Exemplo n.º 1
0
def test_reweighting():
    my_obs = pe.Obs([np.random.rand(1000)], ['t'])
    assert not my_obs.reweighted
    r_obs = pe.reweight(my_obs, [my_obs])
    assert r_obs[0].reweighted
    r_obs2 = r_obs[0] * my_obs
    assert r_obs2.reweighted

    my_irregular_obs = pe.Obs([np.random.rand(500)], ['t'],
                              idl=[range(1, 1001, 2)])
    assert not my_irregular_obs.reweighted
    r_obs = pe.reweight(my_obs, [my_irregular_obs], all_configs=True)
    r_obs = pe.reweight(my_obs, [my_irregular_obs], all_configs=False)
    r_obs = pe.reweight(my_obs, [my_obs])
    assert r_obs[0].reweighted
    r_obs2 = r_obs[0] * my_obs
    assert r_obs2.reweighted
    my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
    with pytest.raises(Exception):
        pe.reweight(my_obs, [my_covobs])
    my_obs2 = pe.Obs([np.random.rand(1000)], ['t2'])
    with pytest.raises(Exception):
        pe.reweight(my_obs, [my_obs + my_obs2])
    with pytest.raises(Exception):
        pe.reweight(my_irregular_obs, [my_obs])
Exemplo n.º 2
0
def test_rwms():
    path = './tests//data/openqcd_test/'
    prefix = 'sfqcd'
    postfix = '.rwms'

    # sfqcd-1.6: Trajectories instead of confignumbers are printed to file.
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix)
    repname = list(rwfo[0].idl.keys())[0]
    assert(rwfo[0].idl[repname] == range(1, 13))
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix, r_start=[1], r_stop=[12])
    assert(rwfo[0].idl[repname] == range(1, 13))
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix, r_start=[3], r_stop=[8])
    assert(rwfo[0].idl[repname] == range(3, 9))
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix, r_start=[2], r_stop=[6])
    assert(rwfo[0].idl[repname] == range(2, 7))
    rwfs = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix, r_start=[1], r_stop=[12], r_step=2)
    assert(rwfs[0].idl[repname] == range(1, 12, 2))
    rwfs = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix, r_start=[2], r_stop=[12], r_step=2)
    assert(rwfs[0].idl[repname] == range(2, 13, 2))
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='1.6', postfix=postfix)
    assert((rwfo[0].r_values[repname] + rwfo[0].deltas[repname][1]) == (rwfs[0].r_values[repname] + rwfs[0].deltas[repname][0]))

    o = pe.pseudo_Obs(1., .01, repname, samples=12)
    pe.reweight(rwfo[0], [o])

    o = pe.pseudo_Obs(1., .01, repname, samples=6)
    pe.reweight(rwfo[0], [o])
    o.idl[repname] = range(2, 13, 2)
    pe.reweight(rwfo[0], [o])
    pe.reweight(rwfs[0], [o])

    files = ['openqcd2r1.ms1.dat']
    names = ['openqcd2|r1']

    # TM with 2 Hasenbusch factors and 2 sources each + RHMC with one source, openQCD 2.0
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='2.0', files=files, names=names)
    assert(len(rwfo) == 2)
    assert(rwfo[0].value == 0.9999974970236312)
    assert(rwfo[1].value == 1.184681251089919)
    repname = list(rwfo[0].idl.keys())[0]
    assert(rwfo[0].idl[repname] == range(1, 10))
    rwfo = pe.input.openQCD.read_rwms(path, prefix, version='2.0', files=files, names=names, r_start=[1], r_stop=[8], print_err=True)
    assert(rwfo[0].idl[repname] == range(1, 9))

    # t0
    prefix = 'openqcd'

    t0 = pe.input.openQCD.extract_t0(path, prefix, dtr_read=3, xmin=0, spatial_extent=4)
    files = ['openqcd2r1.ms.dat']
    names = ['openqcd2|r1']
    t0 = pe.input.openQCD.extract_t0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2)
    t0 = pe.input.openQCD.extract_t0(path, prefix, dtr_read=3, xmin=0, spatial_extent=4, r_start=[1])
    repname = list(rwfo[0].idl.keys())[0]
    assert(t0.idl[repname] == range(1, 10))
    t0 = pe.input.openQCD.extract_t0(path, prefix, dtr_read=3, xmin=0, spatial_extent=4, r_start=[2], r_stop=[8])
    repname = list(rwfo[0].idl.keys())[0]
    assert(t0.idl[repname] == range(2, 9))
    t0 = pe.input.openQCD.extract_t0(path, prefix, dtr_read=3, xmin=0, spatial_extent=4, fit_range=2, plaquette=True, assume_thermalization=True)

    pe.input.openQCD.extract_t0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2, plot_fit=True)
Exemplo n.º 3
0
def test_correlate():
    my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
    my_obs2 = pe.Obs([np.random.rand(100)], ['t'])
    corr1 = pe.correlate(my_obs1, my_obs2)
    corr2 = pe.correlate(my_obs2, my_obs1)
    assert corr1 == corr2

    my_obs3 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(2, 102)])
    with pytest.raises(Exception):
        pe.correlate(my_obs1, my_obs3)

    my_obs4 = pe.Obs([np.random.rand(99)], ['t'])
    with pytest.raises(Exception):
        pe.correlate(my_obs1, my_obs4)

    my_obs5 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
    my_obs6 = pe.Obs([np.random.rand(100)], ['t'], idl=[range(5, 505, 5)])
    corr3 = pe.correlate(my_obs5, my_obs6)
    assert my_obs5.idl == corr3.idl

    my_new_obs = pe.Obs([np.random.rand(100)], ['q3'])
    with pytest.raises(Exception):
        pe.correlate(my_obs1, my_new_obs)
    my_covobs = pe.cov_Obs(1.0, 0.003, 'cov')
    with pytest.raises(Exception):
        pe.correlate(my_covobs, my_covobs)
    r_obs = pe.reweight(my_obs1, [my_obs1])[0]
    with pytest.warns(RuntimeWarning):
        pe.correlate(r_obs, r_obs)
Exemplo n.º 4
0
def test_json_corr_io():
    my_list = [
        pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)
    ]
    rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']),
                          my_list)

    for obs_list in [my_list, rw_list]:
        for tag in [None, "test"]:
            obs_list[3].tag = tag
            for pad in [0, 2]:
                for corr_tag in [None, 'my_Corr_tag']:
                    for prange in [None, [3, 6]]:
                        for gap in [False, True]:
                            my_corr = pe.Corr(obs_list,
                                              padding=[pad, pad],
                                              prange=prange)
                            my_corr.tag = corr_tag
                            if gap:
                                my_corr.content[4] = None
                            pe.input.json.dump_to_json(my_corr, 'corr')
                            recover = pe.input.json.load_json('corr')
                            os.remove('corr.json.gz')
                            assert np.all([
                                o.is_zero() for o in [
                                    x for x in (my_corr - recover)
                                    if x is not None
                                ]
                            ])
                            for index, entry in enumerate(my_corr):
                                if entry is None:
                                    assert recover[index] is None
                            assert my_corr.tag == recover.tag
                            assert my_corr.prange == recover.prange
                            assert my_corr.reweighted == recover.reweighted