Exemplo n.º 1
0
def main():
    """
    Code for varying bias runs: 1174-1176
    """

    run_db, cal_db = "runDB.json", "calDB.json"

    par = argparse.ArgumentParser(description="A/E cut for MJ60")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-db", "--writeDB", action=st, help="store results in DB")
    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db)  #,tier_dir=tier_dir)

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db)

    # resolution(ds, args["writeDB"])
    baseline_noise(ds)
Exemplo n.º 2
0
def main():

    run_db, cal_db = "runDB.json", "calDB.json"

    par = argparse.ArgumentParser(description="calibration suite for MJ60")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")

    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db)

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]),
                     sub='none',
                     md=run_db,
                     cal=cal_db)

    # gain_shift(ds)
    # get_power_spectrum(ds)
    baseline_noise(ds)
Exemplo n.º 3
0
def main():
    """
    Code to implement an A/E cut
    """
    # global runDB
    # with open("runDB.json") as f:
    #     runDB = json.load(f)

    # global tier_dir
    # tier_dir = runDB["tier_dir"]
    # global meta_dir
    # meta_dir = runDB["meta_dir"]

    run_db, cal_db = "runDB.json", "calDB.json"

    par = argparse.ArgumentParser(description="A/E cut for MJ60")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-db", "--writeDB", action=st, help="store results in DB")
    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db)  #,tier_dir=tier_dir)

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db)

    find_cut(ds, ds_lo, args["writeDB"])
Exemplo n.º 4
0
def main():
    """
    perform automatic calibration of pygama DataSets.
    command line options to specify the DataSet are the same as in processing.py
    save results in a JSON database for access by other routines.
    """
    run_db, cal_db = "runDB.json", "calDB.json"

    par = argparse.ArgumentParser(description="calibration suite for MJ60")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-s", "--spec", action=st, help="print simple spectrum")
    arg("-p1", "--pass1", action=st, help="run pass-1 (linear) calibration")
    arg("-p2", "--pass2", action=st, help="run pass-2 (peakfit) calibration")
    arg("-e",
        "--etype",
        nargs=1,
        help="custom energy param (default is e_ftp)")
    arg("-t", "--test", action=st, help="set verbose (testing) output")
    arg("-db", "--writeDB", action=st, help="store results in DB")
    arg("-pr", "--printDB", action=st, help="print calibration results in DB")
    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db, v=args["test"])

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]),
                     sub='none',
                     md=run_db,
                     cal=cal_db,
                     v=args["test"])

    # -- start calibration routines --
    etype = args["etype"][0] if args["etype"] else "e_ftp"

    if args["spec"]:
        show_spectrum(ds, etype)

    if args["pass1"]:
        calibrate_pass1(ds, etype, args["writeDB"], args["test"])

    if args["pass2"]:
        calibrate_pass2(ds, args["test"])

    # fit to germanium peakshape function goes here -- take from matthew's code
    # if args["pass3"]:
    #     calibrate_pass3(ds)

    if args["printDB"]:
        show_calDB(cal_db)
Exemplo n.º 5
0
def main(argv):
    """
  Uses pygama's amazing DataSet class to process runs for different
  data sets, with arbitrary configuration options defined in a JSON file.
  C. Wiseman, 2019/04/09

  Modified for HADES data
  A.Zschocke
  """

    # -- parse args --
    par = argparse.ArgumentParser(description="test data processing suite")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-t0", "--tier0", action=st, help="run ProcessTier0 on list")
    arg("-t1", "--tier1", action=st, help="run ProcessTier1 on list")
    arg("-t", "--test", action=st, help="test mode, don't run")
    arg("-n", "--nevt", nargs='?', default=np.inf, help="limit max num events")
    arg("-i", "--ioff", nargs='?', default=0, help="start at index [i]")
    arg("-v", "--verbose", action=st, help="set verbose output")
    arg("-o", "--ovr", action=st, help="overwrite existing files")
    arg("-m", "--nomp", action=sf, help="don't use multiprocessing")
    arg("-s", "--sub", nargs=1, help="number of subfiles")
    arg("-db", "--db", nargs=1, help="/path/to/runDB.json")
    args = vars(par.parse_args())

    if args["db"]:
        run_db = args["db"][0] + "/runDB.json"

    if args["sub"]:
        sub = int(args["sub"][0])

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(sub, ds_lo, ds_hi, md=run_db, v=args["verbose"])

        if args["run"]:
            ds = DataSet(sub,
                         run=int(args["run"][0]),
                         md=run_db,
                         v=args["verbose"])

        # -- start processing --
        if args["tier0"] and args["sub"]:
            sub = int(args["sub"][0])
            tier0(ds, sub, args["ovr"], args["nevt"], args["verbose"],
                  args["test"])

        if args["tier1"]:
            tier1(ds, sub, args["ovr"], args["nevt"], args["ioff"],
                  args["nomp"], args["verbose"], args["test"])
Exemplo n.º 6
0
def main(argv):
    """
    Uses pygama's amazing DataSet class to process runs
    for different data sets and arbitrary configuration options
    defined in a JSON file.
    """
    #datadir = os.environ["CAGEDATA"]
    run_db, cal_db = f'./meta/runDB.json', f'./meta/calDB.json'

    # -- parse args --
    par = argparse.ArgumentParser(description="data processing suite for CAGE")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-d2r", "--daq_to_raw", action=st, help="run daq_to_raw on list")
    arg("-r2d", "--raw_to_dsp", action=st, help="run raw_to_dsp on list")
    arg("-t", "--test", action=st, help="test mode, don't run")
    arg("-n", "--nevt", nargs='?', default=np.inf, help="limit max num events")
    arg("-i", "--ioff", nargs='?', default=0, help="start at index [i]")
    arg("-o", "--ovr", action=st, help="overwrite existing files")

    arg('-v', '--verbose', default=2, type=int,
        help="Verbosity level: 0=silent, 1=basic warnings, 2=verbose output, 3=debug. Default is 2.")

    arg('-b', '--block', default=8, type=int,
        help="Number of waveforms to process simultaneously. Default is 8")

    arg('-g', '--group', default='',
        help="Name of group in LH5 file. By default process all base groups. Supports wildcards.")

