Exemplo n.º 1
0
def time(signal,
         dB=False,
         log_prefix=20,
         log_reference=1,
         unit=None,
         ax=None,
         style='light',
         **kwargs):
    """Plot the time data of a signal.

    Plots `prefix * log10(signal.time / log_reference)` if dB is True
    `signal.time` otherwise.

    Parameters
    ----------
    signal : Signal, TimeData
        pyfar Signal or TimeData object.
    dB : boolean
        Indicate if the data should be plotted in dB. The default is False.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is 20.
    log_reference : integer
        Reference for calculating the logarithmic time data. The default is 1.
    unit : str, None
        Unit of the time axis. Can be 's', 'ms', 'mus', or 'samples'.
        The default is None, which sets the unit to 's' (seconds), 'ms'
        (milli seconds), or 'mus' (micro seconds) depending on the maximum.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._time(signal, dB, log_prefix, log_reference, unit, ax,
                         **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.time',
                                      dB_time=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 2
0
def group_delay(signal,
                unit=None,
                xscale='log',
                ax=None,
                style='light',
                **kwargs):
    """Plot the group delay.

    Passes keyword arguments (`kwargs`) to ``matplotlib.pyplot.plot()``.

    Parameters
    ----------
    signal : Signal
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    unit : str, None
        Unit of the group delay. Can be ``s``, ``ms``, ``mus``, or ``samples``.
        The default is ``None``, which sets the unit to ``s`` (seconds), ``ms``
        (milli seconds), or ``mus`` (micro seconds) depending on the data.
    xscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``log``.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Examples
    --------

    .. plot::

        >>> import pyfar as pf
        >>> impulse = pf.signals.impulse(100, 10)
        >>> pf.plot.group_delay(impulse, unit='samples')
    """

    with context(style):
        ax = _line._group_delay(signal.flatten(), unit, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('group_delay', unit=unit, xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 3
0
def phase(signal,
          deg=False,
          unwrap=False,
          xscale='log',
          ax=None,
          style='light',
          **kwargs):
    """Plot the phase of the spectrum on the positive frequency axis.

    Parameters
    ----------
    signal : Signal, FrequencyData
        pyfar Signal or FrequencyData object.
    deg : Boolean
        Flag to plot the phase in degrees. The default is False.
    unwrap : Boolean, str
        True to unwrap the phase or "360" to unwrap the phase to 2 pi. The
        default is False.
    xscale : str
        'linear' or 'log' to plot on a linear or logarithmic x-axis. The
        default is 'log'.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. If not given, the current figure will be used.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._phase(signal, deg, unwrap, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.phase',
                                      deg=deg,
                                      unwrap=unwrap,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 4
0
def group_delay(signal,
                unit=None,
                xscale='log',
                ax=None,
                style='light',
                **kwargs):
    """Plot the group delay on the positive frequency axis.

    Parameters
    ----------
    signal : Signal
        pyfar Signal object.
    unit : str, None
        Unit of the group delay. Can be 's', 'ms', 'mus', or 'samples'.
        The default is None, which sets the unit to 's' (seconds), 'ms'
        (milli seconds), or 'mus' (micro seconds) depending on the maximum.
    xscale : str
        'linear' or 'log' to plot on a linear or logarithmic x-axis. The
        default is 'log'.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._group_delay(signal, unit, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.group_delay',
                                      unit=unit,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 5
0
def custom_subplots(signal, plots, ax=None, style='light', **kwargs):
    """
    Plot multiple pyfar plots with a custom layout and default parameters.

    The plots are passed as a list of :py:mod:`pyfar.plot` function handles.
    The subplot layout is taken from the shape of that list
    (see example below).

    Parameters
    ----------
    signal : Signal
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    plots : list, nested list
        Function handles for plotting.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        List of axes handles

    Examples
    --------

    Generate a two by two subplot layout

    .. plot::

        >>> import pyfar as pf
        >>> impulse = pf.signals.impulse(100, 10)
        >>> plots = [[pf.plot.time, pf.plot.phase],
        ...          [pf.plot.freq, pf.plot.group_delay]]
        >>> pf.plot.custom_subplots(impulse, plots)

    """

    with context(style):
        ax = _line._custom_subplots(signal.flatten(), plots, ax, **kwargs)
    plt.tight_layout()

    return ax
Exemplo n.º 6
0
def custom_subplots(signal, plots, ax=None, style='light', **kwargs):
    """
    Generate subplot with a custom layout based on a list of plot function
    handles. The subplot layout is taken from the shape of the plot function
    handle list.

