Exemplo n.º 1
0
 def estimate_fao56_daily(self, day_of_year, temp_c, temp_c_min, temp_c_max,
                          tdew, elevation, latitude, rh, wind_m_s,
                          atmos_pres):
     """ Estimate fao56 from weather """
     sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
                                   pyeto.sol_dec(day_of_year))
     daylight_hours = pyeto.daylight_hours(sha)
     sunshine_hours = 0.8 * daylight_hours
     ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
     et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
                           pyeto.sol_dec(day_of_year), sha, ird)
     sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
                                            et_rad)
     net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
     cs_rad = pyeto.cs_rad(elevation, et_rad)
     avp = pyeto.avp_from_tdew(tdew)
     net_out_lw_rad = pyeto.net_out_lw_rad(
         pyeto.convert.celsius2kelvin(temp_c_min),
         pyeto.convert.celsius2kelvin(temp_c_max), sol_rad, cs_rad, avp)
     net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
     eto = pyeto.fao56_penman_monteith(
         net_rad=net_rad,
         t=pyeto.convert.celsius2kelvin(temp_c),
         ws=wind_m_s,
         svp=pyeto.svp_from_t(temp_c),
         avp=avp,
         delta_svp=pyeto.delta_svp(temp_c),
         psy=pyeto.psy_const(atmos_pres))
     return eto
Exemplo n.º 2
0
def get_evap_i(lat, elev, wind, srad, tmin, tmax, tavg, month):
    if month == 1:
        J = 15
    else:
        J = 15 + (month - 1) * 30

    latitude = pyeto.deg2rad(lat)
    atmosphericVapourPressure = pyeto.avp_from_tmin(tmin)
    saturationVapourPressure = pyeto.svp_from_t(tavg)
    ird = pyeto.inv_rel_dist_earth_sun(J)
    solarDeclination = pyeto.sol_dec(J)
    sha = [pyeto.sunset_hour_angle(l, solarDeclination) for l in latitude]
    extraterrestrialRad = [
        pyeto.et_rad(x, solarDeclination, y, ird)
        for x, y in zip(latitude, sha)
    ]
    clearSkyRad = pyeto.cs_rad(elev, extraterrestrialRad)
    netInSolRadnet = pyeto.net_in_sol_rad(srad * 0.001, albedo=0.23)
    netOutSolRadnet = pyeto.net_out_lw_rad(tmin, tmax, srad * 0.001,
                                           clearSkyRad,
                                           atmosphericVapourPressure)
    netRadiation = pyeto.net_rad(netInSolRadnet, netOutSolRadnet)
    tempKelvin = pyeto.celsius2kelvin(tavg)
    windSpeed2m = pyeto.wind_speed_2m(wind, 10)
    slopeSvp = pyeto.delta_svp(tavg)
    atmPressure = pyeto.atm_pressure(elev)
    psyConstant = pyeto.psy_const(atmPressure)

    return pyeto.fao56_penman_monteith(netRadiation,
                                       tempKelvin,
                                       windSpeed2m,
                                       saturationVapourPressure,
                                       atmosphericVapourPressure,
                                       slopeSvp,
                                       psyConstant,
                                       shf=0.0)
 tmaxk=pyeto.celsius2kelvin(tmax)
 t=(Tmean["0"][j])
 tk=pyeto.celsius2kelvin(t)
 rh_mean=(HR["0"][j])
 ws=(VV["0"][j])
 lat=pyeto.deg2rad(lat)
 day=day+1
 sunshine_hours=(BS["0"][j])
 #Radiacion neta
 sol_dec=pyeto.sol_dec(day)
 sha=pyeto.sunset_hour_angle(lat,sol_dec)
 daylight_hours=pyeto.daylight_hours(sha)
 ird=pyeto.inv_rel_dist_earth_sun(day)
 et_rad=pyeto.et_rad(lat, sol_dec, sha, ird)
 sol_rad=pyeto.sol_rad_from_sun_hours(daylight_hours,sunshine_hours,et_rad)
 ni_sw_rad=pyeto.net_in_sol_rad(sol_rad, albedo=0.23)
 cs_rad=pyeto.cs_rad(altitude, et_rad)
 svp_tmin=pyeto.svp_from_t(tmin)
 svp_tmax=pyeto.svp_from_t(tmax)
 avp=pyeto.avp_from_rhmean(svp_tmin, svp_tmax, rh_mean)
 no_lw_rad=pyeto.net_out_lw_rad(tmink, tmaxk, sol_rad, cs_rad, avp)
 net_rad=pyeto.net_rad(ni_sw_rad, no_lw_rad)
 #Presion de vapor de saturacion
 svp=pyeto.svp_from_t(t)
 #Delta presion de vapor de saturacion
 delta_svp=pyeto.delta_svp(t)
 #Constante psicrométrica
 atmos_pres=pyeto.atm_pressure(altitude)
 psy=pyeto.psy_const(atmos_pres)
 #Calculo ETo Fao Penman Monteith
 ETo=pyeto.fao56_penman_monteith(net_rad, tk, ws, svp, avp, delta_svp, psy, shf=0.0)
Exemplo n.º 4
0
    def exec(self):

