Exemplo n.º 1
0
    def test_save_and_load_model(self):
        # Load and train the model
        self.classifier.load()

        # Load samples multiple times to have a large dataset
        for n in range(100):
            self.classifier.load_samples_data()

        self.assertGreater(self.classifier.train_model(), 0.9)

        model_path = os.path.join("test_dir_svm_classifier", "model.svm")

        # Save the model
        self.classifier.save_model(model_path)

        # Create a new classifier and load the saved model
        new_classifier = SVMClassifier(model_path=model_path)

        # Load the model from the saved model
        new_classifier.load()

        # Check if the loaded model works correctly
        test_sample1 = Sample(data=[[1], [1]])
        test_sample2 = Sample(data=[[1], [0]])

        self.assertEqual(new_classifier.predict(test_sample1), "0")
        self.assertEqual(new_classifier.predict(test_sample2), "1")
Exemplo n.º 2
0
def run_example(*args, **kwargs):
    # Create the SerialDataReader
    sdr = SerialDataReader(kwargs['port'], expected_axis=6, verbose=False)

    # Create the SampleManager
    manager = DiscreteSampleManager()

    # Attach the manager
    sdr.attach_manager(manager)

    # Create a classifier
    classifier = SVMClassifier(model_path=args[0])

    # Load the model
    classifier.load()

    # Create a ClassifierPredictor
    predictor = ClassifierPredictor(classifier)

    # Attach the classifier predictor
    manager.attach_receiver(predictor)

    # Create a CallbackManager
    callback_mg = CallbackManager(verbose=True)

    # Attach the callback manager
    predictor.attach_callback_manager(callback_mg)

    # Open the serial connection
    sdr.open()
    print("Opened!")

    # Start the main loop
    sdr.mainloop()
Exemplo n.º 3
0
def train_svm_classifier(dataset_dir, output_file, n_jobs=1):
    """
    Train an SVM model from the given dataset and save it to a file.
    """
    # Create the classifier
    classifier = SVMClassifier(dataset_path=dataset_dir, verbose=True, n_jobs=n_jobs,
                               autoscale_size=50)

    # Train the classifier
    train_classifier(classifier=classifier, dataset_dir=dataset_dir, output_file=output_file, n_jobs=n_jobs)
Exemplo n.º 4
0
    def setUp(self):
        # Create a test directory if it doesn't exists
        if not os.path.exists("test_dir_svm_classifier"):
            os.makedirs("test_dir_svm_classifier")

        # Create the samples with the 4 possibilities of the XOR gate
        sample1 = Sample(data=[[1], [1]], gesture_id="0")
        sample2 = Sample(data=[[0], [0]], gesture_id="0")
        sample3 = Sample(data=[[1], [0]], gesture_id="1")
        sample4 = Sample(data=[[0], [1]], gesture_id="1")


        # Save the samples in the test directory
        sample1.save_to_file(os.path.join("test_dir_svm_classifier", "0_1.txt"))
        sample2.save_to_file(os.path.join("test_dir_svm_classifier", "0_2.txt"))
        sample3.save_to_file(os.path.join("test_dir_svm_classifier", "1_1.txt"))
        sample4.save_to_file(os.path.join("test_dir_svm_classifier", "1_2.txt"))

        # Initialize an AbstractClassifier
        self.classifier = SVMClassifier(dataset_path="test_dir_svm_classifier", test_size=0.5)
Exemplo n.º 5
0
def run_example(*args, **kwargs):
    # Create the SerialDataReader
    sdr = SerialDataReader(kwargs['port'], expected_axis=6, verbose=False)

    # Create the SampleManager
    manager = StreamSampleManager(step=20, window=20)

    # Attach the manager
    sdr.attach_manager(manager)

    # Create a threshold middleware
    middleware = GradientThresholdMiddleware(verbose=False,
                                             threshold=40,
                                             sample_group_delay=5,
                                             group=True)

    # Attach the middleware
    manager.attach_receiver(middleware)

    # Create a classifier
    classifier = SVMClassifier(model_path=args[0])

    # Load the model
    classifier.load()

    # Print classifier info
    classifier.print_info()

    # Create a ClassifierPredictor
    predictor = ClassifierPredictor(classifier)

    # Filter the samples that are too short or too long
    lfmiddleware = LengthThresholdMiddleware(verbose=True,
                                             min_len=180,
                                             max_len=600)
    middleware.attach_receiver(lfmiddleware)

    # Attach the classifier predictor
    lfmiddleware.attach_receiver(predictor)

    # Create a CallbackManager
    callback_mg = CallbackManager(verbose=True)

    # Attach the callback manager
    predictor.attach_callback_manager(callback_mg)

    # Attach the callbacks
    callback_mg.attach_callback("knock", receive_gesture)
    callback_mg.attach_callback("doubleknock", receive_gesture)

