Exemplo n.º 1
0
async def get_best_solutions(task=None):
    assert task, 'No task specified'

    algorithm, problems = \
        itemgetter('algorithm', 'problems')(task)
    name, params, hooks = \
        itemgetter('name', 'params', 'hooks')(algorithm)
    assert name in ['de', 'pso'], \
        'Specified algorithm is not supported'

    X = []
    if name == 'de':
        # build the archipelago
        archi = pg.archipelago()
        for prob in problems:
            isl = de.get_island(prob, params, hooks)
            archi.push_back(isl)

        archi.evolve()
        await asyncio.sleep(0)
        archi.wait()
        await asyncio.sleep(0)
        X = archi.get_champions_x()
        Y = archi.get_champions_f()

        hook_report = itemgetter('report')(hooks)
        if hook_report is not None:
            for i in range(len(Y)):
                gbest = (X[i], Y[i])
                hook_report(gbest)
    elif name == 'pso':
        # build the archipelago
        archi = pg.archipelago()
        for prob in problems:
            isl = pso_origin.get_island(prob, params, hooks)
            archi.push_back(isl)

        archi.evolve()
        await asyncio.sleep(0)
        archi.wait()
        await asyncio.sleep(0)
        X = archi.get_champions_x()
        Y = archi.get_champions_f()

        hook_report = itemgetter('report')(hooks)
        if hook_report is not None:
            for i in range(len(Y)):
                gbest = (X[i], Y[i])
                hook_report(gbest)
    X = np.array(X)

    return X
Exemplo n.º 2
0
def run_example5():
    import pygmo as pg
    from pykep import epoch
    from pykep.planet import jpl_lp
    from pykep.trajopt import mga_1dsm

    # We define an Earth-Venus-Earth problem (single-objective)
    seq = [jpl_lp('earth'), jpl_lp('venus'), jpl_lp('earth')]
    udp = mga_1dsm(seq=seq,
                   t0=[epoch(5844), epoch(6209)],
                   tof=[0.7 * 365.25, 3 * 365.25],
                   vinf=[0.5, 2.5],
                   add_vinf_dep=False,
                   add_vinf_arr=True,
                   multi_objective=False)

    pg.problem(udp)
    # We solve it!!
    uda = pg.sade(gen=100)
    archi = pg.archipelago(algo=uda, prob=udp, n=8, pop_size=20)
    print(
        "Running a Self-Adaptive Differential Evolution Algorithm .... on 8 parallel islands"
    )
    archi.evolve(10)
    archi.wait()
    sols = archi.get_champions_f()
    idx = sols.index(min(sols))
    print("Done!! Solutions found are: ", archi.get_champions_f())
    udp.pretty(archi.get_champions_x()[idx])
    udp.plot(archi.get_champions_x()[idx])
Exemplo n.º 3
0
def test2():
    mma = pg.algorithm(pg.nlopt("mma"))
    p_toy = pg.problem(toy_problem_2())
    archi = pg.archipelago(n=6, algo=mma, prob=p_toy, pop_size=1)
    archi.evolve()
    archi.wait_check()
    print("end of test2")
Exemplo n.º 4
0
def goto_mars():
    # We define an Earth-Mars problem (single-objective)
    seq = [jpl_lp('earth'), jpl_lp('mars')]
    udp = mga_1dsm(seq=seq,
                   t0=[epoch(18 * 365.25 + 1),
                       epoch(25 * 365.25 + 1)],
                   tof=[0.7 * 365.25, 7 * 365.25],
                   vinf=[0.5, 5],
                   add_vinf_dep=False,
                   add_vinf_arr=True,
                   multi_objective=False)

    pg.problem(udp)
    # We solve it!!
    uda = pg.sade(gen=200)
    archi = pg.archipelago(algo=uda, prob=udp, n=8, pop_size=30)
    print(
        "Running a Self-Adaptive Differential Evolution Algorithm .... on 8 parallel islands"
    )
    archi.evolve(10)
    archi.wait()
    sols = archi.get_champions_f()
    idx = sols.index(min(sols))
    print("Done!! Solutions found are: ", archi.get_champions_f())
    print(f"\nThe best solution with Dv = {min(sols)[0]}:\n")
    udp.pretty(archi.get_champions_x()[idx])
    udp.plot(archi.get_champions_x()[idx], savepath="plot.png")
Exemplo n.º 5
0
def pygmo_es():
    ARCHIPELAGO = True
    iterations = 10

    uda = salimans_nes(iter=iterations)  # user defined algorithm
    udp = saddle_space()  # user defined problem
    prob = pg.problem(udp)  # Beautiful white snow

    if ARCHIPELAGO:
        archi = pg.archipelago(algo=uda, prob=prob, n=1, pop_size=4)
        archi.evolve()
        #         print(archi) # prints description of islands contained in archipelago
        #         archi.wait()
        sols = archi.get_champions_f()
        idx = sols.index(min(sols))
        sols_x = archi.get_champions_x()
        sol = sols[idx], sols_x[idx]
    else:
        pop = pg.population(prob=prob, size=4)
        pop.set_x(0,
                  [-2.277654673852600, 0.047996554429844, 3.810000000000000])
        pop.set_x(1,
                  [-0.138042744751570, -0.144259374836607, 3.127288444444444])
        pop.set_x(2,
                  [-2.086814820119193, -0.000122173047640, 3.111181716545691])
        uda.evolve(pop)
        sol = (pop.champion_f, pop.champion_x)