    Parameters
    ----------
    signal : Signal
        A pyfar Signal object
    plots : list, nested list
        list with function handles for plotting (e.g. pyfar.plot.line.time.
        See example below)
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : axes
        List of axes handles

    Examples
    --------
    >>> from pyfar import Signal
    >>> import pyfar.plot.line as ppl
    >>>
    >>> # generate a signal
    >>> s = Signal([0, 0, 1, 0, 0, 0, 0, 0, 0, 0], 1e3)
    >>>
    >>> # two by two plot of time and frequency signals
    >>> ppl.multi(s, [[ppl.time, ppl.time_dB], [ppl.freq, ppl.group_delay]])

    """

    with context(style):
        ax = _line._custom_subplots(signal, plots, ax, **kwargs)
    plt.tight_layout()

    return ax
Exemplo n.º 7
0
def freq(signal,
         dB=True,
         log_prefix=20,
         log_reference=1,
         xscale='log',
         ax=None,
         style='light',
         **kwargs):
    """
    Plot the logarithmic absolute spectrum on the positive frequency axis.

    Plots `prefix * log10(signal.freq / log_reference)` if dB is True and
    `signal.req` otherwise.

    Parameters
    ----------
    signal : Signal, FrequencyData
        pyfar Signal or FrequencyData object.
    dB : boolean
        Indicate if the data should be plotted in dB. The default is True.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is 20.
    log_reference : integer, float
        Reference for calculating the logarithmic time data. The default is 1.
    xscale : str
        'linear' or 'log' to plot on a linear or logarithmic x-axis. The
        default is 'log'.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._freq(signal, dB, log_prefix, log_reference, xscale, ax,
                         **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 8
0
def freq_group_delay(signal,
                     dB=True,
                     log_prefix=20,
                     log_reference=1,
                     unit=None,
                     xscale='log',
                     ax=None,
                     style='light',
                     **kwargs):
    """Plot the magnitude and group delay spectrum in a 2 by 1 subplot layout.

    Parameters
    ----------
    signal : Signal, FrequencyData
        pyfar Signal or FrequencyData object.
    dB : Boolean
        Flag to plot the logarithmic magnitude specturm. The default is True.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is 20.
    log_reference : integer
        Reference for calculating the logarithmic time data. The default is 1.
    unit : str
        Unit of the group delay. Can be 's', 'ms', 'mus', or 'samples'.
        The default is None, which sets the unit to 's' (seconds), 'ms'
        (milli seconds), or 'mus' (micro seconds) depending on the maximum.
    xscale : str
        'linear' or 'log' to plot on a linear or logarithmic x-axis. The
        default is 'log'.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._freq_group_delay(signal, dB, log_prefix, log_reference,
                                     unit, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter,
                                 **kwargs)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 9
0
def freq_phase(signal,
               dB=True,
               log_prefix=20,
               log_reference=1,
               xscale='log',
               deg=False,
               unwrap=False,
               ax=None,
               style='light',
               **kwargs):
    """Plot the magnitude and phase spectrum in a 2 by 1 subplot layout.

    Parameters
    ----------
    signal : Signal, FrequencyData
        pyfar Signal or FrequencyData object.
    dB : Boolean
        Flag to plot the logarithmic magnitude specturm. The default is True.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is 20.
    log_reference : integer
        Reference for calculating the logarithmic time data. The default is 1.
    deg : Boolean
        Flag to plot the phase in degrees. The default is False.
    unwrap : Boolean, str
        True to unwrap the phase or "360" to unwrap the phase to 2 pi. The
        default is False.
    xscale : str
        'linear' or 'log' to plot on a linear or logarithmic x-axis. The
        default is 'log'.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is None, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'
    **kwargs
        Keyword arguments that are piped to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._freq_phase(signal, dB, log_prefix, log_reference, xscale,
                               deg, unwrap, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter,
                                 **kwargs)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 10
0
def spectrogram(signal,
                dB=True,
                log_prefix=20,
                log_reference=1,
                yscale='linear',
                unit=None,
                window='hann',
                window_length=1024,
                window_overlap_fct=0.5,
                cmap=mpl.cm.get_cmap(name='magma'),
                ax=None,
                style='light'):
    """Plot the magnitude spectrum versus time.

