def createAnimation(out, stream=False):
    mesh = pg.load(out + '.bms')
    meshC = pg.load(out + 'C.bms')
    densMatrix = pg.load(out + 'density.bmat')
    vels = np.load(out + 'velo.bmat.npy')

    cMin = 9e99
    cMax = -9e99
    for d in densMatrix:
        cMin = min(cMin, pg.min(d))
        cMax = max(cMax, pg.max(d))

    if stream:
        pg.viewer.mpl.saveAnimation(mesh,
                                    densMatrix,
                                    out + '-stream',
                                    plc=None,
                                    label='',
                                    cMin=cMin,
                                    cMax=cMax,
                                    logScale=False,
                                    cmap=None,
                                    vData=vels,
                                    coarseMesh=meshC,
                                    color='white')
    else:
        pg.viewer.mpl.saveAnimation(mesh,
                                    densMatrix,
                                    out,
                                    plc=None,
                                    label='',
                                    cMin=cMin,
                                    cMax=cMax,
                                    logScale=False,
                                    cmap=None)
def createAnimation(out, stream=False):
    mesh = pg.load(out + '.bms')
    meshC = pg.load(out + 'C.bms')
    densMatrix = pg.load(out + 'density.bmat')
    vels = np.load(out+'velo.bmat.npy')
    
    cMin= 9e99
    cMax= -9e99
    for d in densMatrix:
        cMin = min(cMin, pg.min(d))
        cMax = max(cMax, pg.max(d))
        
    if stream:
        pg.mplviewer.saveAnimation(mesh, densMatrix, out + '-stream',
                               plc=None, label='',
                               cMin=cMin, cMax=cMax, logScale=False, cmap=None,
                               vData=vels, coarseMesh=meshC, color='white'
                               )
    else:
        pg.mplviewer.saveAnimation(mesh, densMatrix, out,
                               plc=None, label='',
                               cMin=cMin, cMax=cMax, logScale=False, cmap=None)
Exemplo n.º 3
0
    def createJacobian(self, model):
        """Create Jacobian matrix."""
        if self.subPotentials is None:
            self.response(model)

        J = self.jacobian()
        J.resize(self.data.size(), self.regionManager().parameterCount())

        cells = self.mesh().findCellByMarker(0, -1)
        Si = pg.ElementMatrix()
        St = pg.ElementMatrix()

        u = self.subPotentials

        pg.tic()
        if self.verbose():
            print("Calculate sensitivity matrix for model: ", min(model),
                  max(model))

        Jt = pg.RMatrix(self.data.size(),
                        self.regionManager().parameterCount())

        for kIdx, w in enumerate(self.w):
            k = self.k[kIdx]
            w = self.w[kIdx]

            Jt *= 0.
            A = pg.ElementMatrixMap()

            for i, c in enumerate(cells):
                modelIdx = c.marker()

                # 2.5D
                Si.u2(c)
                Si *= k * k
                Si += St.ux2uy2uz2(c)

                # 3D
                # Si.ux2uy2uz2(c); w = w* 2

                A.add(modelIdx, Si)

            for dataIdx in range(self.data.size()):

                a = int(self.data('a')[dataIdx])
                b = int(self.data('b')[dataIdx])
                m = int(self.data('m')[dataIdx])
                n = int(self.data('n')[dataIdx])
                Jt[dataIdx] = A.mult(u[kIdx][a] - u[kIdx][b],
                                     u[kIdx][m] - u[kIdx][n])

            J += w * Jt

        m2 = model * model
        k = self.data('k')

        for i in range(J.rows()):
            J[i] /= (m2 / k[i])

        if self.verbose():
            sumsens = np.zeros(J.rows())
            for i in range(J.rows()):
                sumsens[i] = pg.sum(J[i])
            print("sens sum: median = ", pg.median(sumsens), " min = ",
                  pg.min(sumsens), " max = ", pg.max(sumsens))
import numpy as np

import pybert as pb
import pygimli as pg
pg.verbose = print  # temporary
import pygimli.meshtools as mt
from settings import depth_5000, depth_5198, erte, rste

ertData = pb.load("ert.data")

print("Number of electrodes:", ertData.sensorCount())
print(ertData)

rstData = pg.DataContainer("rst.data", "s g")
print("Number of shot/receivers:", rstData.sensorCount())
maxrst = pg.max(pg.x(rstData.sensors()))

idx = []
for i, sensor in enumerate(ertData.sensors()):
    if sensor[0] >= 50.0:
        idx.append(i)

ertData.removeSensorIdx(idx)
ertData.removeInvalid()
ertData.removeUnusedSensors()
ertData.set("err", pg.RVector(ertData.size(), erte))
ertData.save("ert_filtered.data")

rstData.set("err", pg.RVector(rstData.size(), rste))
#
# # Remove two data points with high v_a at zero-offset
Exemplo n.º 5
0
    def createJacobian(self, model):
        """Create Jacobian matrix."""
        if self.subPotentials is None:
            self.response(model)

        J = self.jacobian()
        J.resize(self.data.size(), self.regionManager().parameterCount())

        cells = self.mesh().findCellByMarker(0, -1)
        Si = pg.ElementMatrix()
        St = pg.ElementMatrix()

        u = self.subPotentials

        pg.tic()
        if self.verbose():
            print("Calculate sensitivity matrix for model: ",
                  min(model), max(model))

        Jt = pg.RMatrix(self.data.size(),
                        self.regionManager().parameterCount())

        for kIdx, w in enumerate(self.w):
            k = self.k[kIdx]
            w = self.w[kIdx]

            Jt *= 0.
            A = pg.ElementMatrixMap()

            for i, c in enumerate(cells):
                modelIdx = c.marker()

                # 2.5D
                Si.u2(c)
                Si *= k * k
                Si += St.ux2uy2uz2(c)

                # 3D
                # Si.ux2uy2uz2(c); w = w* 2

                A.add(modelIdx, Si)

            for dataIdx in range(self.data.size()):

                a = int(self.data('a')[dataIdx])
                b = int(self.data('b')[dataIdx])
                m = int(self.data('m')[dataIdx])
                n = int(self.data('n')[dataIdx])
                Jt[dataIdx] = A.mult(u[kIdx][a] - u[kIdx][b],
                                     u[kIdx][m] - u[kIdx][n])

            J += w * Jt

        m2 = model*model
        k = self.data('k')

        for i in range(J.rows()):
            J[i] /= (m2 / k[i])

        if self.verbose():
            sumsens = np.zeros(J.rows())
            for i in range(J.rows()):
                sumsens[i] = pg.sum(J[i])
            print("sens sum: median = ", pg.median(sumsens),
                  " min = ", pg.min(sumsens),
                  " max = ", pg.max(sumsens))