        log.info('[START] {}'.format("exec"))

        try:

            if (platform.system() == 'Windows'):
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    'srtDate': '2020-09-01',
                    'endDate': '2020-09-03'

                    # 경도 최소/최대/간격
                    ,
                    'lonMin': 0,
                    'lonMax': 360,
                    'lonInv': 0.5

                    # 위도 최소/최대/간격
                    ,
                    'latMin': -90,
                    'latMax': 90,
                    'latInv': 0.5
                }
            else:
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    # 'srtDate': globalVar['srtDate']
                    # , 'endDate': globalVar['endDate']
                }

            # globalVar['outPath'] = 'F:/Global Temp/aski'

            modelList = ['MRI-ESM2-0']
            for i, modelInfo in enumerate(modelList):
                log.info("[CHECK] modelInfo : {}".format(modelInfo))

                inpFile = '{}/{}/{} ssp585 2015-2100_*.nc'.format(
                    globalVar['inpPath'], serviceName, modelInfo)
                fileList = sorted(glob.glob(inpFile))

                dsData = xr.open_mfdataset(fileList)

                # 월별 시간 변환
                dsData['time'] = pd.to_datetime(pd.to_datetime(
                    dsData['time'].values).strftime("%Y-%m"),
                                                format='%Y-%m')

                # 단위 설정
                dsData['tasmin'].attrs['units'] = 'degC'
                dsData['tasmax'].attrs['units'] = 'degC'
                dsData['tas'].attrs['units'] = 'degC'

                # 단위 환산을 위한 매월 마지막 날 계산
                lon1D = dsData['lon'].values
                lat1D = dsData['lat'].values
                time1D = dsData['time'].values

                timeEndMonth = []
                timeYear = dsData['time.year'].values
                timeMonth = dsData['time.month'].values

                for i in range(0, len(timeYear)):
                    timeEndMonth.append(
                        calendar.monthrange(timeYear[i], timeMonth[i])[1])

                latRad1D = pyeto.deg2rad(dsData['lat'])
                dayOfYear1D = dsData['time.dayofyear']

                latRad3D = np.tile(
                    np.transpose(np.tile(latRad1D, (len(lon1D), 1))),
                    (len(time1D), 1, 1))
                dayOfYear3D = np.transpose(
                    np.tile(dayOfYear1D, (len(lon1D), len(lat1D), 1)))

                timeEndMonth3D = np.transpose(
                    np.tile(timeEndMonth, (len(lon1D), len(lat1D), 1)))

                tmpData = xr.Dataset(
                    {
                        'timeEndMonth':
                        (('time', 'lat', 'lon'), (timeEndMonth3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'latRad': (('time', 'lat', 'lon'), (latRad3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'dayOfYear':
                        (('time', 'lat', 'lon'), (dayOfYear3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # ********************************************************************************************
                # Hargreaves 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                harRes = xclim.indices.potential_evapotranspiration(
                    dsData['tasmin'],
                    dsData['tasmax'],
                    dsData['tas'],
                    dsData['lat'],
                    method='hargreaves85')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                harResL1 = harRes * 86400.0 * tmpData['timeEndMonth']

                # ********************************************************************************************
                # Thornthwaite 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                thwRes = xclim.indices.potential_evapotranspiration(
                    dsData['tasmin'],
                    dsData['tasmax'],
                    dsData['tas'],
                    dsData['lat'],
                    method='thornthwaite48')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                thwResL1 = thwRes * 86400.0 * tmpData['timeEndMonth']

