Exemplo n.º 1
0
    def test_003_demap_timeslots(self):
        timeslots = 15
        subcarriers = 32
        active_subcarriers = 24
        subcarrier_map = get_subcarrier_map(subcarriers,
                                            active_subcarriers,
                                            True)
        # subcarrier_map = np.arange(4, 28, dtype=np.int)
        mapper = Resource_mapper(timeslots, subcarriers,
                                 active_subcarriers,
                                 subcarrier_map,
                                 True)

        self.assertEqual(mapper.block_size(),
                         timeslots * active_subcarriers)
        self.assertEqual(mapper.frame_size(),
                         timeslots * subcarriers)

        d = np.arange(timeslots * active_subcarriers,
                      dtype=np.complex64) + 1

        ref = map_to_waveform_resources(d, active_subcarriers,
                                        subcarriers,
                                        subcarrier_map,
                                        True)
        f = mapper.demap_from_resources(ref)
        self.assertComplexTuplesAlmostEqual(f, d)
Exemplo n.º 2
0
    def test_003_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots,
                                                     subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers,
                                         active_subcarriers, subcarrier_map,
                                         True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap,
                                             64, f_taps, gfdm_constellation,
                                             subcarrier_map, 0)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers,
                                             active_subcarriers,
                                             subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertComplexTuplesAlmostEqual(data, res, 2)
Exemplo n.º 3
0
    def validate_parameter_set(self, K, Kon, M, tolerance=5e-4):
        self.params.K = K
        self.params.Kon = Kon
        self.params.M = self.params.Mon = M
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M
        self.params.pulse = 'rc_fd'

        self.subcarrier_map = get_subcarrier_map(self.params.K,
                                                 self.params.Kon, dc_free=True)
        self.params.Kset = self.subcarrier_map
        # vtaps = vc.gfdmutil.get_transmitter_pulse(self.params)
        # vtaps = vtaps[::self.params.K // self.params.L]
        # taps = np.fft.fft(vtaps)
        # taps = get_frequency_domain_filter(self.params.pulse, self.params.a,
        #                                    self.params.M, self.params.K,
        #                                    self.params.L)
        taps = vc.gfdmutil.get_transmitter_pulse(self.params)
        g2 = taps[::self.params.K // self.params.L]
        taps = np.fft.fft(g2)

        mod = vc.DefaultModulator(self.params)

        d = np.random.randn(self.params.Non) + 1.j * np.random.randn(self.params.Non)
        dframe = map_to_waveform_resource_grid(d, self.params.Kon,
                                               self.params.K,
                                               self.subcarrier_map, True)

        vdata = mod.modulate(dframe)
        vdata *= 1. / np.linalg.norm(vdata)
        gdata = gfdm_modulate_block(dframe.T, taps, self.params.M,
                                    self.params.K, self.params.L, False)
        gdata *= 1. / np.linalg.norm(gdata)
        print(np.max(np.abs(vdata - gdata)))
        self.assertTrue(np.all(np.abs(vdata - gdata) < tolerance))
Exemplo n.º 4
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        cp_len = subcarriers // 4
        cs_len = cp_len // 2

        taps = get_frequency_domain_filter(self.filter_type, self.alpha,
                                           timeslots, subcarriers,
                                           self.overlap)

        window_taps = get_raised_cosine_ramp(
            cs_len, get_window_len(cp_len, timeslots, subcarriers, cs_len))

        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)
        preambles = get_full_preambles(self.filter_type, self.alpha,
                                       active_subcarriers, subcarriers, smap,
                                       self.overlap, cp_len, cs_len, [
                                           0,
                                       ])

        frame_size = preambles[
            0].size + cp_len + timeslots * subcarriers + cs_len

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            frame = generate_reference_frame(d, timeslots, subcarriers,
                                             active_subcarriers, smap, taps,
                                             self.overlap, cp_len, cs_len,
                                             window_taps, [
                                                 0,
                                             ], preambles)

            ref = np.concatenate((ref, frame[0]))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, cs_len, smap, True,
                                  self.overlap, taps, window_taps, [
                                      0,
                                  ], preambles, "packet_len")
        dst = blocks.vector_sink_c()

        self.tb.connect(src, dut, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]
        self.assertComplexTuplesAlmostEqual(ref, res, 5)