    # -- declare the DataSet --
    args = par.parse_args()
    d_args = vars(par.parse_args())
    #ds = pu.get_dataset_from_cmdline(d_args, run_db, cal_db)
    # -- declare the DataSet --
    if d_args["ds"]:
        ds_lo = int(d_args["ds"][0])
        try:
            ds_hi = int(d_args["ds"][1])
        except:
            ds_hi = None
            ds = DataSet(1,ds_lo, ds_hi, md=run_db, v=d_args["verbose"])
            
    if d_args["run"]:
        ds = DataSet(1,run=int(d_args["run"][0]), md=run_db, v=d_args["verbose"])
    
    #print(ds.runs)
    #pprint(ds.paths)

    # -- start processing --
    if args.daq_to_raw:
        daq_to_raw(ds, args.ovr, args.nevt, args.verbose, args.test)

    if args.raw_to_dsp:
        raw_to_dsp(ds, args.ovr, args.nevt, args.test, args.verbose, args.block,
                   args.group)
Exemplo n.º 7
0
def main():
    """
    tumbsi analysis suite
    """
    global display
    display = 1  # allow displaying intermediate distributions for control

    run_db, cal_db = "runDB.json", "calDB.json"

    with open(run_db) as f:
        runDB = json.load(f)

    global tier_dir
    tier_dir = runDB["tier_dir"]
    global meta_dir
    meta_dir = runDB["meta_dir"]
    global dep_line
    dep_line = 1592.5
    global dep_acc
    dep_acc = 0.9

    # peaks_of_interest = sorted(runDB["peaks_of_interest"], reverse=True)
    peaks_of_interest = [2614.5, 1460.8, 583.2]

    # take calibration parameter for the 'calibration.py' output
    # with open(cal_db) as f:
    #   calDB = json.load(f)

    par = argparse.ArgumentParser(description="calibration suite for tumbsi")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    args = vars(par.parse_args())

    ecal = np.zeros(3)
    eres = np.zeros(2)

    # Which run number is the being analyzed
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db)
        run = ds_lo

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db)

    print("")
    print("Start Pulse Shape Anlysis")
    print("")

    psa(run, ds, ecal, eres, peaks_of_interest, ds, ds_lo)
Exemplo n.º 8
0
def process_ds(rise_times):
    """
    and determine the trapezoid parameters that minimize
    the FWHM of the peak (fitting to the peakshape function).
    """
    from pygama.dsp.base import Intercom
    from pygama.io.tier1 import ProcessTier1
    import pygama.io.decoders.digitizers as pgd
    
    ds_num = 3
    ds = DataSet(ds_num, md="runDB.json")
    first_run = ds.runs[0]
    
    # specify temporary I/O locations
    out_dir = os.path.expanduser('~') + "/Data/cage"
    t1_file = f"{out_dir}/cage_ds3_t1.h5"
    t2_file = f"{out_dir}/cage_ds3_t2.h5"
    opt_file = f"{out_dir}/cage_ds3_optimize.h5"
    
    if os.path.exists(opt_file):
        os.remove(opt_file)
        
    # check the windowed file
    tmp = pd.read_hdf(t1_file)
    nevt = len(tmp)

    rc_decay = 72
    
    for i, rt in enumerate(rise_times):
        
        # custom tier 1 processor list -- very minimal
        proc_list = {
            "clk" : 100e6,
            "fit_bl" : {"ihi":500, "order":1},
            "blsub" : {},
            "trap" : [
                {"wfout":"wf_etrap", "wfin":"wf_blsub", 
                 "rise":rt, "flat":2.5, "decay":rc_decay},
                {"wfout":"wf_atrap", "wfin":"wf_blsub", 
                 "rise":0.04, "flat":0.1, "fall":2}
                ],
            "get_max" : [{"wfin":"wf_etrap"}, {"wfin":"wf_atrap"}],
            # "ftp" : {"test":1}
            "ftp" : {}
        }
        proc = Intercom(proc_list)
        
        dig = pgd.SIS3302Decoder
        dig.decoder_name = "df_windowed"
        dig.class_name = None
        
        ProcessTier1(t1_file, proc, output_dir=out_dir, overwrite=True, 
                     verbose=False, multiprocess=True, nevt=np.inf, ioff=0, 
                     chunk=ds.config["chunksize"], run=first_run, 
                     t2_file=t2_file, digitizers=[dig])
        
        # load the temporary file and append to the main output file
        df_key = f"opt_{i}"
        t2df = pd.read_hdf(t2_file)
        t2df.to_hdf(opt_file, df_key)
Exemplo n.º 9
0
def main(argv):
    """
  Uses pygama's amazing DataSet class to process runs for different
  data sets, with arbitrary configuration options defined in a JSON file.
  C. Wiseman, 2019/04/09
  """
    run_db = './runDB.json'

    # -- parse args --
    par = argparse.ArgumentParser(description="test data processing suite")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-t0", "--daq_to_raw", action=st, help="run ProcessRaw on list")
    arg("-t1", "--raw_to_dsp", action=st, help="run RunDSP on list")
    arg("-t", "--test", action=st, help="test mode, don't run")
    arg("-n", "--nevt", nargs='?', default=np.inf, help="limit max num events")
    arg("-i", "--ioff", nargs='?', default=0, help="start at index [i]")
    arg("-v", "--verbose", action=st, help="set verbose output")
    arg("-o", "--ovr", action=st, help="overwrite existing files")
    arg("-m", "--nomp", action=sf, help="don't use multiprocessing")
    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, v=args["verbose"])

        if args["run"]:
            ds = DataSet(run=int(args["run"][0]), md=run_db, v=args["verbose"])

        # -- start processing --
        if args["daq_to_raw"]:
            daq_to_raw(ds, args["ovr"], args["nevt"], args["verbose"],
                       args["test"])

        if args["raw_to_dsp"]:
            raw_to_dsp(ds, args["ovr"], args["nevt"], args["ioff"],
                       args["nomp"], args["verbose"], args["test"])
Exemplo n.º 10
0
def window_ds():
    """
    Take a single DataSet and window it so that the file only contains events 
    near an expected peak location.
    Create some temporary in/out files s/t the originals aren't overwritten.
    """
    # run = 42
    # ds = DataSet(run=run, md="runDB.json")
    ds_num = 3
    ds = DataSet(ds_num, md="runDB.json")
    
    # specify temporary I/O locations
    p_tmp = "~/Data/cage"
    f_tier1 = "~/Data/cage/cage_ds3_t1.h5"
    f_tier2 = "~/Data/cage/cage_ds3_t2.h5"
    