                # ********************************************************************************************
                # FAO-56 Penman-Monteith 방법
                # ********************************************************************************************
                # https://pyeto.readthedocs.io/en/latest/fao56_penman_monteith.html 매뉴얼 참조
                # 1 W/m2 = 1 J/m2를 기준으로 MJ/day 변환
                dsData['rsdsMJ'] = dsData['rsds'] * 86400 / (10**6)

                # 섭씨 to 켈빈
                dsData['tasKel'] = dsData['tas'] + 273.15
                dsData['tasminKel'] = dsData['tasmin'] + 273.15
                dsData['tasmaxKel'] = dsData['tasmax'] + 273.15

                dsData['svp'] = svp_from_t(dsData['tas'])
                dsData['svpMax'] = svp_from_t(dsData['tasmax'])
                dsData['svpMin'] = svp_from_t(dsData['tasmin'])

                tmpData['solDec'] = sol_dec(tmpData['dayOfYear'])
                tmpData['sha'] = sunset_hour_angle(tmpData['latRad'],
                                                   tmpData['solDec'])
                tmpData['ird'] = inv_rel_dist_earth_sun(tmpData['dayOfYear'])
                tmpData['etRad'] = et_rad(tmpData['latRad'], tmpData['solDec'],
                                          tmpData['sha'], tmpData['ird'])
                tmpData['csRad'] = fao.cs_rad(altitude=1.5,
                                              et_rad=tmpData['etRad'])
                dsData['deltaSvp'] = delta_svp(dsData['tas'])

                # 대기 온도 1.5 m 가정
                psy = fao.psy_const(atmos_pres=fao.atm_pressure(altitude=15))

                dsData['avp'] = fao.avp_from_rhmin_rhmax(
                    dsData['svpMax'], dsData['svpMin'], dsData['hurs'].min(),
                    dsData['hurs'].max())
                niSwRad = pyeto.net_in_sol_rad(dsData['rsdsMJ'], albedo=0.23)
                niLwRad = net_out_lw_rad(dsData['tasminKel'],
                                         dsData['tasmaxKel'], dsData['rsdsMJ'],
                                         tmpData['csRad'], dsData['avp'])
                dsData['net_rad'] = fao.net_rad(ni_sw_rad=niSwRad,
                                                no_lw_rad=niLwRad)

                faoRes = fao.fao56_penman_monteith(dsData['net_rad'],
                                                   dsData['tasKel'],
                                                   dsData['sfcWind'],
                                                   dsData['svp'],
                                                   dsData['avp'],
                                                   dsData['deltaSvp'],
                                                   psy,
                                                   shf=0)

                # ********************************************************************************************
                # 데이터 병합
                # ********************************************************************************************
                data = xr.Dataset(
                    {
                        'hargreaves':
                        (('time', 'lat', 'lon'), (harResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'thornthwaite':
                        (('time', 'lat', 'lon'), (thwResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'penman-monteith':
                        (('time', 'lat', 'lon'), (faoRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                dataL1 = xr.merge([data, dsData])

                # # NetCDF 파일 저장
                saveFile = '{}/{}/{}_eto.nc'.format(globalVar['outPath'],
                                                    serviceName, modelInfo)
                os.makedirs(os.path.dirname(saveFile), exist_ok=True)
                dataL1.to_netcdf(saveFile)
                log.info('[CHECK] saveFile : {}'.format(saveFile))

        except Exception as e:
            log.error("Exception : {}".format(e))
            raise e
        finally:
            log.info('[END] {}'.format("exec"))
Exemplo n.º 5
0
    def calculate_precipitation(self, d):
        if "rain" in d:
            self.rain_day = float(d["rain"])
        if "snow" in d:
            self.snow_day = float(d["snow"])

    # def calculate_ev_fao56_factor(self, d):
        dt = d['dt']
        factor = 0.0
        if dt > d['sunrise']:
            if dt < d['sunset']:
                factor = min(float(dt - d['sunrise'])/3600.0, 1.0)
            else:
                if dt > d['sunset']:
                    factor = (dt - d['sunrise'])/3600.0
                    if factor < 1.0:
                        factor = 1.0 - factor
            return factor