    print("Done! best solution is:")
    print(sol)
    return sol
Exemplo n.º 6
0
def _test_archipelago(algo, problem, num=10000, stop_val=-1E99, log=logger()):
    udp = pygmo_udp(problem.fun, problem.bounds)
    prob = pg.problem(udp)
    best_y = math.inf
    best_x = None
    t0 = time.perf_counter()

    for _ in range(num):
        archi = pg.archipelago(n=mp.cpu_count(),
                               algo=algo,
                               prob=prob,
                               pop_size=64)
        archi.evolve()
        archi.wait()
        ys = archi.get_champions_f()
        if not ys is None and len(ys) > 0:
            sort = np.argsort([y[0] for y in ys])
            y = ys[sort[0]][0]
            if y < best_y:
                best_y = y
                best_x = archi.get_champions_x()[sort[0]]
                message = '{0} {1} {2} {3!s}'.format(problem.name, dtime(t0),
                                                     best_y, list(best_x))
                log.info(message)
                if best_y < stop_val:
                    break
    return OptimizeResult(x=best_x, fun=best_y, success=True)
Exemplo n.º 7
0
def run_example5():
    import pygmo as pg
    from pykep import epoch
    from pykep.planet import jpl_lp
    from pykep.trajopt import mga_1dsm

    # We define an Earth-Venus-Earth problem (single-objective)
    seq = [jpl_lp('earth'), jpl_lp('venus'), jpl_lp('earth')]
    udp = mga_1dsm(
        seq=seq,
        t0=[epoch(5844), epoch(6209)],
        tof=[0.7 * 365.25, 3 * 365.25],
        vinf=[0.5, 2.5],
        add_vinf_dep=False,
        add_vinf_arr=True,
        multi_objective=False
    )

    pg.problem(udp)
    # We solve it!!
    uda = pg.sade(gen=100)
    archi = pg.archipelago(algo=uda, prob=udp, n=8, pop_size=20)
    print(
        "Running a Self-Adaptive Differential Evolution Algorithm .... on 8 parallel islands")
    archi.evolve(10)
    archi.wait()
    sols = archi.get_champions_f()
    idx = sols.index(min(sols))
    print("Done!! Solutions found are: ", archi.get_champions_f())
    udp.pretty(archi.get_champions_x()[idx])
    udp.plot(archi.get_champions_x()[idx])
Exemplo n.º 8
0
 def runTest(self):
     from dcgpy import symbolic_regression, generate_koza_quintic, kernel_set_double, gd4cgp
     import pygmo as pg
     import pickle
     X, Y = generate_koza_quintic()
     # Interface for the UDPs
     udp = symbolic_regression(points=X,
                               labels=Y,
                               rows=1,
                               cols=20,
                               levels_back=21,
                               arity=2,
                               kernels=kernel_set_double(
                                   ["sum", "diff", "mul", "pdiv"])(),
                               n_eph=2,
                               multi_objective=False,
                               parallel_batches=0)
     prob = pg.problem(udp)
     pop = pg.population(prob, 10)
     # Interface for the UDAs
     uda = gd4cgp(max_iter=10, lr=0.1, lr_min=1e-6)
     algo = pg.algorithm(uda)
     algo.set_verbosity(0)
     # Testing some evolutions
     pop = algo.evolve(pop)
     # In parallel
     archi = pg.archipelago(prob=prob, algo=algo, n=16, pop_size=4)
     archi.evolve()
     archi.wait_check()
     # Pickling.
     self.assertTrue(repr(algo) == repr(pickle.loads(pickle.dumps(algo))))
Exemplo n.º 9
0
    def full_index_refine(self,
                          rec_basis,
                          num_ap,
                          n_isl=20,
                          pop_size=50,
                          gen_num=2000,
                          pos_tol=(0.007, 0.014, 0.06),
                          rb_tol=0.12):
        """
        Return refinement problems archipelago

        rec_basis - preliminary reciprocal lattice basis vectors matrix
        num_ap = [num_ap_x, num_ap_y] - convergent beam numerical apertures in x- and y-axes
        n_isl - number of islands of one frame
        pop_size - population size
        gen_num - maximum generations number of the refinement algorithm
        pos_tol - relative sample position tolerance
        rb_tol - lattice basis vectors matrix tolerance
        """
        archi = pygmo.archipelago()
        for frame_idx, frame_strks in enumerate(iter(self)):
            frame_basis = rec_basis.dot(
                self.exp_set.rotation_matrix(frame_idx))
            prob = frame_strks.rot_index_refine(rec_basis=frame_basis,
                                                num_ap=num_ap,
                                                pos_tol=pos_tol,
                                                rb_tol=rb_tol)
            pops = [
                pygmo.population(size=pop_size, prob=prob, b=pygmo.mp_bfe())
                for _ in range(n_isl)
            ]
            for pop in pops:
                archi.push_back(algo=pygmo.de(gen_num), pop=pop)
        return archi
Exemplo n.º 10
0
def optim_alpha(data,
                phi,
                nclass,
                disttype,
                algo=None,
                archi=None,
                verbose=1,
                min_alpha=None,
                **kwargs):
    """Find optim alpha.

    Parameters
    ----------
    data : np.ndarray
        Data to cluster.
    phi : float
        Degree of fuzziness or overlap of the generated clusters.
        Usually in the range [1, 2].
    nclass : int
        Number of cluster to generate.
    disttype : {'euclidean', 'diagonal', 'mahalanobis'}
            Type of distance (the default is 'mahalanobis').
    algo : pygmo.algorithm
        See `pygmo Algorithm documentation <https://esa.github.io/pagmo2/docs/python/py_algorithm.html>`_.
    archi : pygmo.archipelago
        See `pygmo Archipelago documentation <https://esa.github.io/pagmo2/docs/python/py_archipelago.html>`_.
    verbose : int, bool
        Show optimisation feedback (the default is 1).
        Currently not used.
    min_alpha : float
        The optimisation finds the optimal alpha value in the range [`min_alpha`, 1].
    **kwargs :
        Parameters passed to the :func:`~.fkmeans._fuzzy_extragrades` function.