    # figure out the uncalibrated energy range of the K40 peak
    # xlo, xhi, xpb = 0, 2e6, 2000 # show phys. spectrum (top feature is 2615 pk)
    xlo, xhi, xpb = 990000, 1030000, 250 # k40 peak, ds 3

    t2df = ds.get_t2df()
    hE, xE = ph.get_hist(t2df["energy"], range=(xlo, xhi), dx=xpb)
    plt.semilogy(xE, hE, ls='steps', lw=1, c='r')
    
    import matplotlib.ticker as ticker
    plt.gca().xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.4e'))
    plt.locator_params(axis='x', nbins=5)

    plt.xlabel("Energy (uncal.)", ha='right', x=1)
    plt.ylabel("Counts", ha='right', y=1)
    plt.savefig(f"./plots/cage_ds{ds_num}_winK40.pdf")
    # exit()
        
    # write a windowed tier 1 file containing only waveforms near the peak
    t1df = pd.DataFrame()
    for run in ds.paths:
        ft1 = ds.paths[run]["t1_path"]
        print(f"Scanning ds {ds_num}, run {run}\n    file: {ft1}")
        for chunk in pd.read_hdf(ft1, 'ORSIS3302DecoderForEnergy', chunksize=5e4):
            t1df_win = chunk.loc[(chunk.energy > xlo) & (chunk.energy < xhi)]
            print(t1df_win.shape)
            t1df = pd.concat([t1df, t1df_win], ignore_index=True)
    
    # -- save to HDF5 output file -- 
    h5_opts = {
        "mode":"w", # overwrite existing
        "append":False, 
        "format":"table",
        "complib":"blosc:zlib",
        "complevel":1,
        "data_columns":["ievt"]
        }
    t1df.reset_index(inplace=True)
    t1df.to_hdf(f_tier1, key="df_windowed", **h5_opts)
    print("wrote file:", f_tier1)
Exemplo n.º 11
0
def get_dataset_from_cmdline(args, run_db, cal_db):
    """
    make it easier to call this from argparse:
        arg("-ds", nargs='*', action="store", help="load runs for a DS")
        arg("-r", "--run", nargs=1, help="load a single run")
    """
    from pygama import DataSet

    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db, v=args["verbose"])

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db,
                     v=args["verbose"])
    return ds
Exemplo n.º 12
0
def main():
    """
    mj60 waveform viewer
    """
    run_db, cal_db = "runDB.json", "calDB.json"

    par = argparse.ArgumentParser(description="waveform viewer for mj60")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-db", "--writeDB", action=st, help="store results in DB")
    args = vars(par.parse_args())

    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi,
                     md=run_db, cal = cal_db) #,tier_dir=tier_dir)

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]),
                     md=run_db, cal=cal_db)


    # Which run number is the being analyzed
    # run = 249
    # run = 214
    # run = 204
    # run = 278

    # working on analysis for the AvsE cut in mj60
    # t1df, t2df = chunker(run)
    # cutwf, t2cut = cutter(t1df, t2df, run)
    # histograms(cutwf, t2cut, run)
    # histograms(ds)
    drift_correction(ds)
Exemplo n.º 13
0
def tier2_AoverE():
    """
    show the A/E distribution.
    """
    run = 42
    ds = DataSet(run=run, md="runDB.json")
    t2df = ds.get_t2df()

    aoe = t2df["current_max"] / t2df["e_ftp"]

    # # 1d
    # xlo, xhi, xpb = -2000, 2000, 10
    # h, x = ph.get_hist(aoe, range=(xlo, xhi), dx=xpb)
    # plt.semilogy(x, h, ls='steps', lw=1, c='r', label=f'run {run}')
    # plt.xlabel("A/E (uncal.)", ha='right', x=1)
    # plt.ylabel("Counts", ha='right', y=1)
    # plt.grid(linestyle=':')
    # plt.legend()
    # # plt.show()
    # plt.cla()

    # 2d vs E
    xlo, xhi, xpb = 0, 6000, 5
    # ylo, yhi, ypb = 0.6, 1.2, 0.001
    ylo, yhi, ypb = 0, 0.1, 0.001
    nbx, nby = int((xhi - xlo) / xpb), int((yhi - ylo) / ypb)

    from matplotlib.colors import LogNorm
    plt.hist2d(t2df["e_ftp"],
               aoe,
               bins=(nbx, nby),
               range=((xlo, xhi), (ylo, yhi)),
               norm=LogNorm(),
               cmap='jet')

    # cb = plt.colorbar()
    # cb.set_label("Counts", ha='right', y=1)
    plt.xlabel("e_ftp (uncal.)", ha='right', x=1)
    plt.ylabel("A/E", ha='right', y=1)
    # plt.grid(which='both', linestyle=':')
    plt.grid()

    plt.savefig(f"./plots/cage_run{run}_AE.png", dpi=200)
Exemplo n.º 14
0
def get_spectra():

    ds = DataSet(runlist=[143, 144, 145], md='./runDB.json', tier_dir=tier_dir)
    t2df = ds.get_t2df()

    xlo, xhi, xpb = 0, 10000, 10
    xP, hP = get_hist(t2df["trap_max"], xlo, xhi, xpb)

    plt.plot(xP,
             hP,
             ls='steps',
             lw=1.5,
             c='m',
             label="pygama trap_max, {} cts".format(sum(hP)))
    plt.xlabel("Energy (uncal)", ha='right', x=1)
    plt.ylabel("Counts", ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    plt.show()
Exemplo n.º 15
0
def tier2_spec():
    """
    show a few examples of energy spectra (onboard E and offline E)
    """
    run = 42
    ds = DataSet(run=run, md="runDB.json")
    t2df = ds.get_t2df()
    # print(t2df.columns)

    # onboard E
    ene = "energy"
    # xlo, xhi, xpb = 0, 20e6, 5000 # show muon peak (full dyn. range)
    xlo, xhi, xpb = 0, 2e6, 2000  # show phys. spectrum (top feature is 2615 pk)

    # # trap_max E
    # ene = "etrap_max"
    # xlo, xhi, xpb = 0, 50000, 100 # muon peak
    # xlo, xhi, xpb = 0, 6000, 10 # gamma spectrum

    # # fixed time pickoff E
    # ene = "e_ftp"
    # # xlo, xhi, xpb = 0, 50000, 100 # muon peak
    # xlo, xhi, xpb = 0, 6000, 10 # gamma spectrum