    #def estimate_fao56_hourly(self, day_of_year, temp_c, tdew, elevation, latitude, rh, wind_m_s, atmos_pres):
        """ Estimate fao56 from weather """
        sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude),
                                      pyeto.sol_dec(day_of_year))
        daylight_hours = pyeto.daylight_hours(sha)
        sunshine_hours = 0.8 * daylight_hours
        ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
        et_rad = pyeto.et_rad(pyeto.deg2rad(latitude),
                              pyeto.sol_dec(day_of_year), sha, ird)
        sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours,
                                               et_rad)
        net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23)
        cs_rad = pyeto.cs_rad(elevation, et_rad)
        avp = pyeto.avp_from_tdew(tdew)
        #not sure if I trust this net_out_lw_rad calculation here!
        net_out_lw_rad = pyeto.net_out_lw_rad(temp_c-1, temp_c, sol_rad,
                                              cs_rad, avp)
        net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad)
        eto = pyeto.fao56_penman_monteith(
            net_rad=net_rad,
            t=pyeto.convert.celsius2kelvin(temp_c),
            ws=wind_m_s,
            svp=pyeto.svp_from_t(temp_c),
            avp=avp,
            delta_svp=pyeto.delta_svp(temp_c),
            psy=pyeto.psy_const(atmos_pres))
        return eto

    #def calculate_fao56_hourly(self, d):
        day_of_year = datetime.datetime.now().timetuple().tm_yday
        T_hr = d['temp']
        t_dew = float(d["dew_point"])
        pressure = d['pressure']
        RH_hr = d['humidity']
        u_2 = d['wind_speed']
        #print("CALCULATE_FAO56:")
        #print("T_hr: {}".format(T_hr))
        #print("t_dew: {}".format(t_dew))
        #print("RH_hr: {}".format(RH_hr))
        #print("u_2: {}".format(u_2))
        #print("pressure: {}".format(pressure))
        fao56 = self.estimate_fao56_hourly(day_of_year,
                                    T_hr,
                                    t_dew,
                                    self.elevation,
                                    LAT,
                                    RH_hr,
                                    u_2,
                                    pressure)

        return fao56
coastal = True
altitude = 147
rh_min = 13
rh_max = 88
ws = 1.3

tmean = pyeto.daily_mean_t(tmin, tmax)
atmos_pres = pyeto.atm_pressure(altitude)
psy = pyeto.psy_const(atmos_pres)

# Humidity
svp_tmin = pyeto.svp_from_t(tmin)
svp_tmax = pyeto.svp_from_t(tmax)
delta_svp = pyeto.delta_svp(tmean)
svp = pyeto.mean_svp(tmin, tmax)
avp = pyeto.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max)

# Radiation
sol_dec = pyeto.sol_dec(day_of_year)
sha = pyeto.sunset_hour_angle(latitude, sol_dec)
ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
et_rad = pyeto.et_rad(latitude, sol_dec, sha, ird)
cs_rad = pyeto.cs_rad(altitude, et_rad)
sol_rad = pyeto.sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal)
ni_sw_rad = pyeto.net_in_sol_rad(sol_rad)
no_lw_rad = pyeto.net_out_lw_rad(pyeto.celsius2kelvin(tmin), pyeto.celsius2kelvin(tmax), sol_rad, cs_rad, avp)
net_rad = pyeto.net_rad(ni_sw_rad, no_lw_rad)

eto = pyeto.fao56_penman_monteith(net_rad, pyeto.celsius2kelvin(tmean), ws, svp, avp, delta_svp, psy)
print eto
Exemplo n.º 7
0
    def exec(self):

        log.info('[START] {}'.format("exec"))

        try:

            if (platform.system() == 'Windows'):
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    'srtDate': '2020-09-01',
                    'endDate': '2020-09-03'

                    # 경도 최소/최대/간격
                    ,
                    'lonMin': 0,
                    'lonMax': 360,
                    'lonInv': 0.5

                    # 위도 최소/최대/간격
                    ,
                    'latMin': -90,
                    'latMax': 90,
                    'latInv': 0.5
                }
            else:
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    # 'srtDate': globalVar['srtDate']
                    # , 'endDate': globalVar['endDate']
                }

