                          parcov=cov)
    mc.draw(num_reals=100, enforce_bounds='drop')
    assert mc.parensemble.shape[0] == 100.0

    mc = pyemu.MonteCarlo(jco=os.path.join("mc", "freyberg_ord.jco"))
    mc.draw(num_reals=100, enforce_bounds='drop')
    assert mc.parensemble.shape[0] == 0

    mc = pyemu.MonteCarlo(jco=os.path.join("mc", "freyberg_ord.jco"))
    mc.draw(100, enforce_bounds="reset")
    diff = mc.parensemble.ubnd - mc.parensemble.max(axis=0)
    assert diff.min() == 0.0

    diff = mc.parensemble.lbnd - mc.parensemble.min(axis=0)
    assert diff.max() == 0.0
Exemplo n.º 2
0
def enforce_test():
    import os
    import pyemu
    dir = "mc"

    mc = pyemu.MonteCarlo(jco=os.path.join("mc","freyberg_ord.jco"))
    mc.draw(num_reals=100,enforce_bounds='drop')
    assert mc.parensemble.shape[0] == 0

    cov = pyemu.Cov(x=mc.parcov.x * 0.1,names=mc.parcov.row_names,isdiagonal=True)
    mc = pyemu.MonteCarlo(jco=os.path.join("mc","freyberg_ord.jco"),
                          parcov=cov)
    mc.draw(num_reals=100,enforce_bounds='drop')
    assert mc.parensemble.shape[0] == 100.0
Exemplo n.º 3
0
def ensemble_covariance_test():
    import os
    import numpy as np
    import pyemu
    from datetime import datetime

    v = pyemu.geostats.ExpVario(contribution=1.0, a=1.0)
    gs = pyemu.geostats.GeoStruct(variograms=[v])

    npar = 10
    pst = pyemu.pst_utils.generic_pst(["p{0:010d}".format(i) for i in range(npar)], ["o1"])

    pst.parameter_data.loc[:, "partrans"] = "none"
    par = pst.parameter_data
    par.loc[:, "x"] = np.random.random(npar) * 10.0
    par.loc[:, "y"] = np.random.random(npar) * 10.0

    cov = gs.covariance_matrix(par.x, par.y, par.parnme)
    num_reals = 100000

    mc = pyemu.MonteCarlo(pst=pst)

    peh = pyemu.ParameterEnsemble.from_gaussian_draw(pst, cov, num_reals=num_reals,use_homegrown=True)

    localizer = np.ones_like(cov.x)
    localizer[cov.x<1.0e-1] = 0.0

    cov = cov.hadamard_product(localizer)

    ecov = peh.covariance_matrix(localizer=localizer)

    d = 100.0 * (np.abs((cov - ecov).x) / cov.x)
    d[localizer==0.0] = np.NaN

    assert np.nanmax(d) < 10.0
Exemplo n.º 4
0
def pnulpar_test():
    import os
    import pyemu
    dir = "mc"
    mc = pyemu.MonteCarlo(jco=os.path.join("mc","freyberg_ord.jco"))
    par_dir = os.path.join("mc","prior_par_draws")
    par_files = [os.path.join(par_dir,f) for f in os.listdir(par_dir) if f.endswith('.par')]
    #mc.parensemble.read_parfiles(par_files)
    mc.parensemble = pyemu.ParameterEnsemble.from_parfiles(pst=mc.pst,parfile_names=par_files)
    real_num = [int(os.path.split(f)[-1].split('.')[0].split('_')[1]) for f in par_files]
    mc.parensemble.index = real_num
    #print(mc.parensemble)
    print(mc.parensemble.istransformed)
    en = mc.project_parensemble(nsing=1,inplace=False, enforce_bounds='reset')
    #en.index = [i+1 for i in en.index]
    print(mc.parensemble.istransformed)

    par_dir = os.path.join("mc", "proj_par_draws")
    par_files = [os.path.join(par_dir, f) for f in os.listdir(par_dir) if f.endswith('.par')]
    real_num = [int(os.path.split(f)[-1].split('.')[0].split('_')[1]) for f in par_files]