    # get histogram
    hE, xE = ph.get_hist(t2df[ene], range=(xlo, xhi), dx=xpb)

    # make the plot
    plt.semilogy(xE, hE, ls='steps', lw=1, c='r', label=f'run {run}')
    plt.xlabel("Energy (uncal.)", ha='right', x=1)
    plt.ylabel("Counts", ha='right', y=1)

    # show a couple formatting tricks
    import matplotlib.ticker as ticker
    plt.gca().xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1e'))
    plt.locator_params(axis='x', nbins=5)
    plt.grid(linestyle=':')

    plt.legend()
    # plt.show()
    plt.savefig(f"./plots/cage_run{run}_{ene}.pdf")
Exemplo n.º 16
0
def main():
    """
    perform automatic calibration of pygama DataSets.
    command line options to specify the DataSet are the same as in processing.py
    save results in a JSON database for access by other routines.
    """

    par = argparse.ArgumentParser(description="calibration suite for tumbsi")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    arg("-s", "--spec", action=st, help="print simple spectrum")
    arg("-sc", "--cal", action=st, help="print calibrated spectrum")
    arg("-p0",
        "--pass0",
        action=st,
        help="run pass0 (single peak) calibration")
    arg("-p1", "--pass1", action=st, help="run pass-1 (linear) calibration")
    arg("-p2", "--pass2", action=st, help="run pass-2 (peakfit) calibration")
    arg("-e",
        "--etype",
        nargs=1,
        help="custom energy param (default is e_ftp)")
    arg("-t", "--test", action=st, help="set verbose (testing) output")
    arg("-w", "--writeDB", action=st, help="store results in DB")
    arg("-pr", "--printDB", action=st, help="print calibration results in DB")
    arg("-pa", "--path", nargs=1, help="Set Path to runDB.json file")
    arg("-db", "--db", nargs=1, help="Path to runDB.json and calDB.json")
    arg("-sub", "--sub", nargs=1, help="Number of Subfiles")
    args = vars(par.parse_args())

    etype = args["etype"][0] if args["etype"] else "e_ftp"

    if args["db"]:
        path_to_files = args["db"][0]
        run_db, cal_db = path_to_files + "/runDB.json", path_to_files + "/calDB.json"
    # -- declare the DataSet --
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, 1, md=run_db, cal=cal_db, v=args["test"])

    if args["run"]:
        run = int(args["run"][0])
        ds = DataSet(1, run, md=run_db, cal=cal_db, v=args["test"])

        fp = ds.paths[run]["t2_path"].split("t2")[0]
        t2_file = ds.get_t2df()
        if args["sub"]:
            subNumber = int(args["sub"][0])
            counter = 0
            for p, d, files in os.walk(ds.tier2_dir):
                for f in files:
                    if any("{}-".format(r) in f for r in [run]):
                        if counter < subNumber:
                            t2_file = t2_file.append(pd.read_hdf(fp + f))
                    counter += 1

    print("Whaat")

    if args["spec"]:
        his = t2_file.hist("e_ftp", bins=2000)
        plt.yscale('log')
        plt.savefig(path_to_files + 'plots/Raw.png',
                    bbox_inches='tight',
                    transperent=True)
        plt.show()

    if args["pass0"]:
        calibrate_pass0(ds, t2_file, etype, args["writeDB"])
    if args["pass1"]:
        calibrate_pass1(ds, t2_file, etype, args["writeDB"], args["test"])

    if args["pass2"]:
        calibrate_pass2(ds, t2_file, run, cal_db, run_db, args["writeDB"])

    if args["printDB"]:
        show_calDB(cal_db)

    if args["cal"]:
        show_calspectrum(ds, t2_file, cal_db, etype, run, args["pass1"],
                         args["pass2"])
Exemplo n.º 17
0
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from pygama import DataSet

with open("runDB.json") as f:
    runDB = json.load(f)
tier_dir = runDB["tier_dir"]

ds0 = DataSet(runlist=[554], md='./runDB.json', tier_dir=tier_dir)
t2df_0 = ds0.get_t2df()
ds1 = DataSet(runlist=[555], md='./runDB.json', tier_dir=tier_dir)
t2df_1 = ds1.get_t2df()
ds2 = DataSet(runlist=[556], md='./runDB.json', tier_dir=tier_dir)
t2df_2 = ds2.get_t2df()

e_0 = t2df_0["energy"]
e_1 = t2df_1["energy"]
e_2 = t2df_2["energy"]

e_full = [0, 3.3e6]
e_pks = [1.2e6, 2.6e6]
e_K = [1.3e6, 1.36e6]
e_T = [2.35e6, 2.42e6]

h_0, edg_0 = np.histogram(e_0, bins=5000, range=e_full)
x_0 = (edg_0[:-1] + edg_0[1:]) / 2

# h_0_K,edg_0_K = np.histogram(e_0, bin=500, range=e_K)
Exemplo n.º 18
0
def tier1_wfs():
    """
    show some waveforms, with an example of a data cleaning cut.
    """
    run = 42
    iwf_max = 100000  # tier 1 files can be a lot to load into memory
    ds = DataSet(run=run, md="runDB.json")
    ft1 = ds.paths[run]["t1_path"]
    t1df = pd.read_hdf(ft1,
                       "ORSIS3302DecoderForEnergy",
                       where=f"ievt < {iwf_max}")
    t1df.reset_index(inplace=True)  # required step -- fix pygama "append" bug

    # get waveform dataframe
    wf_cols = []
    for col in t1df.columns:
        if isinstance(col, int):
            wf_cols.append(col)
    wfs = t1df[wf_cols]

    # apply a cut based on the t1 columns
    # idx = t1df.index[(t1df.energy > 1.5e6)&(t1df.energy < 2e6)]

    # apply a cut based on the t2 columns
    ft2 = ds.paths[run]['t2_path']
    t2df = pd.read_hdf(ft2, where=f"ievt < {iwf_max}")
    t2df.reset_index(inplace=True)

    # t2df['AoE'] = t2df.current_max / t2df.e_ftp # scipy method
    t2df['AoE'] = t2df.atrap_max / t2df.e_ftp  # trapezoid method

    idx = t2df.index[(t2df.AoE < 0.7)
                     & (t2df.e_ftp > 1000) & (t2df.e_ftp < 10000)
                     & (t2df.index < iwf_max)]

    wfs = wfs.loc[idx]
    wf_idxs = wfs.index.values  # kinda like a TEntryList

    # make sure the cut output makes sense
    cols = [
        'ievt', 'timestamp', 'energy', 'e_ftp', 'atrap_max', 'current_max',
        't0', 't_ftp', 'AoE', 'tslope_pz', 'tail_tau'
    ]
    print(t2df.loc[idx][cols].head())
    print(t1df.loc[idx].head())
    print(wfs.head())