    Returns
    -------
    float
        Optimum alpha value.

    """
    prob = pg.problem(
        PTFOptim(data, phi, nclass, disttype, min_alpha, **kwargs))
    if not algo:
        algo = pg.algorithm(pg.sade(gen=20, ftol=0.0005))
    if not archi:
        logger.info('Initialising polulation')
        archi = pg.archipelago(n=multiprocessing.cpu_count(),
                               algo=algo,
                               prob=prob,
                               pop_size=7)
    logger.info('Starting evolution...')
    archi.evolve()
    archi.wait()
    best = np.argmin(archi.get_champions_f())
    logger.info('Done!')
    best_alpha = archi.get_champions_x()[best][0]
    logger.info('Optim alpha: {}'.format(best_alpha))
    return best_alpha
Exemplo n.º 11
0
def pygmo_es():
    uda = salimans_nes(iter=3000)
    udp = saddle_space()
    prob = pg.problem(udp)

    archi = pg.archipelago(algo=uda, prob=udp, n=1000, pop_size=300)
    archi.evolve()
    sols = archi.get_champions_f()
    idx = sols.index(min(sols))
    print("Done!! Solutions found are: ")
    print(archi.get_champions_f())
Exemplo n.º 12
0
def archipielago_opt(f,n):
    start = time.time()
    funct=f(n)
    name=funct.get_name()

    a_cstrs_sa = pg.algorithm(pg.cstrs_self_adaptive(iters=1000))
    t1=time.time()
    p_toy = pg.problem(funct)
    p_toy.c_tol = [1e-4, 1e-4]
    archi = pg.archipelago(n=16, algo=a_cstrs_sa, prob=p_toy, pop_size=10)
    archi.evolve(2)
    archi.wait_check()
Exemplo n.º 13
0
def test1():
    algo = pg.algorithm(pg.de(gen=1000, seed=126))
    prob = pg.problem(toy_problem())
    pop = pg.population(prob=prob, size=10)
    print(pop.champion_f)
    pop = algo.evolve(pop)
    print(pop.champion_f)
    # fine up to this point

    archi = pg.archipelago(n=6, algo=algo, prob=prob, pop_size=70)
    archi.evolve()
    archi.wait_check()
Exemplo n.º 14
0
def archipelago():
    udp = solo_mgar_udp([7000, 8000])
    #uda = pg.sga(gen = 6000)
    uda = pg.sade(memory=True, variant=1, gen=6000)
    # instantiate an unconnected archipelago
    for _ in range(1000):
        archi = pg.archipelago(t=pg.topologies.unconnected())
        for _ in range(32):
            alg = pg.algorithm(uda)
            #alg.set_verbosity(1)
            prob = pg.problem(udp)
            pop = pg.population(prob, 20)
            isl = pg.island(algo=alg, pop=pop)
            archi.push_back(isl)
        archi.evolve()
        archi.wait_check()
Exemplo n.º 15
0
def nlopt_parallel_sample():
    print("nlopt_parallel_sample started")
    prob = problem(sphere_function(3))
    nl = nlopt('bobyqa')
    algo = algorithm(nl)

    archi = pg.archipelago(4, algo=algo, prob=prob, pop_size=20)
    print(archi)

    archi.evolve(10)
    archi.wait()

    res = [isl.get_population().champion_f for isl in archi]
    print(res)

    print("nlopt_parallel_sample completed")
Exemplo n.º 16
0
def nlopt_parallel_sample():
    print("nlopt_parallel_sample started")
    prob = problem(sphere_function(3))
    nl = nlopt('bobyqa')
    algo = algorithm(nl)

    archi = pg.archipelago(4, algo=algo, prob=prob, pop_size=20)
    print(archi)

    archi.evolve(10)
    archi.wait()

    res = [isl.get_population().champion_f for isl in archi]
    print(res)

    print("nlopt_parallel_sample completed")
Exemplo n.º 17
0
def archipelago():
    print('interferometer sga archipelago')
    uda = pg.sga(gen=50000)
    # instantiate an unconnected archipelago
    archi = pg.archipelago(t=pg.topologies.unconnected())
    t = time()
    for _ in range(8):
        alg = pg.algorithm(uda)
        #alg.set_verbosity(1)
        prob = pg.problem(udp)
        pop = pg.population(prob, 20)
        isl = pg.island(algo=alg, pop=pop)
        archi.push_back(isl)