    Parameters
    ----------
    signal : Signal
        pyfar Signal object.
    dB : Boolean
        Flag to plot the logarithmic magnitude specturm. The default is True.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is 20.
    log_reference : integer
        Reference for calculating the logarithmic time data. The default is 1.
    yscale : str
        'linear' or 'log' to plot on a linear or logarithmic y-axis. The
        default is 'linear'.
    unit : str, None
        Unit of the time axis. Can be 's', 'ms', 'mus', or 'samples'.
        The default is None, which sets the unit to 's' (seconds), 'ms'
        (milli seconds), or 'mus' (micro seconds) depending on the maximum.
    window : str
        Specifies the window (See scipy.signal.get_window). The default is
        'hann'.
    window_length : integer
        Specifies the window length in samples. The default ist 1024.
    window_overlap_fct : double
        Ratio of points to overlap between fft segments [0...1]. The default is
        0.5
    cmap : matplotlib.colors.Colormap(name, N=256)
        Colormap for spectrogram. Defaults to matplotlibs 'magma' colormap.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. If not given, the current figure will be used.
    style : str
        'light' or 'dark' to use the pyfar plot styles or style from
        matplotlib.pyplot.available. the default is 'light'

    Returns
    -------
    ax : matplotlib.pyplot.axes object
        Axes or array of axes containing the plot.
    """
    if not isinstance(signal, Signal):
        raise TypeError('Input data has to be of type: Signal.')

    with context(style):
        ax = _line._spectrogram_cb(signal, dB, log_prefix, log_reference,
                                   yscale, unit, window, window_length,
                                   window_overlap_fct, cmap, ax)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('line.spectrogram',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      yscale=yscale,
                                      unit=unit,
                                      window=window,
                                      window_length=window_length,
                                      window_overlap_fct=window_overlap_fct,
                                      cmap=cmap)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 11
0
def freq(signal,
         dB=True,
         log_prefix=20,
         log_reference=1,
         xscale='log',
         ax=None,
         style='light',
         **kwargs):
    """
    Plot the magnitude spectrum.

    Plots ``abs(signal.freq)`` and passes keyword arguments (`kwargs`) to
    ``matplotlib.pyplot.plot()``.

    Parameters
    ----------
    signal : Signal, FrequencyData
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    dB : bool
        Indicate if the data should be plotted in dB in which case
        ``log_prefix * np.log10(abs(signal.freq) / log_reference)`` is used.
        The default is ``True``.
    log_prefix : integer, float
        Prefix for calculating the logarithmic frequency data. The default is
        ``20``.
    log_reference : integer, float
        Reference for calculating the logarithmic frequency data. The default
        is ``1``.
    xscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``log``.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Example
    -------

    .. plot::

        >>> import pyfar as pf
        >>> sine = pf.signals.sine(100, 4410)
        >>> pf.plot.freq(sine)
    """

    with context(style):
        ax = _line._freq(signal.flatten(), dB, log_prefix, log_reference,
                         xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 12
0
def time(signal,
         dB=False,
         log_prefix=20,
         log_reference=1,
         unit=None,
         ax=None,
         style='light',
         **kwargs):
    """Plot the time signal.

    Plots ``signal.time`` and passes keyword arguments (`kwargs`) to
    ``matplotlib.pyplot.plot()``.