        tags = dst.tags()
        for i, t in enumerate(tags):
            print(f't={i}, offset={t.offset}, value={pmt.to_python(t.value)}')
            self.assertEqual(t.offset, i * frame_size)
            self.assertEqual(pmt.to_python(t.value), frame_size)
Exemplo n.º 5
0
 def generate_preamble(self, subcarriers, active_subcarriers, cp_len,
                       ramp_len, cyclic_shift):
     subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers,
                                         dc_free=True)
     return mapped_preamble(self.seed, self.filtertype, self.filteralpha,
                            active_subcarriers, subcarriers,
                            subcarrier_map, self.overlap, cp_len, ramp_len,
                            use_zadoff_chu=True, cyclic_shift=cyclic_shift)
Exemplo n.º 6
0
    def test_002_cyclic_delay_diversity(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        cp_len = subcarriers // 4
        cs_len = cp_len // 2
        cyclic_shifts = [0, 3, 7, 8]

        taps = get_frequency_domain_filter(self.filter_type, self.alpha, timeslots,
                                           subcarriers, self.overlap)

        window_taps = get_raised_cosine_ramp(
            cs_len, get_window_len(cp_len, timeslots, subcarriers, cs_len))

        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)
        preambles = get_full_preambles(self.filter_type, self.alpha, active_subcarriers,
                                       subcarriers, smap, self.overlap, cp_len, cs_len, cyclic_shifts)

        frame_size = preambles[0].size + cp_len + timeslots * subcarriers + cs_len

        ref = [np.array([], dtype=complex) for _ in cyclic_shifts]
        data = np.array([], dtype=complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            frame = generate_reference_frame(d, timeslots, subcarriers, active_subcarriers, smap,
                                             taps, self.overlap, cp_len, cs_len, window_taps,
                                             cyclic_shifts, preambles)

            ref = [np.concatenate((r, f)) for r, f in zip(ref, frame)]
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, cs_len, smap, True,
                                  self.overlap, taps, window_taps, cyclic_shifts, preambles, "packet_len")
        snks = [blocks.vector_sink_c() for _ in cyclic_shifts]

        self.tb.connect(src, dut)
        for i, s in enumerate(snks):
            self.tb.connect((dut, i), s)
        self.tb.run()

        for snk, refport in zip(snks, ref):
            res = np.array(snk.data())[0:refport.size]
            self.assertComplexTuplesAlmostEqual(refport, res, 5)

        for j, snk in enumerate(snks):
            tags = snk.tags()
            for i, t in enumerate(tags):
                print(f'p={j}, t={i}, offset={t.offset}, value={pmt.to_python(t.value)}')
                self.assertEqual(t.offset, i * frame_size)
                self.assertEqual(pmt.to_python(t.value), frame_size)
Exemplo n.º 7
0
    def test_003_snr(self):
        nframes = 30
        timeslots = 5
        subcarriers = 1024
        active_subcarriers = 936
        overlap = 2
        cp_len = subcarriers // 2
        ramp_len = cp_len // 2
        active_ratio = subcarriers / active_subcarriers

        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers,
                                            dc_free=True)
        preambles = mapped_preamble(self.seed, self.filtertype, self.filteralpha,
                                    active_subcarriers, subcarriers,
                                    subcarrier_map, overlap, cp_len, ramp_len)

        core_preamble = preambles[1]

        sigenergy = calculate_energy(core_preamble)

        data = np.copy(core_preamble)
        snrs = np.arange(3, 3 * nframes, 3, dtype=np.float)
        snrs_lin = 10. ** (snrs / 10.)
        expected_snrs_lin = np.concatenate(((np.inf,), snrs_lin))

        for i, snr_lin in enumerate(snrs_lin):
            nscale = calculate_noise_scale(
                snr_lin, sigenergy, active_ratio, core_preamble.size)
            noise = get_noise_vector(core_preamble.size, nscale)

            d = core_preamble + noise
            data = np.concatenate((data, d))

        dut = gfdm.channel_estimator_cc(
            timeslots, subcarriers, active_subcarriers, True, 1, core_preamble)
        src = blocks.vector_source_c(data)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, dut, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertEqual(res.size, nframes * timeslots * subcarriers)

        tags = snk.tags()
        snr_tags = [t for t in tags if pmt.eq(t.key, pmt.mp("snr_lin"))]