            # globalVar['outPath'] = 'F:/Global Temp/aski'

            modelList = ['MRI-ESM2-0']
            for i, modelInfo in enumerate(modelList):
                log.info("[CHECK] modelInfo : {}".format(modelInfo))

                inpFile = '{}/{}/{} ssp585 2015-2100_*.nc'.format(
                    globalVar['inpPath'], serviceName, modelInfo)
                fileList = sorted(glob.glob(inpFile))

                dsData = xr.open_mfdataset(fileList)
                # dsData = dsData.sel(lon=slice(120, 150), time=slice('2015-01', '2016-12'))
                # dsData = dsData.sel(lat=slice(50, 50), lon=slice(120, 120), time=slice('2015-01', '2015-12'))

                # 월별 시간 변환
                dsData['time'] = pd.to_datetime(pd.to_datetime(
                    dsData['time'].values).strftime("%Y-%m"),
                                                format='%Y-%m')

                # 단위 설정
                dsData['tasmin'].attrs['units'] = 'degC'
                dsData['tasmax'].attrs['units'] = 'degC'
                dsData['tas'].attrs['units'] = 'degC'

                # 단위 환산을 위한 매월 마지막 날 계산
                lon1D = dsData['lon'].values
                lat1D = dsData['lat'].values
                time1D = dsData['time'].values

                timeEndMonth = []
                timeYear = dsData['time.year'].values
                timeMonth = dsData['time.month'].values

                for i in range(0, len(timeYear)):
                    timeEndMonth.append(
                        calendar.monthrange(timeYear[i], timeMonth[i])[1])

                latRad1D = pyeto.deg2rad(dsData['lat'])

                # 2022.08.13 doy 순서 변경
                # 시작 순서 1, 32, ...
                dayOfYear1D = dsData['time.dayofyear']

                latRad3D = np.tile(
                    np.transpose(np.tile(latRad1D, (len(lon1D), 1))),
                    (len(time1D), 1, 1))
                dayOfYear3D = np.transpose(
                    np.tile(dayOfYear1D, (len(lon1D), len(lat1D), 1)))

                timeEndMonth3D = np.transpose(
                    np.tile(timeEndMonth, (len(lon1D), len(lat1D), 1)))

                tmpData = xr.Dataset(
                    {
                        'timeEndMonth':
                        (('time', 'lat', 'lon'), (timeEndMonth3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'latRad': (('time', 'lat', 'lon'), (latRad3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                        # , 'dayOfYear': (('time', 'lat', 'lon'), (dayOfYear3D).reshape(len(time1D), len(lat1D), len(lon1D)))
                        ,
                        'doy': (('time', 'lat', 'lon'), (dayOfYear3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # 마지막 순서 31, 59, ...
                # tmpData['dayOfYear'] = tmpData['doy']
                tmpData['dayOfYear'] = tmpData['doy'] + timeEndMonth3D

                # ********************************************************************************************
                # FAO-56 Penman-Monteith 방법
                # ********************************************************************************************
                # https://pyeto.readthedocs.io/en/latest/fao56_penman_monteith.html 매뉴얼 참조
                # 1 W/m2 = 1 J/m2를 기준으로 MJ/day 변환
                # dsData['rsdsMJ'] = dsData['rsds'] * 86400 / (10 ** 6)
                dsData['rsdsMJ'] = dsData['rsds'] * 2592000 / (10**6)

                # 섭씨 to 켈빈
                dsData['tasKel'] = dsData['tas'] + 273.15
                dsData['tasminKel'] = dsData['tasmin'] + 273.15
                dsData['tasmaxKel'] = dsData['tasmax'] + 273.15

                dsData['svp'] = svp_from_t(dsData['tas'])
                dsData['svpMax'] = svp_from_t(dsData['tasmax'])
                dsData['svpMin'] = svp_from_t(dsData['tasmin'])

                tmpData['solDec'] = sol_dec(tmpData['dayOfYear'])
                tmpData['sha'] = sunset_hour_angle(tmpData['latRad'],
                                                   tmpData['solDec'])
                tmpData['dayLightHour'] = daylight_hours(tmpData['sha'])
                tmpData['ird'] = inv_rel_dist_earth_sun(tmpData['dayOfYear'])
                # tmpData['etRad'] = et_rad(tmpData['latRad'], tmpData['solDec'], tmpData['sha'], tmpData['ird'])
                tmpData['etRad'] = dsData['rsdsMJ']
                tmpData['csRad'] = fao.cs_rad(altitude=1.5,
                                              et_rad=tmpData['etRad'])
                dsData['deltaSvp'] = delta_svp(dsData['tas'])