    # iterate over the waveform block
    iwf = -1
    while True:
        if iwf != -1:
            inp = input()
            if inp == "q": exit()
            if inp == "p": iwf -= 2
        iwf += 1
        iwf_cut = wf_idxs[iwf]

        # get waveform and dsp values
        wf = wfs.iloc[iwf]
        dsp = t2df.iloc[iwf_cut]
        ene = dsp.e_ftp
        aoe = dsp.AoE
        ts = np.arange(len(wf))

        # nice horizontal print of a pd.Series
        print(iwf, iwf_cut)
        print(wf.to_frame().T)
        print(t2df.iloc[iwf_cut][cols].to_frame().T)

        plt.cla()
        plt.plot(ts,
                 wf,
                 "-b",
                 alpha=0.9,
                 label=f'e: {ene:.1f}, a/e: {aoe:.1f}')

        # savitzky-golay smoothed
        # wfsg = signal.savgol_filter(wf, 47, 2)
        wfsg = signal.savgol_filter(wf, 47, 1)
        plt.plot(ts, wfsg, "-r", label='savitzky-golay filter')

        plt.xlabel("clock ticks", ha='right', x=1)
        plt.ylabel("ADC", ha='right', y=1)
        plt.legend()
        plt.tight_layout()
        plt.show(block=False)
        plt.pause(0.01)
Exemplo n.º 19
0
def resolution():
    """
    fit the 208Tl 2615 keV peak and give me the resolution
    test out pygama's peak fitting routines
    """
    ds_num = 11
    ds = DataSet(ds_num, md='./runDB.json', tier_dir=tier_dir)
    t2df = ds.get_t2df()
    ene = t2df["energy"].values
    rt = ds.get_runtime() / 3600  # hrs

    # apply calibration
    cal = runDB["cal_onboard"][str(ds_num)]
    m, b = cal[0], cal[1]
    ene = m * ene + b

    # zoom in to the area around the 2615 peak
    xlo, xhi, xpb = 2565, 2665, 0.5
    ene2 = ene[np.where((ene > xlo) & (ene < xhi))]
    xE, hE = get_hist(ene, xlo, xhi, xpb)

    # set peak bounds
    guess_ene = 2615
    guess_sig = 5
    idxpk = np.where((xE > guess_ene - guess_sig)
                     & (xE > guess_ene + guess_sig))
    guess_area = np.sum(hE[idxpk])

    # radford_peak function pars: mu, sigma, hstep, htail, tau, bg0, a
    p0 = [guess_ene, guess_sig, 1E-3, 0.7, 5, 0, guess_area]

    bnd = [[0.9 * guess_ene, 0.5 * guess_sig, 0, 0, 0, 0, 0],
           [1.1 * guess_ene, 2 * guess_sig, 0.1, 0.75, 10, 10, 5 * guess_area]]

    pars = fit_binned(radford_peak, hE, xE, p0)  #, bounds=bnd)

    print("mu:", pars[0], "\n", "sig", pars[1], "\n", "hstep:", pars[2], "\n",
          "htail:", pars[3], "\n", "tau:", pars[4], "\n", "bg0:", pars[5],
          "\n", "a:", pars[6])

    plt.plot(xE,
             hE,
             c='b',
             ls='steps',
             lw=1,
             label="MJ60 data, {:.2f} hrs".format(rt))

    plt.plot(xE,
             radford_peak(xE, *pars),
             color="r",
             alpha=0.7,
             label=r"Radford peak, $\sigma$={:.2f} keV".format(pars[1]))

    plt.axvline(2614.511,
                color='r',
                alpha=0.6,
                lw=1,
                label=r"$E_{lit}$=2614.511")

    plt.axvline(pars[0],
                color='g',
                alpha=0.6,
                lw=1,
                label=r"$E_{fit}$=%.3f" % (pars[0]))

    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel("Counts / {:.2f} keV".format(xpb), ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    # plt.show()
    plt.savefig("./plots/kr83_resolution.pdf")
Exemplo n.º 20
0
def calibrate():
    """
    do a rough energy calibration
    "automatic": based on finding ratios
    """
    from scipy.signal import medfilt, find_peaks_cwt
    from scipy.stats import linregress

    pks_lit = [239, 911, 1460.820, 1764, 2614.511]

    # ds = DataSet(11, md='./runDB.json', tier_dir=tier_dir)
    ds = DataSet(run=204, md='./runDB.json', tier_dir=tier_dir)

    t2df = ds.get_t2df()
    rt = ds.get_runtime() / 3600  # hrs

    ene = t2df["e_ftp"]

    xlo, xhi, xpb = 0, 10000, 10  # damn, need to remove the overflow peak
    nbins = int((xhi - xlo) / xpb)

    hE, xE, _ = get_hist(ene, nbins, (xlo, xhi))

    # xE, hE = get_hist(ene, xlo, xhi, xpb)

    # -- pygama's cal routine needs some work ... --
    # need to manually remove the overflow peak?
    # data_peaks = get_most_prominent_peaks(ene, xlo, xhi, xpb, test=True)
    # ene_peaks = get_calibration_energies("uwmjlab")
    # ene_peaks = get_calibration_energies("th228")
    # best_m, best_b = match_peaks(data_peaks, ene_peaks)
    # ecal = best_m * t2df["trap_max"] + best_b

    # -- test out a rough automatic calibration here --

    npks = 15

    hE_med = medfilt(hE, 21)
    hE_filt = hE - hE_med
    pk_width = np.arange(1, 10, 0.1)
    pk_idxs = find_peaks_cwt(hE_filt, pk_width, min_snr=5)
    pks_data = xE[pk_idxs]

    pk_counts = hE[pk_idxs]
    idx_sorted = np.argsort(pk_counts)
    pk_idx_max = pk_idxs[idx_sorted[-npks:]]
    pks_data = np.sort(xE[pk_idx_max])

    r0 = pks_lit[4] / pks_lit[2]