        for i, t in enumerate(snr_tags):
            self.assertEqual(t.offset, i * timeslots * subcarriers)
            res_lin = pmt.to_float(t.value)
            res_db = 10. * np.log10(res_lin)
            ref_db = 10. * np.log10(expected_snrs_lin[i])
            # print(f"Reference: {ref_db:6.3f}dB\t{res_db:6.3f}dB")

            if np.isfinite(ref_db):
                self.assertTrue(np.abs(res_db - ref_db) < 1.)
Exemplo n.º 8
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 3
        alpha = .5
        active = 8
        M = 8
        K = 16
        L = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4
        block_len = M * K
        window_len = get_window_len(cp_len, M, K, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(K)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2, K, L)
        preamble = get_sync_symbol(pn_symbols, H_preamble, K, L, cp_len,
                                   ramp_len)[0]
        smap = get_subcarrier_map(K, active, dc_free=True)

        ref = np.array([], dtype=complex)
        data = np.array([], dtype=complex)
        frame_len = window_len + len(preamble)
        frame_gap = np.zeros(frame_len)
        for i in range(n_frames):
            d = get_random_qpsk(active * M)
            dd = map_to_waveform_resources(d, active, K, smap)
            D = get_data_matrix(dd, K, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, M, K, L, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, frame_gap, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(active, K, M, smap, True)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        prefixer = gfdm.cyclic_prefixer_cc(block_len, cp_len, cs_len, ramp_len,
                                           window_taps)
        preambler = blocks.vector_insert_c(preamble,
                                           window_len + len(preamble), 0)
        gapper = blocks.vector_insert_c(frame_gap, frame_len + len(frame_gap),
                                        0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mapper, mod, prefixer, preambler, gapper, dst)
        # self.tb.connect(src, mapper, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemplo n.º 9
0
 def test_004_setIC(self):
     ic = 2
     timeslots = 9
     subcarriers = 32
     active_subcarriers = 20
     overlap = 2
     f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots, subcarriers, overlap)
     gfdm_constellation = digital.constellation_qpsk().base()
     subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)
     demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap, 64, f_taps, gfdm_constellation, subcarrier_map)
     demod.set_ic(ic)
     self.assertEqual(ic, demod.get_ic())
Exemplo n.º 10
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 7
        alpha = .5
        active_subcarriers = 52
        timeslots = 9
        subcarriers = 64
        overlap = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4

        window_len = get_window_len(cp_len, timeslots, subcarriers, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, timeslots,
                                           subcarriers, overlap)
        # taps /= np.sqrt(calculate_signal_energy(taps) / time)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(subcarriers)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2,
                                                 subcarriers, overlap)
        preamble = get_sync_symbol(pn_symbols, H_preamble, subcarriers,
                                   overlap, cp_len, ramp_len)[0]
        smap = get_subcarrier_map(subcarriers, active_subcarriers, True)

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)

        for i in range(n_frames):
            d = get_random_qpsk(active_subcarriers * timeslots)
            dd = map_to_waveform_resources(d, active_subcarriers,
                                           subcarriers, smap)
            D = get_data_matrix(dd, subcarriers, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, timeslots, subcarriers,
                                    overlap, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        dut = gfdm.transmitter_cc(timeslots, subcarriers, active_subcarriers,
                                  cp_len, cs_len, ramp_len, smap, True,
                                  overlap, taps, window_taps, preamble, "packet_len")
        dst = blocks.vector_sink_c()

        self.tb.connect(src, dut, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]
        self.assertComplexTuplesAlmostEqual(ref, res, 5)

        tags = dst.tags()
        for t in tags:
            print(t.offset, t.value)
Exemplo n.º 11
0
    def test_001_t(self):
        n_frames = 20
        timeslots = 9
        subcarriers = 128
        active_subcarriers = 110
        cp_len = subcarriers // 2
        smap = get_subcarrier_map(subcarriers, active_subcarriers)
        seed = 4711
        ftype = 'rrc'
        falpha = .5

        preamble, x_preamble = mapped_preamble(seed, ftype, falpha,
                                               active_subcarriers, subcarriers,
                                               smap, 2, cp_len, cp_len // 2)
        frame_len = len(preamble) + timeslots * subcarriers + cp_len
        frame_gap = np.zeros(frame_len, dtype=np.complex)
        data = frame_gap
        ref = np.array([], dtype=np.complex)
        for i in range(n_frames):
            d_block = modulate_mapped_gfdm_block(
                get_random_qpsk(timeslots * active_subcarriers), timeslots,
                subcarriers, active_subcarriers, 2, falpha)
            frame = pinch_cp_add_block(d_block, timeslots, subcarriers, cp_len,
                                       cp_len // 2)
            frame = np.concatenate((preamble, frame))
            ref = np.concatenate((ref, frame))
            data = np.concatenate((data, frame, frame_gap))