    archi.evolve()
    archi.wait_check()
    print(f'archi: {time() - t:0.3f}s')
Exemplo n.º 18
0
 def _run_pygmo_parallel(self,
                         algorithm,
                         problem,
                         number_of_islands=2,
                         archipelago_gen=50):
     pygmo_archipelago = pg.archipelago(n=number_of_islands,
                                        algo=algorithm,
                                        prob=problem,
                                        pop_size=self.solver_args.popsize,
                                        seed=self.solver_args.seed)
     pygmo_archipelago.evolve(n=archipelago_gen)
     pygmo_archipelago.wait()
     champions_x = pygmo_archipelago.get_champions_x()
     champions_f = pygmo_archipelago.get_champions_f()
     champion_x, champion_f = self._select_best_pygmo_archipelago_solution(
         champions_x, champions_f)
     return PygmoSolutionWrapperParallel(champion_x=champion_x,
                                         champion_f=champion_f)
Exemplo n.º 19
0
def pygmo_wrapper(optimizer, pop_generator, islands, pop_size,
                  generations, evo_rounds, tolerance):
    archi = pg.archipelago(prob=pg.problem(optimizer),
                           s_pol=pg.select_best(0.10),
                           r_pol=pg.fair_replace(0.05),
                           t=pg.fully_connected())
    archi.set_migration_type(pg.migration_type.broadcast)
    for iteration in range(islands):
        pop = pg.population(pg.problem(optimizer))
        for _ in range(pop_size):
            pop.push_back(pop_generator(optimizer))
        archi.push_back(pop=pop, algo=pg.sade(gen=generations, variant=6, variant_adptv=2, ftol=tolerance, xtol=tolerance))
    archi.evolve(evo_rounds)
    archi.wait()
    best_score = np.array(archi.get_champions_f()).min()
    best_index = archi.get_champions_f().index(best_score)
    best_model = archi.get_champions_x()[best_index]

    return best_model, best_score
Exemplo n.º 20
0
def quick_start_demo():
    # 1 - Instantiate a pygmo problem constructing it from a UDP
    # (user defined problem).
    prob = pg.problem(pg.schwefel(30))

    # 2 - Instantiate a pagmo algorithm
    algo = pg.algorithm(pg.sade(gen=100))

    # 3 - Instantiate an archipelago with 16 islands having each 20 individuals
    archi = pg.archipelago(16, algo=algo, prob=prob, pop_size=20)

    # 4 - Run the evolution in parallel on the 16 separate islands 10 times.
    archi.evolve(10)

    # 5 - Wait for the evolutions to be finished
    archi.wait()

    # 6 - Print the fitness of the best solution in each island
    res = [isl.get_population().champion_f for isl in archi]
    print(res)
Exemplo n.º 21
0
def quick_start_demo():
    # 1 - Instantiate a pygmo problem constructing it from a UDP
    # (user defined problem).
    prob = pg.problem(pg.schwefel(30))

    # 2 - Instantiate a pagmo algorithm
    algo = pg.algorithm(pg.sade(gen=100))

    # 3 - Instantiate an archipelago with 16 islands having each 20 individuals
    archi = pg.archipelago(16, algo=algo, prob=prob, pop_size=20)

    # 4 - Run the evolution in parallel on the 16 separate islands 10 times.
    archi.evolve(10)

    # 5 - Wait for the evolutions to be finished
    archi.wait()

    # 6 - Print the fitness of the best solution in each island
    res = [isl.get_population().champion_f for isl in archi]
    print(res)
Exemplo n.º 22
0
def optimize_arch(popsize=10, generations=1, islands=1, 
                  evolutions=1,func=fonseca_fleming, dim=3):
    """
    Function to optimize the given problem. 
    Parameters can change to see their influence.
    """ 
    info="Prob= {}".format(func(dim).get_name())+"\n"+\
            "dim={} Pop={}, Gen={}, Isl={}, Evs={}".format(dim,popsize,generations,islands,evolutions)
    print(info)
    
    start=time.time()
    prob=pg.problem(func(dim))
    """Start optimization process."""
    # set up algorithm and optimize
    algo = pg.algorithm(pg.nspso(gen=generations))
    archi = pg.archipelago(islands, algo=algo, prob=prob, pop_size=popsize)
    # evolution
    set_time=time.time()
    archi.evolve(evolutions)
    archi.wait_check()
    print("Build time :{}ms".format(round(1000*(set_time-start),2)))
    print("Calculation time :{}ms".format(round(1000*(time.time()-set_time),2)))
    
    #Get Data on final population
    fits_log, vectors_log = [], []
    vectors = [isl.get_population().get_x() for isl in archi]
    vectors_log.append(vectors)
    fits = [isl.get_population().get_f() for isl in archi]
    fits_log.append(fits)
    table_fits=[[f[0], f[1]] for fit in fits for f in fit] 
    
    #Plot the whole population to see the last evolution
    df = pd.DataFrame(table_fits)
    ax = df.plot(kind='scatter', x=0, y=1, grid=True)
    ax.set_xlabel('f1(x)')
    ax.set_ylabel('f2(x)')
    ax.set_xlim(0,1)
    ax.set_ylim(0,1)
    ax.set_title(info)
    #Save result to a file
    name= func(dim).get_name()+" "+func(dim).get_extra_info()
def rosenbrock_2d(x):

    generations = x[0]
    prob = pg.problem(pg.rosenbrock(2))

    # 2 - Instantiate a pagmo algorithm
    algo = pg.algorithm(pg.sga(gen=generations, cr = .90, eta_c = 1., m = 0.02, param_m = 1., param_s = 2, crossover = "exponential", mutation = "polynomial", selection = "tournament", seed = 3))

    # 3 - Instantiate an archipelago with 16 islands having each 20 individuals
    archi = pg.archipelago(16, algo=algo, prob=prob, pop_size=20)