    # this is pretty ad hoc, should use more of the match_peaks function
    found_match = False
    for pk1 in pks_data:
        for pk2 in pks_data:
            r = pk1 / pk2
            if np.fabs(r - r0) < 0.005:
                print("found match to peak list:\n    "
                      "r0 {:.3f}  r {:.3f}  pk1 {:.0f}  pk2 {:.0f}".format(
                          r0, r, pk1, pk2))
                found_match = True  # be careful, there might be more than one
                break

        if found_match:
            break

    # # check uncalibrated spectrum
    # plt.plot(xE, hE, ls='steps', lw=1, c='b')
    # # plt.plot(xE, hE_filt, ls='steps', lw=1, c='b')
    # # for pk in pks_data:
    # #     plt.axvline(pk, color='r', lw=1, alpha=0.6)
    # plt.axvline(pk1, color='r', lw=1)
    # plt.axvline(pk2, color='r', lw=1)
    # plt.show()
    # exit()

    # two-point calibration
    data = np.array(sorted([pk1, pk2]))
    lit = np.array([pks_lit[2], pks_lit[4]])
    m, b, _, _, _ = linregress(data, y=lit)
    print("Paste this into runDB.json:\n    ", m, b)

    # err = np.sum((lit - (m * data + b))**2)
    # plt.plot(data, lit, '.b', label="E = {:.2e} x + {:.2e}".format(m, b))
    # xf = np.arange(data[0], data[1], 1)
    # plt.plot(xf, m * xf + b, "-r")
    # plt.legend()
    # plt.show()

    # apply calibration
    ecal = m * ene + b

    # # check calibrated spectrum
    xlo, xhi, xpb = 0, 3000, 1
    hC, xC, _ = get_hist(ecal, int((xhi - xlo) / xpb), (xlo, xhi))
    hC = np.concatenate(
        (hC, [0]))  # FIXME: annoying - have to add an extra zero

    plt.semilogy(xC,
                 hC / rt,
                 c='b',
                 ls='steps',
                 lw=1,
                 label="MJ60 data, {:.2f} hrs".format(rt))
    plt.axvline(pks_lit[2], c='r', lw=3, alpha=0.7, label="40K, 1460.820 keV")
    plt.axvline(pks_lit[4],
                c='m',
                lw=3,
                alpha=0.7,
                label="208Tl, 2614.511 keV")
    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel("Counts / hr / {:.2f} keV".format(xpb), ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    # plt.show()
    plt.savefig("./plots/surface_spec.pdf")
    # exit()

    # check low-e spectrum
    plt.figure()
    xlo, xhi, xpb = 0, 50, 0.1
    hC, xC, _ = get_hist(ecal, int((xhi - xlo) / xpb), (xlo, xhi))
    hC = np.concatenate(
        (hC, [0]))  # FIXME: annoying - have to add an extra zero
    plt.plot(xC, hC, c='b', ls='steps', lw=1, label="Kr83 data")
    plt.axvline(9.4057, color='r', lw=1.5, alpha=0.6,
                label="9.4057 keV")  # kr83 lines
    plt.axvline(12.651, color='g', lw=1.5, alpha=0.6,
                label="12.651 keV")  # kr83 lines
    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel("Counts / {:.2f} keV".format(xpb), ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    # plt.show()
    plt.savefig("./plots/test_kr83_cal.pdf")
Exemplo n.º 21
0
def get_multiple_spectra():

    # energy (onboard)
    # xlo, xhi, xpb = 0, 2000000, 1000
    # xlo, xhi, xpb = 0, 500000, 1000
    # xlo, xhi, xpb = 0, 50000, 100

    # energy (onboard, calibrated)
    xlo, xhi, xpb = 0, 40, 0.1

    # trap_max
    # xlo, xhi, xpb = 0, 10000, 10
    # xlo, xhi, xpb = 0, 300, 0.3
    # xlo, xhi, xpb = 0, 80, 0.2
    # xlo, xhi, xpb = 0, 40, 0.1

    # ds = DataSet(run=147, md='./runDB.json', tier_dir=tier_dir)

    # get calibration
    cal = runDB["cal_onboard"]["11"]
    m, b = cal[0], cal[1]

    ds = DataSet(10, md='./runDB.json', tier_dir=tier_dir)
    rt1 = ds.get_runtime() / 3600
    t2df = ds.get_t2df()
    ene1 = m * t2df["energy"] + b

    x, h1 = get_hist(ene1, xlo, xhi, xpb)
    # x, h1 = get_hist(t2df["trap_max"], xlo, xhi, xpb)
    h1 = np.divide(h1, rt1)

    ds2 = DataSet(11, md='./runDB.json', tier_dir=tier_dir)
    t2df2 = ds2.get_t2df()
    rt2 = ds2.get_runtime() / 3600
    ene2 = m * t2df2["energy"] + b
    x, h2 = get_hist(ene2, xlo, xhi, xpb)
    # x, h2 = get_hist(t2df2["trap_max"], xlo, xhi, xpb)
    h2 = np.divide(h2, rt2)

    plt.figure(figsize=(7, 5))

    plt.plot(x,
             h1,
             ls='steps',
             lw=1,
             c='b',
             label="bkg, {:.2f} hrs".format(rt1))

    plt.plot(x,
             h2,
             ls='steps',
             lw=1,
             c='r',
             label="Kr83, {:.2f} hrs".format(rt2))

    plt.axvline(9.4057, color='m', lw=2, alpha=0.4,
                label="9.4057 keV")  # kr83 lines
    plt.axvline(12.651, color='g', lw=2, alpha=0.4,
                label="12.651 keV")  # kr83 lines

    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel("Counts / hr / {:.2f} keV".format(xpb), ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    # plt.show()
    # plt.savefig("./plots/krSpec_{:.0f}_{:.0f}_onboard.pdf".format(xlo,xhi))
    # plt.savefig("./plots/krSpec_{:.0f}_{:.0f}_uncal.pdf".format(xlo,xhi))
    plt.savefig("./plots/krSpec_{:.0f}_{:.0f}_cal.pdf".format(xlo, xhi))
Exemplo n.º 22
0
def get_spectra():

    with open("runDB.json") as f:
        runDB = json.load(f)
    tier_dir = runDB["tier_dir"]

    ds = DataSet(runlist=[555], md='./runDB.json', tier_dir=tier_dir)
    t2df = ds.get_t2df()

    t2df = t2df.loc[t2df.e_ftp > 500]  # Low energy cut

    #print(t2df.columns)
    # print(t2df)
    # exit()

