Exemplo n.º 1
0
def generate_il(im_array, f_ih, theta, phi, cfg):
    """ Returns the low resolution sampled image with added reconstructed phase
    in the according spectral position. More detailed explanation:
    Takes the high resolution spectrum, calculates a low resolution sample in
    the spectral area occupied by the sampled image (im_array) by cuting it
    with the pupil at the (theta, phi), takes just the phase information in
    this area and replaces its modulus with the acquired im_array.
    Why this is outside the main function? Because it is also used in the
    quality metric (to be reimpemented here).
    """
    ps = fpmm.ps_required(cfg.phi[1], cfg.wavelength, cfg.na)
    image_size = np.shape(im_array)
    pupil = fpmm.generate_pupil(theta=theta, phi=phi, image_size=image_size,
                                wavelength=cfg.wavelength, pixel_size=ps,
                                na=cfg.na)
    pupil_shift = fftshift(pupil)
    # Step 2: lr of the estimated image using the known pupil
    f_il = ifft2(f_ih*pupil_shift)  # space pupil * fourier image
    Phl = np.angle(f_il)
    # Step 3: spectral pupil area replacement
    Il = np.sqrt(im_array) * np.exp(1j*Phl)  # Spacial update
    Iupdate = Il
    # Iupdate /= np.max(Iupdate)
    # Iupdate *= 150
    return Iupdate
Exemplo n.º 2
0
def dpc_init(samples=None, backgrounds=None, it=None, init_point=None,
             cfg=None,  debug=False):
    """ Absolutely experimental reconstruction function. Virtually analog to
    fpm_reconstruct() to be used as a test sandbox.
    """
    # pc = PlatformCoordinates(theta=0, phi=0, height=cfg.sample_height, cfg=cfg)
    xoff, yoff = init_point  # Selection of the image patch
    ps_required = fpmm.ps_required(cfg.phi[1], cfg.wavelength, cfg.na)
    # mask = get_mask(samples, backgrounds, xoff, yoff, cfg)
    # Getting the maximum angle by the given configuration
    # Step 1: initial estimation
    Et = initialize(samples, backgrounds, xoff, yoff, cfg, 'zero')
    f_ih = fft2(Et)  # unshifted transform, shift is later applied to the pupil
    if debug:
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(25, 15))
        fig.show()
        # fig, axes = implot.init_plot(4)
    # Steps 2-5
    for iteration in range(cfg.n_iter):
        iterator = ct.set_iterator(cfg)
        print('Iteration n. %d' % iteration)
        # Patching for testing
        for index, theta, shift in iterator:
            theta, phi = ct.corrected_coordinates(theta=theta, shift=shift,
                                                  cfg=cfg)
            print(theta, phi)
            # Final step: squared inverse fft for visualization
            im_array = fpmm.crop_image(samples[(theta, shift)],
                                       cfg.patch_size, xoff, yoff)
            background = fpmm.crop_image(backgrounds[(theta, shift)],
                                         cfg.patch_size, xoff, yoff)

            im_array = image_correction(im_array, background, mode='background')
            im_array, resc_size = image_rescaling(im_array, cfg)
            Il = generate_il(im_array, f_ih, theta, phi, cfg)
            #     print("Testing quality metric", quality_metric(image_dict, Il, cfg), phi)
            pupil = fpmm.generate_pupil(theta=theta, phi=phi,
                                        image_size=resc_size, wavelength=cfg.wavelength,
                                        pixel_size=ps_required, na=cfg.objective_na)
            pupil_shift = fftshift(pupil)
            f_il = fft2(Il)
            f_ih = f_il*pupil_shift + f_ih*(1 - pupil_shift)
            if debug and index % 1 == 0:
                fft_rec = np.log10(np.abs(f_ih)+1)
                fft_rec *= (255.0/fft_rec.max())
                fft_rec = fftshift(fft_rec)
                # fft_rec = Image.fromarray(np.uint8(fft_rec*255), 'L')
                im_rec = ifft2(f_ih)
                # im_rec *= (255.0/im_rec.max())
                im_rec_abs = np.abs(im_rec*np.conj(im_rec))
                def plot_image(ax, image):
                    ax.cla()
                    ax.imshow(image, cmap=plt.get_cmap('hot'))
                ax = iter([ax1, ax2, ax3, ax4])
                for image in [np.abs(fft_rec), im_rec, im_array, np.angle(im_rec)]:
                    plot_image(ax.next(), image)
                fig.canvas.draw()
        # print("Testing quality metric", quality_metric(image_dict, Il, cfg, max_phi))
    return np.abs(np.power(ifft2(f_ih), 2)), np.angle(ifft2(f_ih+1))
Exemplo n.º 3
0
 def pupil_wrap(zfocus, radius):
     CTF = fpmm.generate_pupil(0, 0, [lrsize, lrsize], pupil_radius)
     # focus test
     # dky = 2*np.pi/(float(cfg.ps_req)*hrshape[0])
     kmax = np.pi/float(cfg.pixel_size)
     step = kmax/((lrsize-1)/2)
     kxm, kym = np.meshgrid(np.arange(-kmax,kmax+1,step), np.arange(-kmax,kmax+1, step));
     k0 = 2*np.pi/float(cfg.wavelength)
     kzm = np.sqrt(k0**2-kxm**2-kym**2);
     pupil = np.exp(1j*zfocus*np.real(kzm))*np.exp(-np.abs(zfocus)*np.abs(np.imag(kzm)));
     return CTF*pupil;
Exemplo n.º 4
0
def fpm_reconstruct(samples=None, hrshape=None, it=None, pupil_radius=None,
                    kdsc=None, cfg=None,  debug=False):
    """ FPM reconstructon using the alternating projections algorithm. Here
    the complete samples and (optional) background images are loaded and Then
    cropped according to the patch size set in the configuration tuple (cfg).