    # 4 - Run the evolution in parallel on the 16 separate islands 10 times.
    archi.evolve(10)

    # 5 - Wait for the evolutions to be finished
    archi.wait()

    # 6 - Print the fitness of the best solution in each island
    res = [isl.get_population().champion_f for isl in archi]
    import pdb; pdb.set_trace();
    return res
Exemplo n.º 24
0
    def search(self, data : Data, model : Model, tid : int, **kwargs) -> np.ndarray:  

        kwargs = kwargs['kwargs']

        prob = SurrogateProblem(self.problem, self.computer, data, model, tid)

        try:
            algo = eval(f'pg.{kwargs["search_algo"]}(gen = kwargs["search_gen"])')
        except:
            raise Exception(f'Unknown optimization algorithm "{kwargs["search_algo"]}"')

        try:
            udi = eval(f'pg.{kwargs["search_udi"]}()')
        except:
            raise Exception('Unknown user-defined-island "{kwargs["search_udi"]}"')

        bestX = []
        cond = False
        cpt = 0
        while (not cond and cpt < kwargs['search_max_iters']):
            archi = pg.archipelago(n = kwargs['search_threads'], prob = prob, algo = algo, udi = udi, pop_size = kwargs['search_pop_size'])
            archi.evolve(n = kwargs['search_evolve'])
            archi.wait()
            champions_f = archi.get_champions_f()
            champions_x = archi.get_champions_x()
            indexes = list(range(len(champions_f)))
            indexes.sort(key=champions_f.__getitem__)
            for idx in indexes:
                if (champions_f[idx] < float('Inf')):
                    cond = True
                    # bestX.append(np.array(self.problem.PS.inverse_transform(np.array(champions_x[idx], ndmin=2))[0]).reshape(1, self.problem.DP))
                    bestX.append(np.array(champions_x[idx]).reshape(1, self.problem.DP))
                    break
            cpt += 1

        if (kwargs['verbose']):
            print(tid, 'OK' if cond else 'KO'); sys.stdout.flush()
        # print("bestX",bestX)
        return (tid, bestX)
Exemplo n.º 25
0
    def human_readable_extra(self):
        return "n_iter=" + str(self.__n_iter)


if __name__ == '__main__':
    gp = GrowthOptimization()
    prob = pg.problem(gp)
    algo = pg.algorithm(pg.pso(gen=300))
    #algo = MonteCarlo(100)
    try:
        if not runParallel:
            pop = pg.population(prob, 40)
            print(dir(pop))
            pop = algo.evolve(pop)

            print(pop.champion_f)
        else:
            archi = pg.archipelago(n=16,
                                   algo=algo,
                                   prob=prob,
                                   pop_size=20,
                                   seed=32)
            archi.evolve()
            print(archi)
            archi.wait()
            res = archi.get_champions_f()
            print(res)
    except:
        traceback.print_exc(file=sys.stdout)
Exemplo n.º 26
0
    def _minimize(self):

        # Gather the setup
        islands = self._setup_dict['islands']
        pop_size = self._setup_dict['population_size']
        evolution_cycles = self._setup_dict['evolution_cycles']

        # Print some info
        print("\nPAGMO setup:")
        print("------------")
        print("- Number of islands:            %i" % islands)
        print("- Population size per island:   %i" % pop_size)
        print("- Evolutions cycles per island: %i\n" % evolution_cycles)

        Npar = len(self._internal_parameters)

        if is_parallel_computation_active():

            wrapper = PAGMOWrapper(function=self.function, parameters=self._internal_parameters, dim=Npar)

            # use the archipelago, which uses the ipyparallel computation

            archi = pg.archipelago(udi=pg.ipyparallel_island(), n=islands,
                                   algo=self._setup_dict['algorithm'], prob=wrapper, pop_size=pop_size)
            archi.wait()

            # Display some info
            print("\nSetup before parallel execution:")
            print("--------------------------------\n")
            print(archi)

            # Evolve populations on islands
            print("Evolving... (progress not available for parallel execution)")

            # For some weird reason, ipyparallel looks for _winreg on Linux (where does
            # not exist, being a Windows module). Let's mock it with an empty module'
            mocked = False
            if os.path.exists("_winreg.py") is False:

                with open("_winreg.py", "w+") as f:

                    f.write("pass")

                mocked = True

            archi.evolve()

            # Wait for completion (evolve() is async)

            archi.wait_check()

            # Now remove _winreg.py if needed
            if mocked:

                os.remove("_winreg.py")

            # Find best and worst islands

            fOpts = np.array(map(lambda x:x[0], archi.get_champions_f()))
            xOpts = archi.get_champions_x()

        else:

            # do not use ipyparallel. Evolve populations on islands serially

            wrapper = PAGMOWrapper(function=self.function, parameters=self._internal_parameters, dim=Npar)

            xOpts = []
            fOpts = np.zeros(islands)

            with progress_bar(iterations=islands, title="pygmo minimization") as p:

                for island_id in range(islands):

                    pop = pg.population(prob=wrapper, size=pop_size)

                    for i in range(evolution_cycles):

                        pop = self._setup_dict['algorithm'].evolve(pop)

                    # Gather results

                    xOpts.append(pop.champion_x)
                    fOpts[island_id] = pop.champion_f[0]

                    p.increase()

        # Find best and worst islands

        min_idx = fOpts.argmin()
        max_idx = fOpts.argmax()

        fOpt = fOpts[min_idx]
        fWorse = fOpts[max_idx]
        xOpt = np.array(xOpts)[min_idx]

        # Some information
        print("\nSummary of evolution:")
        print("---------------------")
        print("Best population has minimum %.3f" % (fOpt))
        print("Worst population has minimum %.3f" % (fWorse))
        print("")