    en_pnul = pyemu.ParameterEnsemble.from_parfiles(pst=mc.pst,parfile_names=par_files)
    #en_pnul.read_parfiles(par_files)
    en_pnul.index = real_num
    en.sort_index(axis=1, inplace=True)
    en.sort_index(axis=0, inplace=True)
    en_pnul.sort_index(axis=1, inplace=True)
    en_pnul.sort_index(axis=0, inplace=True)
    diff = 100.0 * ((en - en_pnul) / en)
    assert max(diff.max()) < 1.0e-4
Exemplo n.º 5
0
def pnulpar_test():
    pst = pyemu.Pst(ord_base + ".pst")
    # load the pnulpar projected ensemble
    d = os.path.join(verf_dir, "proj_par_draws")
    par_files = [
        os.path.join(d, f) for f in os.listdir(d) if f.startswith("draw_")
    ]
    pnul_en = pyemu.ParameterEnsemble.from_parfiles(pst=pst,
                                                    parfile_names=par_files)
    #pnul_en.read_parfiles_prefix(os.path.join(verf_dir,"proj_par_draws","draw_"))
    pnul_en.loc[:, "fname"] = pnul_en.index
    #pnul_en.index = pnul_en.fname.apply(lambda x:str(int(x.split('.')[0].split('_')[-1])))
    f = pnul_en.pop("fname")

    mc = pyemu.MonteCarlo(jco=ord_base + ".jco")
    d = os.path.join(verf_dir, "prior_par_draws")
    par_files = [
        os.path.join(d, f) for f in os.listdir(d) if f.startswith("draw_")
    ]
    #mc.parensemble.read_parfiles_prefix(os.path.join(verf_dir,"prior_par_draws","draw_"))
    mc.parensemble = pyemu.ParameterEnsemble.from_parfiles(
        pst=mc.pst, parfile_names=par_files)
    mc.parensemble.loc[:, "fname"] = mc.parensemble.index
    #mc.parensemble.index = mc.parensemble.fname.apply(lambda x:str(int(x.split('.')[0].split('_')[-1])))
    f = mc.parensemble.pop("fname")

    en = mc.project_parensemble(nsing=1, inplace=False)

    diff = 100 * (np.abs(pnul_en - en) / en)
    assert max(diff.max()) < 1.0e-3
Exemplo n.º 6
0
def tied_test():
    import os
    import pyemu
    pst_dir = os.path.join('..', 'tests', "pst")
    pst = pyemu.Pst(os.path.join(pst_dir, "br_opt_no_zero_weighted.pst"))
    print(pst.tied_lines)
    pst.write(os.path.join(pst_dir, "pest_tied_tester_1.pst"))
    mc = pyemu.MonteCarlo(pst=pst)
    mc.draw(1)
    mc.write_psts(os.path.join(pst_dir, "tiedtest_"))
Exemplo n.º 7
0
def phi_vector_test():
    import os
    import pyemu
    jco = os.path.join("pst", "pest.jcb")
    pst = pyemu.Pst(jco.replace(".jcb", ".pst"))

    mc = pyemu.MonteCarlo(pst=pst)
    num_reals = 10
    mc.draw(num_reals, obs=True)
    print(mc.obsensemble.phi_vector)
Exemplo n.º 8
0
def gen_fails():
    mc = pyemu.MonteCarlo(pst=pst)
    mc.draw(5, obs=True)
    mc.parensemble.iloc[0, :] *= -10000000.0
    mc.parensemble.to_csv("par.csv")
    mc.obsensemble.to_csv("obs.csv")

    os.system("sweep.exe {0}".format(pst_file))
    df = pd.read_csv("sweep_out.csv")
    print(df.loc[:, pst.observation_data.obsnme.apply(str.upper)])
Exemplo n.º 9
0
def homegrown_draw_test():

    import os
    import numpy as np
    import pyemu
    from datetime import datetime

    v = pyemu.geostats.ExpVario(contribution=1.0, a=1.0)
    gs = pyemu.geostats.GeoStruct(variograms=[v])

    npar = 1000
    pst = pyemu.pst_utils.generic_pst(
        ["p{0:010d}".format(i) for i in range(npar)], ["o1"])