    Args:
    -----
        samples: the acquired samples as a dictionary with angles as keys.
        backgrounds: the acquired background as a dictionary with angles as
                     keys. They must be acquired right after or before taking
                     the samples.
        it: iterator with additional sampling information for each sample.
        init_point: [xoff, yoff] center of the patch to be reconstructed.
        cfg: configuration (named tuple)
        debug: set it to 'True' if you want to see the reconstruction proccess
               (it slows down the reconstruction).

    Returns:
    --------
        (ndarray) The reconstructed modulus and phase of the sampled image.
    """
    # Getting the maximum angle by the given configuration
    # Step 1: initial estimation
    # objectRecover = initialize(hrshape, cfg, 'zero')
    objectRecover = np.ones(hrshape)
    lrsize = samples[(15, 15)].shape[0]
    xc, yc = fpmm.image_center(hrshape)
    print(lrsize, pupil_radius)
    CTF = fpmm.generate_pupil(0, 0, [lrsize, lrsize], pupil_radius)
    # focus test
    # dky = 2*np.pi/(float(cfg.ps_req)*hrshape[0])
    kmax = np.pi/float(cfg.pixel_size)
    step = kmax/((lrsize-1)/2)
    kxm, kym = np.meshgrid(np.arange(-kmax,kmax+1,step), np.arange(-kmax,kmax+1, step));
    z = -.35E-6
    k0 = 2*np.pi/float(cfg.wavelength)
    kzm = np.sqrt(k0**2-kxm**2-kym**2);
    pupil = np.exp(1j*z*np.real(kzm))*np.exp(-np.abs(z)*np.abs(np.imag(kzm)));
    pupil = CTF*pupil;

    objectRecoverFT = fftshift(fft2(objectRecover))  # shifted transform
    if debug:
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(25, 15))
        fig.show()
    # Steps 2-5
    factor = (lrsize/hrshape[0])**2
    for iteration in range(cfg.n_iter):
        iterator = ct.set_iterator(cfg)
        print('Iteration n. %d' % iteration)
        # Patching for testing
        for it in iterator:
            acqpars = it['acqpars']
            # indexes, theta, phi = it['indexes'], it['theta'], it['phi']
            indexes, kx_rel, ky_rel = ct.n_to_krels(it, cfg)
            print(indexes, kx_rel, ky_rel)
            if indexes[0] > 19 or indexes[0] < 11 or indexes[1] > 19 or indexes[1] < 11:
                 continue
            lr_sample = samples[it['indexes']]/(acqpars[1])
            # From generate_il
            # Calculating coordinates
            [kx, ky] = kdsc*kx_rel, kdsc*ky_rel
            # if kx > 80 or ky > 80:
            #      continue
            # [kx, ky] = ct.angles_to_k(theta, phi, kdsc)
            # coords = np.array([np.sin(phi_rad)*np.cos(theta_rad),
            #                    np.sin(phi_rad)*np.sin(theta_rad)])
            # [kx, ky] = coords*kdsc
            # f_ih_shift = fftshift(fft2(lr_sample))
            kyl = int(np.round(yc+ky-(lrsize+1)/2))
            kyh = kyl + lrsize
            kxl = int(np.round(xc+kx-(lrsize+1)/2))
            kxh = kxl + lrsize