        # print np.sum(np.abs(x_preamble) ** 2)
        # import matplotlib.pyplot as plt
        # plt.plot(data.real)
        # plt.plot(data.imag)
        # plt.show()
        backoff = 80

        src = blocks.vector_source_c(data)
        e_detector = gfdm.frame_energy_detector_cc(10., 32, frame_len, backoff,
                                                   'energy')
        detector = gfdm.simple_preamble_sync_cc(frame_len, subcarriers, cp_len,
                                                x_preamble, 'energy', 'frame')
        snk = blocks.vector_sink_c()

        self.tb.connect(src, e_detector, detector, snk)
        self.tb.run()
        # check data
        res = np.array(snk.data())
        tags = snk.tags()
        for t in tags:
            print 'srcid {}, key {}, offset {}, value {}'.format(
                t.srcid, t.key, t.offset, t.value)

        self.assertComplexTuplesAlmostEqual(res, ref[0:len(res)], 5)
Exemplo n.º 12
0
    def test_001_t(self):
        n_frames = 20
        timeslots = 9
        subcarriers = 128
        active_subcarriers = 110
        cp_len = subcarriers // 2
        smap = get_subcarrier_map(subcarriers, active_subcarriers)
        seed = 4711
        ftype = 'rrc'
        falpha = .5
        tag_key = 'frame_start'

        preamble, x_preamble = mapped_preamble(seed, ftype, falpha,
                                               active_subcarriers, subcarriers,
                                               smap, 2, cp_len, cp_len // 2)
        block_len = timeslots * subcarriers
        offset = len(preamble) + cp_len
        frame_len = len(preamble) + timeslots * subcarriers + cp_len

        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        tags = []
        print 'frame_len: ', frame_len
        for i in range(n_frames):
            d_block = modulate_mapped_gfdm_block(
                get_random_qpsk(timeslots * active_subcarriers), timeslots,
                subcarriers, active_subcarriers, 2, falpha)
            frame = pinch_cp_add_block(d_block, timeslots, subcarriers, cp_len,
                                       cp_len // 2)
            frame = np.concatenate((preamble, frame))
            r = frame[offset:offset + block_len]
            ref = np.concatenate((ref, r))
            tag = gr.tag_t()
            tag.key = pmt.string_to_symbol(tag_key)
            tag.offset = len(data)
            tag.srcid = pmt.string_to_symbol('qa')
            tag.value = pmt.from_long(block_len)
            tags.append(tag)
            data = np.concatenate((data, frame))

        src = blocks.vector_source_c(data, False, 1, tags)
        cp_rm = gfdm.remove_prefix_cc(frame_len, block_len, offset, tag_key)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, cp_rm, snk)
        self.tb.run()

        # # check data
        res = np.array(snk.data())
        tags = snk.tags()
        self.assertTrue(len(tags) == 0)  # propagation policy is TPP_DONT
        self.assertComplexTuplesAlmostEqual(res, ref, 5)
Exemplo n.º 13
0
    def test_001_selective(self):
        timeslots = 5
        subcarriers = 64
        active_subcarriers = 52
        overlap = 2
        cp_len = subcarriers // 2
        ramp_len = cp_len // 2
        active_symbols = timeslots * active_subcarriers

        subcarrier_map = get_subcarrier_map(subcarriers,
                                            active_subcarriers,
                                            dc_free=True)
        preambles = mapped_preamble(
            self.seed,
            self.filtertype,
            self.filteralpha,
            active_subcarriers,
            subcarriers,
            subcarrier_map,
            overlap,
            cp_len,
            ramp_len,
        )
        full_preamble = preambles[0]
        core_preamble = preambles[1]
        h = np.array([1.0, 0.5, 0.1j, 0.1 + 0.05j], dtype=complex)
        data = np.convolve(full_preamble, h, "full")[0:full_preamble.size]
        data = data[cp_len:-ramp_len]
        self.assertEqual(data.size, core_preamble.size)