    Parameters
    ----------
    signal : Signal, TimeData
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    dB : bool
        Indicate if the data should be plotted in dB in which case
        ``log_prefix * np.log10(signal.time / log_reference)`` is used. The
        default is ``False``.
    log_prefix : integer, float
        Prefix for calculating the logarithmic time data. The default is
        ``20``.
    log_reference : integer
        Reference for calculating the logarithmic time data. The default is
        ``1``.
    unit : str, None
        Unit of the time axis. Can be ``s``, ``ms``, ``mus``, or ``samples``.
        The default is ``None``, which sets the unit to ``s`` (seconds), ``ms``
        (milli seconds), or ``mus`` (micro seconds) depending on the data.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Examples
    --------

    .. plot::

        >>> import pyfar as pf
        >>> sine = pf.signals.sine(100, 4410)
        >>> pf.plot.time(sine)

    """

    with context(style):
        ax = _line._time(signal.flatten(), dB, log_prefix, log_reference, unit,
                         ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('time',
                                      dB_time=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax
Exemplo n.º 13
0
def freq_group_delay(signal,
                     dB=True,
                     log_prefix=20,
                     log_reference=1,
                     unit=None,
                     xscale='log',
                     ax=None,
                     style='light',
                     **kwargs):
    """Plot the magnitude and group delay spectrum in a 2 by 1 subplot layout.

    Passes keyword arguments (`kwargs`) to ``matplotlib.pyplot.plot()``.

    Parameters
    ----------
    signal : Signal, FrequencyData
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    dB : bool
        Flag to plot the logarithmic magnitude spectrum. The default is
        ``True``.
    log_prefix : integer, float
        Prefix for calculating the logarithmic frequency data. The default is
        ``20``.
    log_reference : integer
        Reference for calculating the logarithmic frequency data. The default
        is ``1``.
    unit : str
        Unit of the group delay. Can be ``s``, ``ms``, ``mus``, or ``samples``.
        The default is ``None``, which sets the unit to ``s`` (seconds), ``ms``
        (milli seconds), or ``mus`` (micro seconds) depending on the data.
    xscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``log``.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Examples
    --------

    .. plot::

        >>> import pyfar as pf
        >>> impulse = pf.signals.impulse(100, 10)
        >>> pf.plot.freq_group_delay(impulse, unit='samples')
    """

    with context(style):
        ax = _line._freq_group_delay(signal.flatten(), dB, log_prefix,
                                     log_reference, unit, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter,
                                 **kwargs)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 14
0
def freq_phase(signal,
               dB=True,
               log_prefix=20,
               log_reference=1,
               xscale='log',
               deg=False,
               unwrap=False,
               ax=None,
               style='light',
               **kwargs):
    """Plot the magnitude and phase spectrum in a 2 by 1 subplot layout.

    Parameters
    ----------
    signal : Signal, FrequencyData
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    dB : bool
        Indicate if the data should be plotted in dB in which case
        ``log_prefix * np.log10(abs(signal.freq) / log_reference)`` is used.
        The default is ``True``.
    log_prefix : integer, float
        Prefix for calculating the logarithmic frequency data. The default is
        ``20``.
    log_reference : integer
        Reference for calculating the logarithmic frequency data. The default
        is ``1``.
    deg : bool
        Flag to plot the phase in degrees. The default is ``False``.
    unwrap : bool, str
        True to unwrap the phase or "360" to unwrap the phase to 2 pi. The
        default is ``False``.
    xscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``log``.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current figure
        ore creates a new one if no figure exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are forwarded to matplotlib.pyplot.plot

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    See Also
    --------
    matplotlib.pyplot.plot() for possible **kwargs.
    """

    with context(style):
        ax = _line._freq_phase(signal.flatten(), dB, log_prefix, log_reference,
                               xscale, deg, unwrap, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('freq',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter,
                                 **kwargs)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 15
0
def spectrogram(signal,
                dB=True,
                log_prefix=20,
                log_reference=1,
                yscale='linear',
                unit=None,
                window='hann',
                window_length=1024,
                window_overlap_fct=0.5,
                cmap=mpl.cm.get_cmap(name='magma'),
                ax=None,
                style='light'):
    """Plot blocks of the magnitude spectrum versus time.