            # Il = generate_il(im_array, f_ih, theta, phi, cfg)
            lowResFT = factor * objectRecoverFT[kyl:kyh, kxl:kxh]*pupil
            # Step 2: lr of the estimated image using the known pupil
            im_lowRes = ifft2(ifftshift(lowResFT))  # space pupil * fourier image
            im_lowRes = 1/factor * lr_sample * np.exp(1j*np.angle(im_lowRes))
            lowResFT = fftshift(fft2(im_lowRes))*pupil
            objectRecoverFT[kyl:kyh, kxl:kxh] = (1-pupil)*objectRecoverFT[kyl:kyh, kxl:kxh] + lowResFT
            # Step 3: spectral pupil area replacement
            ####################################################################
            # If debug mode is on
            if debug and indexes[0] % 5 == 0:
                im_out = ifft2(ifftshift(objectRecoverFT))
                fft_rec = np.log10(np.abs(objectRecoverFT))
                # fft_rec *= (255.0/fft_rec.max())
                # Il = Image.fromarray(np.uint8(Il), 'L')
                # im_rec *= (255.0/im_rec.max())
                def plot_image(ax, image, title):
                    ax.cla()
                    ax.imshow(image, cmap=plt.get_cmap('gray'))
                    ax.set_title(title)
                axiter = iter([(ax1, 'Reconstructed FFT'), (ax2, 'Reconstructed magnitude'),
                            (ax3, 'Acquired image'), (ax4, 'Reconstructed phase')])
                for image in [np.abs(fft_rec), np.abs(im_out), lr_sample, np.angle(im_out)]:
                    ax, title = next(axiter)
                    plot_image(ax, image, title)
                fig.canvas.draw()
            # print("Testing quality metric", fpmm.quality_metric(samples, Il, cfg))
    return np.abs(im_out), np.angle(im_out)
Exemplo n.º 5
0
    plt.show()

if task is 'test_and_measure':
    image_dict = np.load(out_file)
    for index, theta, phi, power in iterator:
        if phi == 20 or phi == 40:
            im_array = image_dict[()][(theta, phi)]
            intensity = np.mean(im_array)
            print('int: %f, theta: %d, phi: %d' % (intensity, theta, phi))
            ax = plt.gca() or plt
            ax.imshow(im_array, cmap=plt.get_cmap('gray'))
            ax.get_figure().canvas.draw()
            plt.show(block=False)

if task is 'visualize':
    from pyfpm.plotsgui import plot_crossections
    img = client.load_image(cfg.input_mag)
    image = misc.imread(StringIO(img), 'gray')
    plot_crossections(image)

if task is 'test':
    fig, ax = plt.subplots(1, 1, figsize=(25, 15))
    fig.show()
    image = client.acquire(0, 0, 100)
    ax.cla()
    pupil = generate_pupil(0, 0, 100, 50, [640, 480])
    im_ax = ax.imshow(image, cmap=plt.get_cmap('gray'))
    fig.canvas.draw()
    ax.format_coord = Formatter(im_ax)
    plt.show()
Exemplo n.º 6
0
plt.grid(False)
fig.show()

theta, phi = [0, 5]
sim_im_array = simclient.acquire(theta, phi, power=100)
ps_req = fpm.pixel_size_required(cfg.phi[1], cfg.wavelength, cfg.objective_na)
original_shape = np.shape(sim_im_array)
scale_factor = cfg.pixel_size / ps_req
processing_shape = np.array(original_shape) * scale_factor

pupil_radius = fpm.calculate_pupil_radius(cfg.objective_na,
                                          processing_shape[0], cfg.pixel_size,
                                          cfg.wavelength)
pupil = fpm.generate_pupil(theta=0,
                           phi=0,
                           image_size=processing_shape.astype(int),
                           wavelength=cfg.wavelength,
                           pixel_size=ps_req,
                           na=cfg.objective_na)
sim_im_array = fpm.resize_complex_image(sim_im_array, processing_shape)

pupil_shift = fftshift(pupil)
f_image = fft2(sim_im_array)
f_cut = f_image * pupil_shift
im_rec = np.power(np.abs(ifft2(f_cut)), 1)

sim_im_array = fpm.resize_complex_image(sim_im_array, [150, 150])
im_rec = fpm.resize_complex_image(im_rec, [150, 150])
pupil = fpm.resize_complex_image(pupil, [150, 150])
f_image = fpm.resize_complex_image(f_image, [150, 150])

corr = signal.correlate2d(np.abs(fftshift(f_image)),