        estimator = Preamble_channel_estimator(timeslots, subcarriers,
                                               active_subcarriers, True, 1,
                                               core_preamble)
        self.assertEqual(estimator.timeslots(), timeslots)
        self.assertEqual(estimator.subcarriers(), subcarriers)
        self.assertEqual(estimator.active_subcarriers(), active_subcarriers)
        self.assertEqual(estimator.frame_len(), timeslots * subcarriers)
        self.assertEqual(estimator.is_dc_free(), True)

        res = estimator.estimate_frame(data)
        lowres = res[0:active_symbols // 2]
        hires = res[-active_symbols // 2:]

        fh = np.fft.fft(h, timeslots * subcarriers)
        lowfh = fh[0:active_symbols // 2]
        hifh = fh[-active_symbols // 2:]

        self.assertComplexTuplesAlmostEqual(lowres, lowfh, 1)
        self.assertComplexTuplesAlmostEqual(hires, hifh, 1)
Exemplo n.º 14
0
    def test_001_t(self):
        np.set_printoptions(precision=2)
        n_frames = 3
        alpha = .5
        active = 8
        M = 8
        K = 16
        L = 2
        cp_len = 8
        cs_len = 4
        ramp_len = 4
        block_len = M * K
        window_len = get_window_len(cp_len, M, K, cs_len)
        taps = get_frequency_domain_filter('rrc', alpha, M, K, L)
        taps /= np.sqrt(calculate_signal_energy(taps) / M)
        window_taps = get_raised_cosine_ramp(ramp_len, window_len)
        pn_symbols = get_random_qpsk(K)
        H_preamble = get_frequency_domain_filter('rrc', alpha, 2, K, L)
        preamble = get_sync_symbol(pn_symbols, H_preamble, K, L, cp_len, ramp_len)[0]
        smap = get_subcarrier_map(K, active, dc_free=True)

        ref = np.array([], dtype=np.complex)
        data = np.array([], dtype=np.complex)
        frame_len = window_len + len(preamble)
        frame_gap = np.zeros(frame_len)
        for i in range(n_frames):
            d = get_random_qpsk(active * M)
            dd = map_to_waveform_resources(d, active, K, smap)
            D = get_data_matrix(dd, K, group_by_subcarrier=False)
            b = gfdm_modulate_block(D, taps, M, K, L, False)
            b = add_cyclic_starfix(b, cp_len, cs_len)
            b = pinch_block(b, window_taps)
            ref = np.concatenate((ref, frame_gap, preamble, b))
            data = np.concatenate((data, d))

        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(active, K, M, smap, True)
        mod = gfdm.simple_modulator_cc(M, K, L, taps)
        prefixer = gfdm.cyclic_prefixer_cc(block_len, cp_len, cs_len, ramp_len, window_taps)
        preambler = blocks.vector_insert_c(preamble, window_len + len(preamble), 0)
        gapper = blocks.vector_insert_c(frame_gap, frame_len + len(frame_gap), 0)
        dst = blocks.vector_sink_c()

        self.tb.connect(src, mapper, mod, prefixer, preambler, gapper, dst)
        # self.tb.connect(src, mapper, dst)
        self.tb.run()
        res = np.array(dst.data())[0:len(ref)]

        self.assertComplexTuplesAlmostEqual(ref, res, 5)
Exemplo n.º 15
0
 def test_004_setIC(self):
     ic = 2
     timeslots = 9
     subcarriers = 32
     active_subcarriers = 20
     overlap = 2
     f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots,
                                                  subcarriers, overlap)
     gfdm_constellation = digital.constellation_qpsk().base()
     subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)
     demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap,
                                          64, f_taps, gfdm_constellation,
                                          subcarrier_map, 0)
     demod.set_ic(ic)
     self.assertEqual(ic, demod.get_ic())
Exemplo n.º 16
0
    def test_002_selective(self):
        timeslots = 5
        subcarriers = 64
        active_subcarriers = 52
        overlap = 2
        cp_len = subcarriers // 2
        ramp_len = cp_len // 2
        active_symbols = timeslots * active_subcarriers

        subcarrier_map = get_subcarrier_map(subcarriers,
                                            active_subcarriers,
                                            dc_free=True)
        preambles = mapped_preamble(
            self.seed,
            self.filtertype,
            self.filteralpha,
            active_subcarriers,
            subcarriers,
            subcarrier_map,
            overlap,
            cp_len,
            ramp_len,
        )
        full_preamble = preambles[0]
        core_preamble = preambles[1]
        h = np.array([1.0, 0.5, 0.1j, 0.1 + 0.05j], dtype=complex)
        data = np.convolve(full_preamble, h, "full")[0:full_preamble.size]
        data = data[cp_len:-ramp_len]
        self.assertEqual(data.size, core_preamble.size)