    # Open the serial connection
    sdr.open()
    print("Opened!")

    # Start the main loop
    sdr.mainloop()
def train(dataset_dir, output_file, n_jobs=1):
    """
    Used to train the knock sensor data.
    Train an MLP model from the given dataset and save it to a file.
    """

    tm = TrimmerMiddleware(threshold=300)
    fft = FFTMiddleware()

    # Create the classifier
    classifier = SVMClassifier(dataset_path=dataset_dir, verbose=True, n_jobs=n_jobs,
                               autonormalize=False, autoscale_size=500, middlewares=[tm, fft])

    # Train the classifier
    train_classifier(classifier=classifier, dataset_dir=dataset_dir, output_file=output_file, n_jobs=n_jobs)
Exemplo n.º 7
0
def receive_character(number):
    pyautogui.doubleClick(155, 69)

    if number != "1":
        pyautogui.typewrite(number)
    else:
        pyautogui.keyDown('backspace')
        pyautogui.keyUp('backspace')

    # Create the SerialDataReader
    sdr = SerialDataReader(PORT, expected_axis=6, verbose=False)

    # Create the SampleManager
    manager = StreamSampleManager()

    # Attach the manager
    sdr.attach_manager(manager)

    # Create a classifier
    classifier = SVMClassifier(model_path=MODEL_PATH)

    # Load the model
    classifier.load()

    # Print classifier info
    classifier.print_info()

    # Create a ClassifierPredictor
    predictor = ClassifierPredictor(classifier)

    # Attach the classifier predictor
    manager.attach_receiver(predictor)

    # Create a CallbackManager
    callback_mg = CallbackManager(verbose=True)

    # Attach the callback manager
    predictor.attach_callback_manager(callback_mg)

    # Bind all the numbers
    callback_mg.attach_callback(" ", receive_character)

    for c in ["1", "2", "3", "4"]:
        callback_mg.attach_callback(c, receive_character)

    # Open the serial connection
    sdr.open()
    print("Opened!")

    # Start the main loop
    sdr.mainloop()
def train(dataset_dir, output_file, n_jobs=1):
    """
    Used to train the knock sensor data.
    Train an MLP model from the given dataset and save it to a file.
    """
    #fftm = FFTMiddleware()
    asm = AbsoluteScaleMiddleware(subtract=500, rolling_mean_window=4)

    # Create the classifier
    classifier = SVMClassifier(dataset_path=dataset_dir,
                               verbose=True,
                               n_jobs=n_jobs,
                               autoscale_size=50,
                               middlewares=[asm])

    # Train the classifier
    train_classifier(classifier=classifier,
                     dataset_dir=dataset_dir,
                     output_file=output_file,
                     n_jobs=n_jobs)
def train(dataset_dir, output_file, n_jobs=1):
    """
    Used to train the knock sensor data.
    Train an MLP model from the given dataset and save it to a file.
    """
    asm = AbsoluteScaleMiddleware()

    # Create the classifier
    classifier = SVMClassifier(dataset_path=dataset_dir,
                               verbose=True,
                               n_jobs=n_jobs,
                               autonormalize=True,
                               autoscale_size=40,
                               middlewares=[asm])

    # Train the classifier
    train_classifier(classifier=classifier,
                     dataset_dir=dataset_dir,
                     output_file=output_file,
                     n_jobs=n_jobs)
Exemplo n.º 10
0
def receive_character(number):
    print(number)


# Create the SerialDataReader
sdr = SerialDataReader(PORT, expected_axis=6, verbose=False)

# Create the SampleManager
manager = DiscreteSampleManager()

# Attach the manager
sdr.attach_manager(manager)

# Create a classifier
classifier = SVMClassifier(model_path=MODEL_PATH)

# Load the model
classifier.load()

# Print classifier info
classifier.print_info()

# Create a ClassifierPredictor
predictor = ClassifierPredictor(classifier)

# Attach the classifier predictor
manager.attach_receiver(predictor)

# Create a CallbackManager
callback_mg = CallbackManager(verbose=True)
Exemplo n.º 11
0
from pygarl.classifiers import SVMClassifier
from pygarl.middlewares import TrimmerMiddleware, FFTMiddleware
from pygarl.plugins.train import train_classifier
import sys

dataset_dir = sys.argv[1]

# If launched directly, parse the parameters from sys
if __name__ == '__main__':
    tm = TrimmerMiddleware(threshold=300)
    fft = FFTMiddleware()

    # Create the classifier
    classifier = SVMClassifier(dataset_path=dataset_dir, verbose=True, n_jobs=8,
                               autonormalize=False, autoscale_size=500, middlewares=[tm, fft])

    # Train the classifier
    train_classifier(classifier=classifier, dataset_dir=dataset_dir, output_file="model.svm", n_jobs=8)
sdr = SerialDataReader(sys.argv[1], expected_axis=6, verbose=False)