    # 4 to 36 pF variable cap

    rise_time = t2df["tp90"] - t2df["tp10"]

    ds2 = DataSet(runlist=[556], md='./runDB.json', tier_dir=tier_dir)
    t2df_2 = ds2.get_t2df()

    t2df_2 = t2df_2.loc[t2df_2.e_ftp > 500]

    rise_time2 = t2df_2["tp90"] - t2df_2["tp10"]

    ds3 = DataSet(runlist=[554], md='./runDB.json', tier_dir=tier_dir)
    t2df_3 = ds3.get_t2df()

    t2df_3 = t2df_3.loc[t2df_3.e_ftp > 500]

    rise_time3 = t2df_3["tp90"] - t2df_3["tp10"]

    xlo, xhi, xpb = 0., 500., 1

    hP, xP, _ = get_hist(rise_time, range=(xlo, xhi), dx=xpb)
    hP2, xP2, _ = get_hist(rise_time2, range=(xlo, xhi), dx=xpb)
    hP3, xP3, _ = get_hist(rise_time3, range=(xlo, xhi), dx=xpb)

    #Note to self: for risetime histograms, use similar to above, but replace
    #first parameter with rise_time!

    plt.semilogy(xP[:-1] * 0.423,
                 hP,
                 ls='steps',
                 lw=1.5,
                 c='k',
                 label="Rise Time, Preamp 1".format(sum(hP)))
    # hist = plt.hist(rise_time, bins = 1000)
    plt.semilogy(xP2[:-1] * 0.423,
                 hP2,
                 ls='steps',
                 lw=1.5,
                 c='c',
                 label="Rise Time, Preamp 2".format(sum(hP)))
    plt.semilogy(xP3[:-1] * 0.423,
                 hP3,
                 ls='steps',
                 lw=1.5,
                 c='0.5',
                 label="Rise Time, Preamp 0".format(sum(hP)))
    plt.xlabel("Rise Time", ha='right', x=1)
    plt.ylabel("Counts", ha='right', y=1)
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("Rise Time Comparison")
Exemplo n.º 23
0
def process_data():
    from pygama import DataSet
    ds = DataSet(0, md="config.json")
    ds.daq_to_raw(overwrite=True, test=False)
Exemplo n.º 24
0
def psa(run, dataset, ecal, eres, peaks_of_interest):

    # ds = DataSet(runlist=[191], md='./runDB.json', tier_dir=tier_dir)
    ds = DataSet(ds_lo=0, md='./runDB.json', tier_dir=tier_dir)
    t2 = ds.get_t2df()
    # t2df = os.path.expandvars('{}/Spectrum_{}.hdf5'.format(meta_dir,run))
    # t2df = pd.read_hdf(t2df, key="df")
    # t2df = t2df.reset_index(drop=True)
    t2 = t2.reset_index(drop=True)
    print("  Energy calibration:")
    cal = ecal[0] * np.asarray(t2["e_ftp"])
    print("  -> 1st pass linear energy calibration done")
    if (cal[1]):
        cal = cal / ecal[1] - ecal[2]
        print("  -> 2nd pass linear energy calibration done")

    n = "current_max"
    e = "e_cal"
    e_over_unc = cal / np.asarray(t2["e_ftp"])
    aoe0 = np.asarray(t2[n])

    print("  Apply quality cuts")
    Nall = len(cal)

    bl0 = np.asarray(t2["bl0"])
    bl1 = np.asarray(t2["bl1"])
    e_over_unc = e_over_unc[(bl1 - bl0) < 2]
    cal = cal[(bl1 - bl0) < 2]
    aoe0 = aoe0[(bl1 - bl0) < 2]

    Nqc_acc = len(cal)

    print("  -> Total number of events: ", Nall)
    print("  -> After quality cuts    : ", Nqc_acc)
    print("  -> Quality cuts rejection: ", 100 * float(Nqc_acc) / float(Nall),
          "%")

    aoe = aoe0 * e_over_unc / cal

    print("  Compute AoE normalization curve")
    aoe_norm = AoEcorrection(cal, aoe)
    print("  -> parameteres (a x E + b):", aoe_norm[0], aoe_norm[1])
    aoe = aoe / (aoe_norm[0] * cal + aoe_norm[1])

    print("  Find the low-side A/E cut for ", 100 * dep_acc,
          "% 208Tl DEP acceptance")
    cut = get_aoe_cut(cal, aoe, dep_line, eres)
    print("  -> cut: ", '{:1.3f}'.format(cut))
    if cut == 0:
        print("  -> cut not found. Exit.")
        sys.exit()

    print("  Compute energy spectrum after A/E cut")
    cal_cut = cal[aoe >= cut]

    print("  Compute survival fractions: ")
    sf = np.zeros(len(peaks_of_interest))
    sferr = np.zeros(len(peaks_of_interest))
    for i, peak in enumerate(peaks_of_interest):
        sf[i], sferr[i] = get_sf(cal, aoe, cut, peak, eres)
        print("  -> ", peak, '{:2.1f}'.format(100. * sf[i]), " +/- ",
              '{:2.1f}'.format(100. * sferr[i]), "%")

    print("  Display hitograms")
    plt.figure(2)
    plt.hist2d(cal,
               aoe,
               bins=[2000, 400],
               range=[[0, 3000], [0, 1.5]],
               norm=LogNorm(),
               cmap='jet')
    cbar = plt.colorbar()
    plt.title("Dataset {}".format(dataset))
    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel("A/E (a.u.)", ha='right', y=1)
    cbar.ax.set_ylabel('Counts')
    plt.tight_layout()
    plt.savefig('./plots/aoe_versus_energy.pdf',
                bbox_inches='tight',
                transparent=True)
    plt.show()

    plt.figure(3)
    hist, bins = np.histogram(cal, bins=3000, range=[0, 3000])
    hist1, bins1 = np.histogram(cal_cut, bins=3000, range=[0, 3000])
    plt.clf()
    plt.plot(bins[1:],
             hist,
             color='black',
             ls="steps",
             linewidth=1.5,
             label='all events')
    plt.plot(bins1[1:],
             hist1,
             '-r',
             ls="steps",
             linewidth=1.5,
             label='after A/E cut')
    plt.ylabel('Counts', ha='right', y=1)
    plt.xlabel('Energy (keV)', ha='right', x=1)
    plt.legend(title='Calibrated Energy')
    plt.yscale('log')
    plt.savefig('./plots/calEnergy_spectrum_after_psa.pdf',
                bbox_inches='tight',
                transparent=True)
    plt.show()

    print("")
    print("  Normal termination")
    print("")
Exemplo n.º 25
0
def main():
    """
    tumbsi analysis suite
    """
    global display
    display = 1  # allow displaying intermediate distributions for control

    run_db, cal_db = "runDB.json", "calDB.json"

    with open(run_db) as f:
        runDB = json.load(f)

    global tier_dir
    tier_dir = runDB["tier_dir"]
    global meta_dir
    meta_dir = runDB["meta_dir"]
    global dep_line
    dep_line = 1592.5
    global dep_acc
    dep_acc = 0.9

    peaks_of_interest = sorted(runDB["peaks_of_interest"], reverse=True)