    pst.parameter_data.loc[:, "partrans"] = "none"
    par = pst.parameter_data
    par.loc[:, "x"] = np.random.random(npar) * 10.0
    par.loc[:, "y"] = np.random.random(npar) * 10.0

    cov = gs.covariance_matrix(par.x, par.y, par.parnme)
    num_reals = 1000

    mc = pyemu.MonteCarlo(pst=pst)

    s = datetime.now()
    #print(s)
    pe = pyemu.ParameterEnsemble.from_gaussian_draw(mc.parensemble,
                                                    cov,
                                                    num_reals=num_reals)
    mc.draw(num_reals=num_reals, cov=cov)
    pe = mc.parensemble
    d1 = (datetime.now() - s).total_seconds()
    #print(d1)

    s = datetime.now()
    #print(s)
    peh = pyemu.ParameterEnsemble.from_gaussian_draw_homegrown(
        mc.parensemble, cov, num_reals=num_reals)
    d2 = (datetime.now() - s).total_seconds()
    #print(d2)

    #import matplotlib.pyplot as plt

    for pname in peh.names:
        #ax = plt.subplot(111)
        m1 = pe.loc[:, pname].mean()
        m2 = peh.loc[:, pname].mean()
        print(par.loc[pname, "parval1"], m2, m1)
        #pe.loc[:,pname].hist(ax=ax,bins=10,alpha=0.5)
        #peh.loc[:,pname].hist(ax=ax,bins=10,alpha=0.5)
        #plt.show()
        #break

    print(d2, d1)
Exemplo n.º 10
0
def pnulpar_test():
    pst = pyemu.Pst(ord_base+".pst")
    # load the pnulpar projected ensemble
    pnul_en = pyemu.ParameterEnsemble(pst)
    pnul_en.read_parfiles_prefix(os.path.join(verf_dir,"proj_par_draws","draw_"))
    pnul_en.loc[:,"fname"] = pnul_en.index
    pnul_en.index = pnul_en.fname.apply(lambda x:str(int(x.split('.')[0].split('_')[-1])))
    f = pnul_en.pop("fname")

    mc = pyemu.MonteCarlo(jco=ord_base+".jco")
    mc.parensemble.read_parfiles_prefix(os.path.join(verf_dir,"prior_par_draws","draw_"))
    mc.parensemble.loc[:,"fname"] = mc.parensemble.index
    mc.parensemble.index = mc.parensemble.fname.apply(lambda x:str(int(x.split('.')[0].split('_')[-1])))
    f = mc.parensemble.pop("fname")

    en = mc.project_parensemble(nsing=1,inplace=False)

    diff = 100 * (np.abs(pnul_en - en) / en)
    assert max(diff.max()) < 1.0e-3
Exemplo n.º 11
0
def to_from_binary_test():
    import os
    import numpy as np
    import pyemu
    from datetime import datetime

    v = pyemu.geostats.ExpVario(contribution=1.0, a=1.0)
    gs = pyemu.geostats.GeoStruct(variograms=[v])

    npar = 1000
    pst = pyemu.pst_utils.generic_pst(
        ["p{0:010d}".format(i) for i in range(npar)], ["o1"])

    pst.parameter_data.loc[:, "partrans"] = "none"
    par = pst.parameter_data
    par.loc[:, "x"] = np.random.random(npar) * 10.0
    par.loc[:, "y"] = np.random.random(npar) * 10.0

    cov = gs.covariance_matrix(par.x, par.y, par.parnme)
    num_reals = 1000

    mc = pyemu.MonteCarlo(pst=pst)

    pe = pyemu.ParameterEnsemble.from_gaussian_draw(pst,
                                                    cov,
                                                    num_reals=num_reals,
                                                    use_homegrown=True)
    oe = pyemu.ObservationEnsemble.from_id_gaussian_draw(pst,
                                                         num_reals=num_reals)

    pe_name = os.path.join("temp", "pe.jcb")
    oe_name = os.path.join("temp", "oe.jcb")
    pe.to_binary(pe_name)
    oe.to_binary(oe_name)