# Create the SampleManager
manager = StreamSampleManager(step=20, window=20)

# Attach the manager
sdr.attach_manager(manager)

# Create a threshold middleware
middleware = GradientThresholdMiddleware(verbose=False, threshold=40, sample_group_delay=5, group=True)

# Attach the middleware
manager.attach_receiver(middleware)

# Create a classifier
classifier = SVMClassifier(model_path=sys.argv[2])

# Load the model
classifier.load()

# Print classifier info
classifier.print_info()

# Create a ClassifierPredictor
predictor = ClassifierPredictor(classifier)

# Filter the samples that are too short or too long
lfmiddleware = LengthThresholdMiddleware(verbose=False, min_len=180, max_len=600)
middleware.attach_receiver(lfmiddleware)

# Attach the classifier predictor
Exemplo n.º 13
0
class SVMClassifierTestCase(unittest.TestCase):
    """
    Tests to check SVMClassifier consistency.
    In order to test the classifier, this test will try to implement
    a XOR gate using the classifier.
    """

    def setUp(self):
        # Create a test directory if it doesn't exists
        if not os.path.exists("test_dir_svm_classifier"):
            os.makedirs("test_dir_svm_classifier")

        # Create the samples with the 4 possibilities of the XOR gate
        sample1 = Sample(data=[[1], [1]], gesture_id="0")
        sample2 = Sample(data=[[0], [0]], gesture_id="0")
        sample3 = Sample(data=[[1], [0]], gesture_id="1")
        sample4 = Sample(data=[[0], [1]], gesture_id="1")


        # Save the samples in the test directory
        sample1.save_to_file(os.path.join("test_dir_svm_classifier", "0_1.txt"))
        sample2.save_to_file(os.path.join("test_dir_svm_classifier", "0_2.txt"))
        sample3.save_to_file(os.path.join("test_dir_svm_classifier", "1_1.txt"))
        sample4.save_to_file(os.path.join("test_dir_svm_classifier", "1_2.txt"))

        # Initialize an AbstractClassifier
        self.classifier = SVMClassifier(dataset_path="test_dir_svm_classifier", test_size=0.5)

    def tearDown(self):
        # Destroy the test directory
        shutil.rmtree("test_dir_svm_classifier")

        # Destroy the AbstractClassifier
        self.classifier = None

    def test_load_samples_loaded_correctly(self):
        # Load the samples
        self.classifier.load()

        # Test if samples has been loaded correctly

        # Check there are 2 0s and 2 1s
        self.assertEqual(len(list(filter(lambda x: x == 0, self.classifier.y_data))), 2)
        self.assertEqual(len(list(filter(lambda x: x == 1, self.classifier.y_data))), 2)

        # Convert to list from numpy array
        x_data_as_list = map(lambda x: x.tolist(), self.classifier.x_data)

        self.assertIn([1, 1], x_data_as_list)
        self.assertIn([1, 0], x_data_as_list)
        self.assertIn([0, 1], x_data_as_list)
        self.assertIn([0, 0], x_data_as_list)

        # Test if gestures ids has been loaded correctly
        self.assertIn("0", self.classifier.gestures)
        self.assertIn("1", self.classifier.gestures)

    def test_train_model(self):
        self.classifier.load()

        # Load samples multiple times to have a large dataset
        for n in range(100):
            self.classifier.load_samples_data()

        self.assertGreater(self.classifier.train_model(), 0.9)

    def test_predict(self):
        self.classifier.load()

        # Load samples multiple times to have a large dataset
        for n in range(100):
            self.classifier.load_samples_data()

        self.assertGreater(self.classifier.train_model(), 0.9)

        test_sample1 = Sample(data=[[1], [1]])
        test_sample2 = Sample(data=[[1], [0]])

        self.assertEqual(self.classifier.predict(test_sample1), "0")
        self.assertEqual(self.classifier.predict(test_sample2), "1")

    def test_save_model_before_training_should_fail(self):
        self.assertRaises(ValueError, self.classifier.save_model, "path")

    def test_save_and_load_model(self):
        # Load and train the model
        self.classifier.load()

        # Load samples multiple times to have a large dataset
        for n in range(100):
            self.classifier.load_samples_data()

        self.assertGreater(self.classifier.train_model(), 0.9)

        model_path = os.path.join("test_dir_svm_classifier", "model.svm")

        # Save the model
        self.classifier.save_model(model_path)

        # Create a new classifier and load the saved model
        new_classifier = SVMClassifier(model_path=model_path)

        # Load the model from the saved model
        new_classifier.load()

        # Check if the loaded model works correctly
        test_sample1 = Sample(data=[[1], [1]])
        test_sample2 = Sample(data=[[1], [0]])

        self.assertEqual(new_classifier.predict(test_sample1), "0")
        self.assertEqual(new_classifier.predict(test_sample2), "1")