        dut = gfdm.channel_estimator_cc(timeslots, subcarriers,
                                        active_subcarriers, True, 1,
                                        core_preamble)
        src = blocks.vector_source_c(data)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, dut, snk)
        self.tb.run()

        res = np.array(snk.data())
        lowres = res[0:active_symbols // 2]
        hires = res[-active_symbols // 2:]

        fh = np.fft.fft(h, timeslots * subcarriers)
        lowfh = fh[0:active_symbols // 2]
        hifh = fh[-active_symbols // 2:]

        self.assertComplexTuplesAlmostEqual(lowres, lowfh, 1)
        self.assertComplexTuplesAlmostEqual(hires, hifh, 1)
Exemplo n.º 17
0
    def test_002_snr(self):
        timeslots = 5
        subcarriers = 1024
        active_subcarriers = 936
        overlap = 2
        cp_len = subcarriers // 2
        ramp_len = cp_len // 2
        active_ratio = subcarriers / active_subcarriers

        subcarrier_map = get_subcarrier_map(subcarriers,
                                            active_subcarriers,
                                            dc_free=True)
        preambles = mapped_preamble(
            self.seed,
            self.filtertype,
            self.filteralpha,
            active_subcarriers,
            subcarriers,
            subcarrier_map,
            overlap,
            cp_len,
            ramp_len,
        )

        core_preamble = preambles[1]

        sigenergy = calculate_energy(core_preamble)

        data = np.copy(core_preamble)
        snr = 4.0
        snr_lin = 10.0**(snr / 10.0)

        nscale = calculate_noise_scale(snr_lin, sigenergy, active_ratio,
                                       core_preamble.size)
        noise = get_noise_vector(core_preamble.size, nscale)

        data = core_preamble + noise

        estimator = Preamble_channel_estimator(timeslots, subcarriers,
                                               active_subcarriers, True, 1,
                                               core_preamble)

        res = estimator.estimate_snr(data)
        res_db = 10.0 * np.log10(res)

        print(res, snr_lin)
        print(res_db, snr)
        self.assertTrue(np.abs(res_db - snr) < 1.0)
Exemplo n.º 18
0
    def test_002_subcarrier_first(self):
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(10 * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, False)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, False)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, demapper, snk)
        self.tb.run()
        # check data
        res = np.array(snk.data())

        self.assertComplexTuplesAlmostEqual(data, res)
Exemplo n.º 19
0
    def test_001_t(self):
        n_frames = 20
        timeslots = 9
        subcarriers = 128
        active_subcarriers = 110
        cp_len = subcarriers // 2
        smap = get_subcarrier_map(subcarriers, active_subcarriers)
        seed = 4711
        ftype = 'rrc'
        falpha = .5
        tag_key = 'frame_start'

        preamble, x_preamble = mapped_preamble(seed, ftype, falpha, active_subcarriers, subcarriers, smap, 2, cp_len, cp_len // 2)
        block_len = timeslots * subcarriers
        offset = len(preamble) + cp_len
        frame_len = len(preamble) + timeslots * subcarriers + cp_len

        data = np.array([], dtype=np.complex)
        ref = np.array([], dtype=np.complex)
        tags = []
        print 'frame_len: ', frame_len
        for i in range(n_frames):
            d_block = modulate_mapped_gfdm_block(get_random_qpsk(timeslots * active_subcarriers), timeslots, subcarriers, active_subcarriers, 2, falpha)
            frame = pinch_cp_add_block(d_block, timeslots, subcarriers, cp_len, cp_len // 2)
            frame = np.concatenate((preamble, frame))
            r = frame[offset:offset + block_len]
            ref = np.concatenate((ref, r))
            tag = gr.tag_t()
            tag.key = pmt.string_to_symbol(tag_key)
            tag.offset = len(data)
            tag.srcid = pmt.string_to_symbol('qa')
            tag.value = pmt.from_long(block_len)
            tags.append(tag)
            data = np.concatenate((data, frame))

        src = blocks.vector_source_c(data, False, 1, tags)
        cp_rm = gfdm.remove_prefix_cc(frame_len, block_len, offset, tag_key)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, cp_rm, snk)
        self.tb.run()