    pe1 = pyemu.ParameterEnsemble.from_binary(mc.pst, pe_name)
    oe1 = pyemu.ObservationEnsemble.from_binary(mc.pst, oe_name)
    pe1.index = pe1.index.map(np.int)
    oe1.index = oe1.index.map(np.int)
    d = (oe - oe1).apply(np.abs)
    assert d.max().max() == 0.0
    d = (pe - pe1).apply(np.abs)
    assert d.max().max() == 0.0, d
Exemplo n.º 12
0
def tied_test():
    import os
    import pyemu
    pst_dir = os.path.join("pst")
    pst = pyemu.Pst(os.path.join(pst_dir, "br_opt_no_zero_weighted.pst"))
    print(pst.tied)
    pst.write(os.path.join("temp", "pest_tied_tester_1.pst"))
    mc = pyemu.MonteCarlo(pst=pst)
    mc.draw(1)
    mc.write_psts(os.path.join("temp", "tiedtest_"))

    par = pst.parameter_data
    par.loc[pst.par_names[::3], "partrans"] = "tied"
    try:
        pst.write(os.path.join("temp", "pest_tied_tester_1.pst"))
    except:
        pass
    else:
        raise Exception()
    par.loc[pst.par_names[::3], "partied"] = pst.par_names[0]

    pst = pyemu.Pst(os.path.join("pst", "pest.pst"))
    print(pst.tied)
    par = pst.parameter_data
    par.loc[pst.par_names[2], "partrans"] = "tied"
    print(pst.tied)
    par.loc[pst.par_names[2], "partied"] = "junk1"
    pst.write(os.path.join("temp", "test.pst"))
    pst = pyemu.Pst(os.path.join("temp", "test.pst"))

    pst = pyemu.Pst(os.path.join("pst", "pest.pst"))
    print(pst.tied)
    par = pst.parameter_data
    par.loc[pst.par_names[2], "partrans"] = "tied"
    par.loc[pst.par_names[2], "partied"] = "junk"
    pst.write(os.path.join("temp", "test.pst"))
    pst = pyemu.Pst(os.path.join("temp", "test.pst"))
Exemplo n.º 13
0
def run_sweep_test():
    import shutil

    import numpy as np
    import pandas as pd
    try:
        import flopy
    except Exception as e:
        return
    import pyemu

    ext = ''
    bin_path = os.path.join("..", "..", "bin")
    if "linux" in platform.platform().lower():
        bin_path = os.path.join(bin_path, "linux")
    elif "darwin" in platform.platform().lower():
        bin_path = os.path.join(bin_path, "mac")
    else:
        bin_path = os.path.join(bin_path, "win")
        ext = '.exe'

    org_model_ws = os.path.join("..", "examples", "freyberg_sfr_update")
    nam_file = "freyberg.nam"
    m = flopy.modflow.Modflow.load(nam_file,
                                   model_ws=org_model_ws,
                                   check=False,
                                   forgive=False,
                                   exe_name=mf_exe_name)
    org_model_ws = "temp"

    m.change_model_ws(org_model_ws)
    m.write_input()
    print("{0} {1}".format(mf_exe_name, m.name + ".nam"), org_model_ws)
    pyemu.os_utils.run("{0} {1}".format(mf_exe_name, m.name + ".nam"),
                       cwd=org_model_ws)
    hds_file = "freyberg.hds"
    list_file = "freyberg.list"
    for f in [hds_file, list_file]:
        assert os.path.exists(os.path.join(org_model_ws, f))

    new_model_ws = "template1"

    props = [["upw.hk", None], ["upw.vka", None], ["upw.ss", None],
             ["rch.rech", None]]

    hds_kperk = [[kper, 0] for kper in range(m.nper)]

    temp_bc_props = [["wel.flux", kper] for kper in range(m.nper)]
    spat_bc_props = [["wel.flux", 2]]

    ph = pyemu.helpers.PstFromFlopyModel(nam_file,
                                         new_model_ws,
                                         org_model_ws,
                                         const_props=props,
                                         zone_props=props,
                                         kl_props=props,
                                         pp_props=props,
                                         grid_props=props,
                                         hds_kperk=hds_kperk,
                                         sfr_pars=True,
                                         sfr_obs=True,
                                         spatial_bc_props=spat_bc_props,
                                         temporal_bc_props=temp_bc_props,
                                         remove_existing=True,
                                         model_exe_name="mfnwt")
    tmp = mf_exe_name.split(os.sep)
    tmp = os.path.join(*tmp[1:]) + ext
    assert os.path.exists(tmp), tmp
    shutil.copy2(tmp, os.path.join(new_model_ws, "mfnwt" + ext))
    pe = ph.draw(20)
    bd = os.getcwd()
    try:
        oe = pe.run(slave_dir=new_model_ws)
        print(oe.shape)
    except Exception as e:
        os.chdir(bd)
        raise Exception(str(e))