                # 대기 온도 1.5 m 가정
                psy = fao.psy_const(atmos_pres=fao.atm_pressure(altitude=15))

                dsData['avp'] = fao.avp_from_rhmin_rhmax(
                    dsData['svpMax'], dsData['svpMin'], dsData['hurs'].min(),
                    dsData['hurs'].max())
                niSwRad = pyeto.net_in_sol_rad(dsData['rsdsMJ'], albedo=0.23)
                niLwRad = net_out_lw_rad(dsData['tasminKel'],
                                         dsData['tasmaxKel'], dsData['rsdsMJ'],
                                         tmpData['csRad'], dsData['avp'])
                dsData['net_rad'] = fao.net_rad(ni_sw_rad=niSwRad,
                                                no_lw_rad=niLwRad)

                # 2022.08.13
                # 상수
                # shfData = 0.336

                # 이전, 현재 대기온도를 통해 계산
                timeList = dsData['time'].values

                shfDataL1 = xr.Dataset()
                for i, timeInfo in enumerate(timeList):

                    prevYmd = (pd.to_datetime(timeInfo) +
                               pd.DateOffset(months=-1)).strftime('%Y-%m-%d')
                    nowYmd = pd.to_datetime(timeInfo).strftime('%Y-%m-%d')

                    prevData = dsData['tas'].interp(
                        time=prevYmd,
                        method='nearest',
                        kwargs={'fill_value': 'extrapolate'})
                    nowData = dsData['tas'].interp(
                        time=nowYmd,
                        method='nearest',
                        kwargs={'fill_value': 'extrapolate'})

                    shfData = pyeto.monthly_soil_heat_flux2(
                        prevData, nowData).rename('shf')
                    shfData['time'] = pd.to_datetime(timeInfo)

                    if (i == 0):
                        shfDataL1 = shfData
                    else:
                        shfDataL1 = xr.concat([shfDataL1, shfData], dim='time')

                dsData = xr.merge([dsData, shfDataL1])

                # Daily eto
                # faoRes = fao.fao56_penman_monteith(dsData['net_rad'], dsData['tasKel'], dsData['sfcWind'], dsData['svp'], dsData['avp'], dsData['deltaSvp'], psy, shf = 0)

                # Monthly eto
                faoRes = fao.fao56_penman_monteith(dsData['net_rad'],
                                                   dsData['tasKel'],
                                                   dsData['sfcWind'],
                                                   dsData['svp'],
                                                   dsData['avp'],
                                                   dsData['deltaSvp'],
                                                   psy,
                                                   shf=dsData['shf'])

                # ********************************************************************************************
                # Hargreaves 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                # harRes = xclim.indices.potential_evapotranspiration( dsData['tasmin'], dsData['tasmax'], dsData['tas'], dsData['lat'], method='hargreaves85')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                # harResL1 = harRes * 86400.0 * tmpData['timeEndMonth']

                # https://pyeto.readthedocs.io/en/latest/thornthwaite.html 매뉴얼 참조
                harRes = pyeto.hargreaves(dsData['tasmin'], dsData['tasmax'],
                                          dsData['tas'], tmpData['etRad'])
                harResL1 = harRes

                # ********************************************************************************************
                # Thornthwaite 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                # thwRes = xclim.indices.potential_evapotranspiration(dsData['tasmin'], dsData['tasmax'], dsData['tas'], dsData['lat'], method ='thornthwaite48')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                # thwResL1 = thwRes * 86400.0 * tmpData['timeEndMonth']

                dsData['tasAdj'] = xr.where((dsData['tas'] >= 0),
                                            dsData['tas'], 0)
                dsData['heatIdx'] = (dsData['tasAdj'] / 5.0)**1.514

                sumHeatIdx = dsData['heatIdx'].groupby('time.year').sum(
                    skipna=True)

                sumHeatIdxData = xr.Dataset()
                timeList = dsData['time'].values
                for i, timeInfo in enumerate(timeList):
                    iYear = int(pd.to_datetime(timeInfo).strftime('%Y'))

                    selHeatIdx = sumHeatIdx.sel(year=iYear).rename(
                        {'year': 'time'})
                    selHeatIdx['time'] = timeInfo

                    if (i == 0):
                        sumHeatIdxData = selHeatIdx
                    else:
                        sumHeatIdxData = xr.concat(
                            [sumHeatIdxData, selHeatIdx], dim='time')