        # Transform to numpy.array

        best_fit_values = np.array(xOpt)

        return best_fit_values, fOpt
Exemplo n.º 27
0
import pygmo as pg
import numpy as np

prob = pg.problem(pg.cec2014(prob_id=5, dim=10))
algo = pg.algorithm(pg.cmaes(gen=100))
archi = pg.archipelago(8, algo=algo, prob=prob, pop_size=20)
archi.evolve(1000)
archi.wait()
res = [isl.get_population().champion_f for isl in archi]
res = np.array(res)
print(f"Problem {5}: {res.mean()}")
Exemplo n.º 28
0
    def search(self, data : Data, models : Collection[Model], tid : int, **kwargs) -> np.ndarray:

        kwargs = kwargs['kwargs']

        prob = SurrogateProblem(self.problem, self.computer, data, models, tid)

        try:
            udi = eval(f'pg.{kwargs["search_udi"]}()')
        except:
            raise Exception('Unknown user-defined-island "{kwargs["search_udi"]}"')


        if(self.problem.DO==1): # single objective
            try:
                algo = eval(f'pg.{kwargs["search_algo"]}(gen = kwargs["search_gen"])')
            except:
                raise Exception(f'Unknown optimization algorithm "{kwargs["search_algo"]}"')
            bestX = []
            cond = False
            cpt = 0
            while (not cond and cpt < kwargs['search_max_iters']):
                archi = pg.archipelago(n = kwargs['search_threads'], prob = prob, algo = algo, udi = udi, pop_size = kwargs['search_pop_size'])
                archi.evolve(n = kwargs['search_evolve'])
                archi.wait()
                champions_f = archi.get_champions_f()
                champions_x = archi.get_champions_x()
                indexes = list(range(len(champions_f)))
                indexes.sort(key=champions_f.__getitem__)
                for idx in indexes:
                    if (champions_f[idx] < float('Inf')):
                        cond = True
                        # bestX.append(np.array(self.problem.PS.inverse_transform(np.array(champions_x[idx], ndmin=2))[0]).reshape(1, self.problem.DP))
                        bestX.append(np.array(champions_x[idx]).reshape(1, self.problem.DP))
                        break
                cpt += 1
        else:                   # multi objective
            try:
                algo = eval(f'pg.algorithm(pg.{kwargs["search_algo"]}(gen = kwargs["search_gen"]))')
            except:
                raise Exception(f'Unknown optimization algorithm "{kwargs["search_algo"]}"')
            bestX = []
            cond = False
            cpt = 0
            while (not cond and cpt < kwargs['search_max_iters']):
                pop = pg.population(prob = prob, size = kwargs['search_pop_size'], seed = cpt+1)
                pop = algo.evolve(pop)


                """ It seems pop.get_f() is already sorted, no need to perform the following sorting """
                # if(self.problem.DO==2):
                #   front = pg.non_dominated_front_2d(pop.get_f())
                # else:
                #   ndf, dl, dc, ndr = pg.fast_non_dominated_sorting(pop.get_f())
                #   front = ndf[0]
                # fs = pop.get_f()[front]
                # xs = pop.get_x()[front]
                # bestidx = pg.select_best_N_mo(points = fs, N = kwargs['search_more_samples'])
                # xss = xs[bestidx]
                # fss = fs[bestidx]
                # # print('bestidx',bestidx)

                firstn = min(int(kwargs['search_more_samples']),np.shape(pop.get_f())[0])
                fss = pop.get_f()[0:firstn]
                xss = pop.get_x()[0:firstn]
                # print('firstn',firstn,int(kwargs['search_more_samples']),np.shape(pop.get_f()),xss)


                if(np.max(fss)< float('Inf')):
                    cond = True
                    bestX.append(xss)
                    break
                cpt += 1
        if (kwargs['verbose']):
            print(tid, 'OK' if cond else 'KO'); sys.stdout.flush()
        # print("bestX",bestX)
        return (tid, bestX)
Exemplo n.º 29
0
    def _minimize(self):

        # Gather the setup
        islands = self._setup_dict['islands']
        pop_size = self._setup_dict['population_size']
        evolution_cycles = self._setup_dict['evolution_cycles']

        # Print some info
        print("\nPAGMO setup:")
        print("------------")
        print("- Number of islands:            %i" % islands)
        print("- Population size per island:   %i" % pop_size)
        print("- Evolutions cycles per island: %i\n" % evolution_cycles)

        Npar = len(self._internal_parameters)

        if is_parallel_computation_active():

            wrapper = PAGMOWrapper(function=self.function,
                                   parameters=self._internal_parameters,
                                   dim=Npar)

            # use the archipelago, which uses the ipyparallel computation

            archi = pg.archipelago(udi=pg.ipyparallel_island(),
                                   n=islands,
                                   algo=self._setup_dict['algorithm'],
                                   prob=wrapper,
                                   pop_size=pop_size)
            archi.wait()

            # Display some info
            print("\nSetup before parallel execution:")
            print("--------------------------------\n")
            print(archi)

            # Evolve populations on islands
            print(
                "Evolving... (progress not available for parallel execution)")

            # For some weird reason, ipyparallel looks for _winreg on Linux (where does
            # not exist, being a Windows module). Let's mock it with an empty module'
            mocked = False
            if os.path.exists("_winreg.py") is False:

                with open("_winreg.py", "w+") as f:

                    f.write("pass")

                mocked = True

            archi.evolve()

            # Wait for completion (evolve() is async)

            archi.wait_check()

            # Now remove _winreg.py if needed
            if mocked:

                os.remove("_winreg.py")

            # Find best and worst islands

            fOpts = np.array(map(lambda x: x[0], archi.get_champions_f()))
            xOpts = archi.get_champions_x()

        else:

            # do not use ipyparallel. Evolve populations on islands serially

            wrapper = PAGMOWrapper(function=self.function,
                                   parameters=self._internal_parameters,
                                   dim=Npar)

            xOpts = []
            fOpts = np.zeros(islands)

            with progress_bar(iterations=islands,
                              title="pygmo minimization") as p:

                for island_id in range(islands):

                    pop = pg.population(prob=wrapper, size=pop_size)

                    for i in range(evolution_cycles):