    # take calibration parameter for the 'calibration.py' output
    with open(cal_db) as f:
        calDB = json.load(f)

    par = argparse.ArgumentParser(description="calibration suite for tumbsi")
    arg, st, sf = par.add_argument, "store_true", "store_false"
    arg("-ds", nargs='*', action="store", help="load runs for a DS")
    arg("-r", "--run", nargs=1, help="load a single run")
    args = vars(par.parse_args())

    ecal = np.zeros(3)
    ecal[0] = calDB["cal_pass1"]["1"]["p1cal"]
    if ("cal_pass2" in calDB):
        ecal[1] = calDB["cal_pass2"]["1"]["p2acal"]
        ecal[2] = calDB["cal_pass2"]["1"]["p2bcal"]

    eres = np.zeros(2)
    if ("eres_curve" in calDB):
        eres[0] = calDB["eres_curve"]["1"]["acal"]
        eres[1] = calDB["eres_curve"]["1"]["bcal"]
    else:
        print(
            "You must run a calibration to get the energy resolution curve. Exit."
        )
        sys.exit()

    # Which run number is the being analyzed
    if args["ds"]:
        ds_lo = int(args["ds"][0])
        try:
            ds_hi = int(args["ds"][1])
        except:
            ds_hi = None
        ds = DataSet(ds_lo, ds_hi, md=run_db, cal=cal_db)
        run = ds_lo

    if args["run"]:
        ds = DataSet(run=int(args["run"][0]), md=run_db, cal=cal_db)

    print("")
    print("Start Pulse Shape Anlysis")
    print("")

    psa(run, ds, ecal, eres, peaks_of_interest)
Exemplo n.º 26
0
def histograms(run):
    ds = DataSet(runlist=[run], md='./runDB.json', tier_dir=tier_dir)
    t2 = ds.get_t2df()
    t2df = os.path.expandvars('{}/Spectrum_{}.hdf5'.format(meta_dir, run))
    t2df = pd.read_hdf(t2df, key="df")

    # n = "tslope_savgol"
    # n = "current_max"
    # n = "tslope_pz"
    n = "tail_tau"
    # n = "tail_amp"

    e = "e_cal"
    x = t2df[e]
    # y = t2df[n]
    y = t2df[n] / x

    plt.clf()
    # H, xedges, yedges = np.histogram2d(t2df["tail_tau"], t2df["e_ftp"], bins=[2000,200], range=[[0, 6600], [0, 5]])
    plt.hist2d(x,
               y,
               bins=[1000, 200],
               range=[[0, 200], [0, .001]],
               norm=LogNorm(),
               cmap='jet')
    # plt.hist2d(x, y, bins=[1000,1000], norm=LogNorm())
    # plt.scatter(H[0],H[1])

    # f = plt.figure(figsize=(20,5))
    # p1 = f.add_subplot(111, title='Test', xlabel='Energy (keV)', ylabel=n)
    # h1,xedg1,yedg1 = np.histogram2d(x, y, bins=[1000,200], range=[[0,2000],[0,100]])
    # h1 = h1.T
    # # hMin, hMax = np.amin(h1), np.amax(h1)
    # # im1 = p1.imshow(h1,cmap='jet',vmin=hMin,vmax=hMax, aspect='auto') #norm=LogNorm())
    # im1 = p1.imshow(h1,cmap='jet', origin='lower', aspect='auto', norm=LogNorm(), extent=[xedg1[0], xedg1[-1], yedg1[0], yedg1[-1]])

    # cb1 = f.colorbar(im1, ax=p1)#, fraction=0.037, pad=0.04)

    cbar = plt.colorbar()

    # plt.xscale('symlog')
    # plt.yscale('symlog')

    plt.title("Run {}".format(run))
    plt.xlabel("Energy (keV)", ha='right', x=1)
    plt.ylabel(n, ha='right', y=1)
    # cbar.ax.set_ylabel('Counts')
    # plt.ylabel("tslope_savgol", ha='right', y=1)
    # plt.ylabel("A/E_ftp", ha='right', y=1)
    # plt.tight_layout()
    # # plt.savefig('./plots/meeting_plots/run{}_{}_vs_{}.png'.format(run, n, e))
    # plt.show()

    # xlo, xhi, xpb = 0, 10000, 10
    # xP, hP = get_hist(t2df["trap_max"], xlo, xhi, xpb)
    #
    # plt.plot(xP, hP, ls='steps', lw=1.5, c='m',
    #          label="pygama trap_max, {} cts".format(sum(hP)))
    # plt.xlabel("Energy (uncal)", ha='right', x=1)
    # plt.ylabel("Counts", ha='right', y=1)
    # plt.legend()
    plt.tight_layout()
    plt.show()
Exemplo n.º 27
0
    testDB = json.load(f)

print("-- Top-level information -- ")
for key in testDB:
    if not isinstance(testDB[key], dict):
        print(key, ":", testDB[key])

print("-- Data set definitions -- ")
pprint(testDB["ds"])

try:
    xrun = int(sys.argv[1])
except:
    print("You have to give a run number as argument!")
    exit(0)
ds = DataSet(run=xrun, md=db_file, v=True) # can also use a list of run number

# print some of the DataSet attributes
print("raw dir : ", ds.raw_dir)
print("tier1 dir : ", ds.tier1_dir)
print("t1 file prefix :", ds.t1pre)
print("t2 file prefix :", ds.t2pre)
print("current run list :", ds.runs)
print("current file paths :")
pprint(ds.paths)

print("IF YOUR t0_path IS EMPTY, CROSS-CHECK $DATADIR AND FILE NAMING")

"""
Show waveforms from the Tier 1 file.
NOTE: pygama.DataSet has a convenience function "get_t1df" but is undeveloped.