        # # check data
        res = np.array(snk.data())
        tags = snk.tags()
        self.assertTrue(len(tags) == 0)  # propagation policy is TPP_DONT
        self.assertComplexTuplesAlmostEqual(res, ref, 5)
Exemplo n.º 20
0
    def test_003_map_complex_config(self):
        self.params.K = 64
        self.params.Kon = 52
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M

        self.subcarrier_map = get_subcarrier_map(self.params.K,
                                                 self.params.Kon, dc_free=True)
        self.params.Kset = self.subcarrier_map

        mapper = vc.mapping.Mapper(self.params)

        d = np.arange(self.params.Non, dtype=np.complex64) + 1
        f = mapper.doMap(d)
        ref = map_to_waveform_resource_grid(d, self.params.Kon, self.params.K,
                                            self.subcarrier_map, True)

        self.assertTrue(np.all(f == ref))
Exemplo n.º 21
0
    def test_001_t(self):
        n_frames = 20
        timeslots = 9
        subcarriers = 128
        active_subcarriers = 110
        cp_len = subcarriers // 2
        smap = get_subcarrier_map(subcarriers, active_subcarriers)
        seed = 4711
        ftype = 'rrc'
        falpha = .5

        preamble, x_preamble = mapped_preamble(seed, ftype, falpha, active_subcarriers, subcarriers, smap, 2, cp_len, cp_len // 2)
        frame_len = len(preamble) + timeslots * subcarriers + cp_len
        frame_gap = np.zeros(frame_len, dtype=np.complex)
        data = frame_gap
        ref = np.array([], dtype=np.complex)
        for i in range(n_frames):
            d_block = modulate_mapped_gfdm_block(get_random_qpsk(timeslots * active_subcarriers), timeslots, subcarriers, active_subcarriers, 2, falpha)
            frame = pinch_cp_add_block(d_block, timeslots, subcarriers, cp_len, cp_len // 2)
            frame = np.concatenate((preamble, frame))
            ref = np.concatenate((ref, frame))
            data = np.concatenate((data, frame, frame_gap))

        # print np.sum(np.abs(x_preamble) ** 2)
        # import matplotlib.pyplot as plt
        # plt.plot(data.real)
        # plt.plot(data.imag)
        # plt.show()
        backoff = 80

        src = blocks.vector_source_c(data)
        e_detector = gfdm.frame_energy_detector_cc(10., 32, frame_len, backoff, 'energy')
        detector = gfdm.simple_preamble_sync_cc(frame_len, subcarriers, cp_len, x_preamble, 'energy', 'frame')
        snk = blocks.vector_sink_c()

        self.tb.connect(src, e_detector, detector, snk)
        self.tb.run()
        # check data
        res = np.array(snk.data())
        tags = snk.tags()
        for t in tags:
            print 'srcid {}, key {}, offset {}, value {}'.format(t.srcid, t.key, t.offset, t.value)

        self.assertComplexTuplesAlmostEqual(res, ref[0:len(res)], 5)
Exemplo n.º 22
0
    def test_003_map_complex_config(self):
        self.params.K = 64
        self.params.Kon = 52
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M

        self.subcarrier_map = get_subcarrier_map(self.params.K,
                                                 self.params.Kon,
                                                 dc_free=True)
        self.params.Kset = self.subcarrier_map

        mapper = vc.mapping.Mapper(self.params)

        d = np.arange(self.params.Non, dtype=np.complex64) + 1
        f = mapper.doMap(d)
        ref = map_to_waveform_resource_grid(d, self.params.Kon, self.params.K,
                                            self.subcarrier_map, True)

        self.assertTrue(np.all(f == ref))
Exemplo n.º 23
0
    def test_004_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        ic_iterations = 64
        f_taps = filters.get_frequency_domain_filter("rrc", 0.5, timeslots,
                                                     subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        print(gfdm_constellation.points())
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        data *= 2.0
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers,
                                         active_subcarriers, subcarrier_map,
                                         True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(
            timeslots,
            subcarriers,
            overlap,
            ic_iterations,
            f_taps,
            gfdm_constellation,
            subcarrier_map,
            0,
        )
        demod.set_ic(64)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers,
                                             active_subcarriers,
                                             subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        print(data[0:10])
        print(res[0:10])
        self.assertComplexTuplesAlmostEqual(data, res, 1)
Exemplo n.º 24
0
    def test_002_subcarrier_first(self):
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(10 * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers,
                                         active_subcarriers, subcarrier_map,
                                         False)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers,
                                             active_subcarriers,
                                             subcarrier_map, False)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, demapper, snk)
        self.tb.run()
        # check data
        res = np.array(snk.data())