                        pop = self._setup_dict['algorithm'].evolve(pop)

                    # Gather results

                    xOpts.append(pop.champion_x)
                    fOpts[island_id] = pop.champion_f[0]

                    p.increase()

        # Find best and worst islands

        min_idx = fOpts.argmin()
        max_idx = fOpts.argmax()

        fOpt = fOpts[min_idx]
        fWorse = fOpts[max_idx]
        xOpt = np.array(xOpts)[min_idx]

        # Some information
        print("\nSummary of evolution:")
        print("---------------------")
        print("Best population has minimum %.3f" % (fOpt))
        print("Worst population has minimum %.3f" % (fWorse))
        print("")

        # Transform to numpy.array

        best_fit_values = np.array(xOpt)

        return best_fit_values, fOpt
Exemplo n.º 30
0
def chi_optimize(method='pso',
                 parallel=False,
                 N_ind=100,
                 N_gen=30,
                 iset=0,
                 show_results=False,
                 dir='../data/',
                 file_name='chi_fit'):
    # Load experimental data
    N_set = 2
    ca_data = svu.loaddata('../data/herzog_data.pkl')[0]
    po_data = svu.loaddata('../data/fit_po.pkl')[0]
    lr_data = svu.loaddata('../data/fit_lra.pkl')[0]

    # Get boundary dictionary
    bounds_dict = models.model_bounds(model='chi')
    # Save effective bounds and scaling
    bounds, scaling = bounds_for_exploration(bounds_dict, normalized=False)

    # Prepare model parameters
    c0 = 5.0
    # c0 = 15.0
    params = np.asarray(np.r_[po_data[[0, 1, 0, 2, 3]], lr_data[[0, 1]], c0,
                              iset])
    args = (params, ca_data)

    #-----------------------------------------------------------------------------------------------------------
    # Effective evolution
    #-----------------------------------------------------------------------------------------------------------
    # Size parameters
    # N_var = problem_dimension(model='lra')
    N_individuals = N_ind
    N_var = problem_dimension(model='chi')
    N_generations = N_gen * N_var

    # Tolerances
    FTOL = 1e-6
    XTOL = 1e-6

    # prob = pg.problem(fit_problem('lra',args))
    prob = pg.problem(fit_problem('chi', args))

    # Optimization
    # NOTE: We keep each algorithm self contained here because different setting of parameters for evolution are
    # needed depending on the chose algorithm
    if method == 'pso':
        algo = pg.algorithm(
            pg.pso(gen=N_generations, variant=5, neighb_type=4, max_vel=0.8))
    elif method == 'bee':
        algo = pg.algorithm(pg.bee_colony(gen=N_generations, limit=2))
    elif method == 'de':
        algo = pg.algorithm(pg.de(gen=N_generations, ftol=FTOL, tol=XTOL))
        # Single-node optimation to run on local machine / laptop
        # N_individuals = 100
        # N_generations = 40 * N_var
        # verbosity = 20

    if not parallel:
        verbosity = 20
        algo.set_verbosity(verbosity)
        pop = pg.population(prob, size=N_individuals)
        pop = algo.evolve(pop)

        best_fitness = pop.get_f()[pop.best_idx()]
        print(best_fitness)

        x_rescaled = rescale_vector(pop.champion_x,
                                    model='chi',
                                    normalized=True,
                                    bounds=bounds,
                                    scaling=scaling)

        # Show results of fit
        if show_results:
            astro = models.Astrocyte(
                model='chi',
                d1=po_data[0],
                d2=po_data[1],
                d3=po_data[0],
                d5=po_data[2],
                a2=po_data[3],
                c0=c0,
                c1=0.5,
                rl=0.1,
                Ker=0.1,
                rc=lr_data[0],
                ver=lr_data[1],
                vbeta=x_rescaled[0],
                vdelta=x_rescaled[1],
                v3k=x_rescaled[2],
                r5p=x_rescaled[3],
                ICs=np.asarray([x_rescaled[6], x_rescaled[4], x_rescaled[5]]))

            options = su.solver_opts(t0=ca_data['time'][iset][0],
                                     tfin=ca_data['time'][iset][-1],
                                     dt=1e-4,
                                     atol=1e-8,
                                     rtol=1e-6,
                                     method="gsl_msadams")
            astro.integrate(algparams=options, normalized=True)

            ca_trace = ca_data['smoothed'][iset]
            plt.plot(ca_data['time'][0], ca_trace, 'k-', astro.sol['ts'],
                     astro.sol['ca'], 'r-')
            plt.show()

    else:
        # Parallel version to run on cluster
        N_evolutions = 100
        N_islands = 10
        # Initiate optimization
        algo = pg.algorithm(
            pg.pso(gen=N_generations, variant=5, neighb_type=4, max_vel=0.8))
        archi = pg.archipelago(n=N_islands,
                               algo=algo,
                               prob=prob,
                               pop_size=N_individuals)
        archi.evolve(N_evolutions)
        archi.wait()
        imin = np.argmin(archi.get_champions_f())
        x_rescaled = rescale_vector(archi.get_champions_x()[imin],
                                    model='chi',
                                    normalized=True,
                                    bounds=bounds,
                                    scaling=scaling)
        print archi.get_champions_f()[imin]
        print x_rescaled

    svu.savedata([x_rescaled], dir + file_name + '.pkl')
    print (pop_fb.champion_f)
    l.append((pop_fb.champion_f,pop_fb.champion_x))
l = sorted(l, key = lambda x: x[0])