                # 2022.08.15
                # dsData['thwConst'] = (6.75e-07 * dsData['heatIdx'] ** 3) - (7.71e-05 * dsData['heatIdx'] ** 2) + (1.792e-02 * dsData['heatIdx']) + 0.49239
                # thwRes = 1.6 * (tmpData['dayLightHour'] / 12.0) * (tmpData['timeEndMonth'] / 30.0) * ((10.0 * dsData['tasAdj'] / dsData['heatIdx']) ** dsData['thwConst']) * 10.0
                dsData['thwConst'] = (6.75e-07 * sumHeatIdxData**3) - (
                    7.71e-05 * sumHeatIdxData**2) + (1.792e-02 *
                                                     sumHeatIdxData) + 0.49239
                thwRes = 1.6 * (tmpData['dayLightHour'] /
                                12.0) * (tmpData['timeEndMonth'] / 30.0) * (
                                    (10.0 * dsData['tasAdj'] / sumHeatIdxData)
                                    **dsData['thwConst']) * 10.0

                # 0보다 작은 경우 0으로 대체
                thwRes = xr.where((thwRes >= 0), thwRes, 0)

                # ********************************************************************************************
                # 데이터 병합
                # ********************************************************************************************
                etoData = xr.Dataset(
                    {
                        'hargreaves':
                        (('time', 'lat', 'lon'), (harResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'thornthwaite':
                        (('time', 'lat', 'lon'), (thwRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'penman-monteith':
                        (('time', 'lat', 'lon'), (faoRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # NetCDF 파일 저장
                saveFile = '{}/{}/{}_eto.nc'.format(globalVar['outPath'],
                                                    serviceName, modelInfo)
                os.makedirs(os.path.dirname(saveFile), exist_ok=True)
                etoData.to_netcdf(saveFile)
                log.info('[CHECK] saveFile : {}'.format(saveFile))

        except Exception as e:
            log.error("Exception : {}".format(e))
            raise e
        finally:
            log.info('[END] {}'.format("exec"))
Exemplo n.º 8
0
 def test_net_in_sol_rad(self):
     # Test based on example 12, p.87 of FAO paper
     # Note, there seems to be a rounding error in the answer given
     # in the FAO paper!
     rad = pyeto.net_in_sol_rad(14.5)
     self.assertAlmostEqual(rad, 11.1, 0)
Exemplo n.º 9
0
# Humidity
svp_tmin = pyeto.svp_from_t(tmin)
svp_tmax = pyeto.svp_from_t(tmax)
delta_svp = pyeto.delta_svp(tmean)
svp = pyeto.mean_svp(tmin, tmax)
avp = pyeto.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max)

# Radiation
sol_dec = pyeto.sol_dec(day_of_year)
sha = pyeto.sunset_hour_angle(latitude, sol_dec)
ird = pyeto.inv_rel_dist_earth_sun(day_of_year)
et_rad = pyeto.et_rad(latitude, sol_dec, sha, ird)
cs_rad = pyeto.cs_rad(altitude, et_rad)
sol_rad = pyeto.sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal)
ni_sw_rad = pyeto.net_in_sol_rad(sol_rad)
no_lw_rad = pyeto.net_out_lw_rad(pyeto.celsius2kelvin(tmin), pyeto.celsius2kelvin(tmax), sol_rad, cs_rad, avp)
net_rad = pyeto.net_rad(ni_sw_rad, no_lw_rad)

eto = pyeto.fao56_penman_monteith(net_rad, pyeto.celsius2kelvin(tmean), ws, svp, avp, delta_svp, psy)
print eto

Forever
    check the time
    if not running
        if eto is <0 then
            turn on water
            var ontime = time.time()
    else
        time running = ontime - time.time()
        if time running > eto then
Exemplo n.º 10
0
 def test_net_in_sol_rad(self):
     # Test based on example 12, p.87 of FAO paper
     # Note, there seems to be a rounding error in the answer given
     # in the FAO paper!
     rad = pyeto.net_in_sol_rad(14.5)
     self.assertAlmostEqual(rad, 11.1, 0)