        self.assertComplexTuplesAlmostEqual(data, res)
Exemplo n.º 25
0
    def test_003_active_subcarriers(self):
        n_frames = 1
        timeslots = 9
        subcarriers = 32
        active_subcarriers = 20
        overlap = 2
        f_taps = filters.get_frequency_domain_filter('rrc', .5, timeslots, subcarriers, overlap)
        gfdm_constellation = digital.constellation_qpsk().base()
        subcarrier_map = get_subcarrier_map(subcarriers, active_subcarriers)

        data = get_random_qpsk(n_frames * timeslots * active_subcarriers)
        src = blocks.vector_source_c(data)
        mapper = gfdm.resource_mapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, True)
        mod = gfdm.simple_modulator_cc(timeslots, subcarriers, overlap, f_taps)
        demod = gfdm.advanced_receiver_sb_cc(timeslots, subcarriers, overlap, 64, f_taps, gfdm_constellation, subcarrier_map)
        demapper = gfdm.resource_demapper_cc(timeslots, subcarriers, active_subcarriers, subcarrier_map, True)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, mapper, mod, demod, demapper, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertComplexTuplesAlmostEqual(data, res, 2)
Exemplo n.º 26
0
    def validate_parameter_set(self, K, Kon, M, tolerance=5e-4):
        self.params.K = K
        self.params.Kon = Kon
        self.params.M = self.params.Mon = M
        self.params.Non = self.params.Kon * self.params.Mon
        self.params.N = self.params.K * self.params.M
        self.params.pulse = 'rc_fd'

        self.subcarrier_map = get_subcarrier_map(self.params.K,
                                                 self.params.Kon,
                                                 dc_free=True)
        self.params.Kset = self.subcarrier_map
        # vtaps = vc.gfdmutil.get_transmitter_pulse(self.params)
        # vtaps = vtaps[::self.params.K // self.params.L]
        # taps = np.fft.fft(vtaps)
        # taps = get_frequency_domain_filter(self.params.pulse, self.params.a,
        #                                    self.params.M, self.params.K,
        #                                    self.params.L)
        taps = vc.gfdmutil.get_transmitter_pulse(self.params)
        g2 = taps[::self.params.K // self.params.L]
        taps = np.fft.fft(g2)

        mod = vc.DefaultModulator(self.params)

        d = np.random.randn(
            self.params.Non) + 1.j * np.random.randn(self.params.Non)
        dframe = map_to_waveform_resource_grid(d, self.params.Kon,
                                               self.params.K,
                                               self.subcarrier_map, True)

        vdata = mod.modulate(dframe)
        vdata *= 1. / np.linalg.norm(vdata)
        gdata = gfdm_modulate_block(dframe.T, taps, self.params.M,
                                    self.params.K, self.params.L, False)
        gdata *= 1. / np.linalg.norm(gdata)
        print(np.max(np.abs(vdata - gdata)))
        self.assertTrue(np.all(np.abs(vdata - gdata) < tolerance))
Exemplo n.º 27
0
    def test_001_simple(self):
        timeslots = 3
        subcarriers = 32
        active_subcarriers = 24
        overlap = 2
        cp_len = subcarriers // 2
        ramp_len = cp_len // 2

        subcarrier_map = get_subcarrier_map(subcarriers,
                                            active_subcarriers,
                                            dc_free=True)
        preambles = mapped_preamble(
            self.seed,
            self.filtertype,
            self.filteralpha,
            active_subcarriers,
            subcarriers,
            subcarrier_map,
            overlap,
            cp_len,
            ramp_len,
        )
        core_preamble = preambles[1]

        dut = gfdm.channel_estimator_cc(timeslots, subcarriers,
                                        active_subcarriers, True, 1,
                                        core_preamble)
        src = blocks.vector_source_c(core_preamble)
        snk = blocks.vector_sink_c()
        self.tb.connect(src, dut, snk)
        self.tb.run()

        res = np.array(snk.data())
        self.assertComplexTuplesAlmostEqual(res,
                                            np.ones(res.size, dtype=res.dtype),
                                            6)