    mc = pyemu.MonteCarlo(pst=ph.pst)
    mc.draw(20)
    try:
        mc.run(slave_dir=new_model_ws)

    except Exception as e:
        os.chdir(bd)
        raise Exception(str(e))

    assert mc.obsensemble.shape == oe.shape
Exemplo n.º 14
0
# In[1]:

#get_ipython().magic(u'matplotlib inline')
import os
import shutil
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pyemu

# instaniate ```pyemu``` object and drop prior info.  Then reorder the jacobian and save as binary.  This is needed because the pest utilities require strict order between the control file and jacobian

# In[2]:

mc = pyemu.MonteCarlo(jco="freyberg.jcb", verbose=False)
mc.drop_prior_information()
jco_ord = mc.jco.get(mc.pst.obs_names, mc.pst.par_names)
ord_base = "freyberg_ord"
jco_ord.to_binary(ord_base + ".jco")
mc.pst.control_data.parsaverun = ' '
mc.pst.write(ord_base + ".pst")

# Draw some vectors from the prior and write the vectors to par files

# In[3]:

# setup the dirs to hold all this stuff
par_dir = "prior_par_draws"
proj_dir = "proj_par_draws"
parfile_base = os.path.join(par_dir, "draw_")
Exemplo n.º 15
0
def plot_flopy_par_ensemble_test():
    import shutil
    import numpy as np
    try:
        import flopy
    except:
        return
    try:
        import matplotlib.pyplot as plt
    except:
        print("error importing pyplot")
        return
    import pyemu
    org_model_ws = os.path.join("..", "examples", "Freyberg_transient")
    nam_file = "freyberg.nam"

    new_model_ws = "temp_pst_from_flopy"
    pp_props = [["upw.hk", 0], ["upw.hk", 1]]
    helper = pyemu.helpers.PstFromFlopyModel(nam_file, new_model_ws, org_model_ws,
                                             grid_props=pp_props, remove_existing=True,
                                             model_exe_name="mfnwt")

    pst = pyemu.Pst(os.path.join(new_model_ws,"freyberg.pst"))
    mc = pyemu.MonteCarlo(pst=pst)
    os.chdir(new_model_ws)
    cov = pyemu.Cov.from_ascii("freyberg.pst.prior.cov")
    mc.draw(100,cov=cov)
    #pyemu.helpers.plot_flopy_par_ensemble(mc.pst, mc.parensemble, num_reals=None, model=helper.m)
    #pyemu.helpers.plot_flopy_par_ensemble(mc.pst, mc.parensemble, num_reals=None)

    #3try:
    import cartopy.crs as ccrs
    import cartopy.io.img_tiles as cimgt

    import pyproj
    # except:
    #     return

    stamen_terrain = cimgt.StamenTerrain()
    zoom = 10

    def fig_ax_gen():
        fig = plt.figure(figsize=(20,20))
        nrow,ncol = 5,4

        axes = []
        for i in range(nrow*ncol):
            #print(i)
            ax = plt.subplot(nrow,ncol,i+1,projection=stamen_terrain.crs)
            ax.set_extent([-97.775, -97.625, 30.2, 30.35])
            #ax.set_extent([175.2, 176.2, -37, -38.2])
            ax.add_image(stamen_terrain,zoom)
            #plt.show()
            axes.append(ax)

            #break
        return fig, axes
    #fig,axes = fig_ax_gen()
    #plt.show()
    #return
    pcolormesh_trans = ccrs.UTM(zone=14)
    pyemu.helpers.plot_flopy_par_ensemble(mc.pst, mc.parensemble, num_reals=None,fig_axes_generator=fig_ax_gen,
                                          pcolormesh_transform=pcolormesh_trans,model="freyberg.nam")

    os.chdir("..")