# Comments: 

# Using a different solution technique: pygmo's arichipelago/island

# In[96]:


algo_fb = pg.algorithm(pg.sade(gen = 200))
l = list()
for i in range (10) : 
    archi = pg.archipelago(n = 16, algo = algo_fb, prob = prob_fb, pop_size = 8, seed = 20)
    archi.evolve(15)
    best_island = sorted(archi, key = lambda x: x.get_population().champion_f[0])[0]
    l.append((best_island.get_population().champion_f,best_island.get_population().champion_x))
    print (best_island.get_population().champion_f[0])
l = sorted(l, key = lambda x: x[0])


# In[103]:


print (traj_fb.pretty(l[0][1]))


# Lauch date around 8000 MJD2000, so we restrict the launch date around that point and run the optimization again
Exemplo n.º 32
0
import pygmo as pg

# 1 - Instantiate a pygmo problem constructing it from a UDP
# (user defined problem).
prob = pg.problem(pg.schwefel(30))

# 2 - Instantiate a pagmo algorithm
algo = pg.algorithm(pg.sade(gen=100))

# 3 - Instantiate an archipelago with 16 islands having each 20 individuals
archi = pg.archipelago(16, algo=algo, prob=prob, size=20)

# 4 - Run the evolution in parallel on the 16 separate islands 10 times.
archi.evolve(10)

# 5 - Wait for the evolutions to be finished
archi.wait()

# 6 - Print the fitness of the best solution in each island
res = [isl.get_population().champion_f for isl in archi]
print(res)
Exemplo n.º 33
0
def optimize(log_output=False, dest='Mars'):
    # AU
    # earth_radius = 0.00004258756
    # AU^3/year^2
    # earth_attractor = 0.0001184
    phi = [np.random.uniform(0, 2 * np.pi) for i in range(2)
           ] + [0] + [np.random.uniform(0, 2 * np.pi) for i in range(5)]
    Earth = Planet(1, 1, phi[2], "Earth")
    Mercury = Planet(0.374496, 0.241, phi[0], "Mercury")
    Mars = Planet(1.5458, 1.8821, phi[3], "Mars")
    Venus = Planet(0.726088, 0.6156, phi[1], "Venus")
    Jupiter = Planet(5.328, 11.87, phi[4], "Jupiter")
    Saturn = Planet(9.5497, 29.446986, phi[5], "Saturn")
    Uranus = Planet(19.2099281, 84.01538, phi[6], "Uranus")
    Neptune = Planet(30.0658708, 164.78845, phi[7], "Neptune")

    num_gens = 1
    num_evolutions = 75
    pop_size = 200
    cometX = Comet()
    if dest == "Comet":
        planets = [
            Earth, Earth, Mercury, Mars, Venus, Jupiter, Saturn, Neptune,
            Uranus, cometX
        ]
    else:
        choices = [
            Earth, Earth, Mercury, Mars, Venus, Jupiter, Saturn, Neptune,
            Uranus
        ]
        destination = [x for x in choices if x.get_name() == dest]
        choices.remove(destination[0])
        planets = choices + [destination[0]]
    if dest == "Venus" or dest == "Mercury":
        max_enctrs = 1
    else:
        max_enctrs = len(planets) - 2
    times = [0] + [0.1] * (max_enctrs + 1)
    max_times = [5] * (max_enctrs + 2)

    # optimize
    t0 = time.time()
    udp = gprob(planets, times, max_times, max_enctr=max_enctrs)
    uda = pg.algorithm(pg.sade(gen=num_gens, memory=True))
    if (not log_output
        ):  # this avoids the persistent looping to get the fitness data
        archi = pg.archipelago(algo=uda, prob=udp, n=8, pop_size=pop_size)
        archi.evolve(num_evolutions)
        archi.wait()
    else:  # this is where we loop and evolve and get the fitness data for each island
        archi = pg.archipelago(algo=uda, prob=udp, n=8, pop_size=pop_size)
        islands = []
        for i in range(num_evolutions):
            archi.evolve()
            archi.wait()
            avgFit = [
                -1.0 * np.average(island.get_population().get_f())
                for island in archi
            ]
            islands.append(np.array(avgFit))
            # islands.append(np.array(archi.get_champions_f()))  # get the best scores from each island after each stage

        showlog(np.array(islands), 8, num_evolutions)
    t1 = time.time()
    sols = archi.get_champions_f()
    idx = sols.index(min(sols))
    # print("index: {}, Scores:  ".format(idx) + str(sols) + "\n\n")
    mission = udp.pretty(archi.get_champions_x()[idx])

    # [print(str(l) + "\n") for l in mission]
    convert(mission[0], mission[1], mission[2])
    logger.log(mission[1][0], mission[1][-1], phi)

    print("\n\nTime for soln: {} sec\n\n".format(t1 - t0))

###############################################################################
##### Scripts  ################################################################
logs("Start Script", __file__)


# 1 - Instantiate a pygmo problem constructing it from a UDP
# (user defined problem).
prob = pg.problem(pg.schwefel(10))

# 2 - Instantiate a pagmo algorithm
algo = pg.algorithm(pg.sade(gen=10))

# 3 - Instantiate an archipelago with 16 islands having each 20 individuals
archi = pg.archipelago(16, algo=algo, prob=prob, pop_size=10)

# 4 - Run the evolution in parallel on the 16 separate islands 10 times.
archi.evolve(5)

# 5 - Wait for the evolutions to be finished
archi.wait()

# 6 - Print the fitness of the best solution in each island
res = [isl.get_population().champion_f for isl in archi]
print(res)


###############################################################################
##### End Script Rnme Folder ##################################################
#### Rename folder ################