    Parameters
    ----------
    signal : Signal
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    dB : bool
        Indicate if the data should be plotted in dB in which case
        ``log_prefix * np.log10(abs(signal.freq) / log_reference)`` is used.
        The default is ``True``.
    log_prefix : integer, float
        Prefix for calculating the logarithmic frequency data. The default is
        ``20``.
    log_reference : integer
        Reference for calculating the logarithmic frequency data. The default
        is ``1``.
    yscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``linear``.
    unit : str, None
        Unit of the time axis. Can be ``s``, ``ms``, ``mus``, or ``samples``.
        The default is ``None``, which sets the unit to ``s`` (seconds), ``ms``
        (milli seconds), or ``mus`` (micro seconds) depending on the data.
    window : str
        Specifies the window that is applied to each block of the time data
        before applying the Fourier transform. The default is ``hann``. See
        ``scipy.signal.get_window`` for a list of possible windows.
    window_length : integer
        Specifies the window/block length in samples. The default is ``1024``.
    window_overlap_fct : double
        Ratio of points to overlap between blocks [0...1]. The default is
        ``0.5``, which would result in 512 samples overlap for a window length
        of 1024 samples.
    cmap : matplotlib.colors.Colormap(name, N=256)
        Colormap for spectrogram. Defaults to matplotlibs ``magma`` colormap.
    ax : matplotlib.pyplot.axes
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Example
    -------

    .. plot::

        >>> import pyfar as pf
        >>> sweep = pf.signals.linear_sweep_time(2**14, [0, 22050])
        >>> pf.plot.spectrogram(sweep)
    """
    if not isinstance(signal, Signal):
        raise TypeError('Input data has to be of type: Signal.')

    with context(style):
        ax = _line._spectrogram_cb(signal.flatten(), dB, log_prefix,
                                   log_reference, yscale, unit, window,
                                   window_length, window_overlap_fct, cmap, ax)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('spectrogram',
                                      dB_freq=dB,
                                      log_prefix=log_prefix,
                                      log_reference=log_reference,
                                      yscale=yscale,
                                      unit=unit,
                                      window=window,
                                      window_length=window_length,
                                      window_overlap_fct=window_overlap_fct,
                                      cmap=cmap)
    interaction = ia.Interaction(signal, ax[0], style, plot_parameter)
    ax[0].interaction = interaction

    return ax
Exemplo n.º 16
0
def phase(signal,
          deg=False,
          unwrap=False,
          xscale='log',
          ax=None,
          style='light',
          **kwargs):
    """Plot the phase of the spectrum.

    Plots ``angle(signal.freq)`` and passes keyword arguments (`kwargs`) to
    ``matplotlib.pyplot.plot()``.

    Parameters
    ----------
    signal : Signal, FrequencyData
        The input data to be plotted. Multidimensional data are flattened for
        plotting, e.g, a signal of ``signal.cshape = (2, 2)`` would be plotted
        in the order ``(0, 0)``, ``(0, 1)``, ``(1, 0)``, ``(1, 1)``.
    deg : bool
        Plot the phase in degrees. The default is ``False``, which plots the
        phase in radians.
    unwrap : bool, str
        True to unwrap the phase or "360" to unwrap the phase to 2 pi. The
        default is ``False``, which plots the wrapped phase.
    xscale : str
        ``linear`` or ``log`` to plot on a linear or logarithmic frequency
        axis. The default is ``log``.
    ax : matplotlib.pyplot.axes object
        Axes to plot on. The default is ``None``, which uses the current axis
        or creates a new figure if none exists.
    style : str
        ``light`` or ``dark`` to use the pyfar plot styles or a plot style from
        ``matplotlib.style.available``. The default is ``light``.
    **kwargs
        Keyword arguments that are passed to ``matplotlib.pyplot.plot()``.

    Returns
    -------
    ax : matplotlib.pyplot.axes
        Axes or array of axes containing the plot.

    Example
    -------

    .. plot::

        >>> import pyfar as pf
        >>> impulse = pf.signals.impulse(100, 10)
        >>> pf.plot.phase(impulse, unwrap=True)
    """

    with context(style):
        ax = _line._phase(signal.flatten(), deg, unwrap, xscale, ax, **kwargs)
    plt.tight_layout()

    # manage interaction
    plot_parameter = ia.PlotParameter('phase',
                                      deg=deg,
                                      unwrap=unwrap,
                                      xscale=xscale)
    interaction = ia.Interaction(signal, ax, style, plot_parameter, **kwargs)
    ax.interaction = interaction

    return ax