Exemplo n.º 1
0
def optimize(results, dir):
    pg.mp_bfe.init_pool(50)
    prob = pg.problem(MotGunOptimizationProblem(dir))
    bfe = pg.bfe(pg.mp_bfe())
    nsga2 = pg.nsga2()
    nsga2.set_bfe(bfe)
    algo = pg.algorithm(nsga2)
    pop = pg.population(prob=prob, size=256, b=bfe)
    iteration = 1
    while True:
        print(f"\033[31mITERATION: {iteration}\033[m")
        plt.title(f'Iteration {iteration}')
        plt.xlabel('Emittance (nm)')
        plt.ylabel('Charge (fC)')
        pg.plot_non_dominated_fronts(pop.get_f())
        plt.savefig(results / f'{iteration}.png', dpi=300)
        plt.clf()
        assert len(pop.get_x()) == len(pop.get_f())
        with open(results / f'iteration_{iteration}.txt', 'w+') as f:
            f.write(
                '[Mot Z Offset (mm), Phase (deg)] -> [Emittance 4D sqrt (nm), Charge (fC)]\n'
            )
            for i in range(len(pop.get_x())):
                f.write('{} -> {}\n'.format(pop.get_x()[i], pop.get_f()[i]))
        pop = algo.evolve(pop)
        iteration += 1
Exemplo n.º 2
0
 def addIsland(arc, algo):
     isl = pg.island(
         udi=pg.mp_island(),
         algo=algo,
         prob=prob,
         #b=pg.mp_bfe(),
         b=pg.bfe(udbfe=multi_bfre2()),
         size=16)
     arc.push_back(isl)
Exemplo n.º 3
0
def _create_algorithm(method, algo_options, n_cores):
    """Create a pygmo algorithm."""
    pygmo_uda = getattr(pg, method)
    algo = pygmo_uda(**algo_options)
    try:
        algo.set_bfe(pg.bfe())
    except AttributeError:
        if n_cores >= 2:
            warnings.warn(
                f"Your specified algorithm {method} does not support parallelization. "
                "Choose another algorithm such as pygmo_gaco to parallelize.")
    out = pg.algorithm(algo)
    return out
Exemplo n.º 4
0
def _create_population(problem, population_size, x, seed,
                       discard_start_params):
    """Create a pygmo population object.
    Args:
        problem (pygmo.Problem)
        algo_options (dict)
        x (np.ndarray)
    Todo:
        - constrain random initial values to be in some bounds
    """
    if not discard_start_params:
        population_size = population_size - 1

    pop = pg.population(
        problem,
        size=population_size,
        seed=seed,
        b=pg.bfe(),
    )
    if not discard_start_params:
        pop.push_back(x)
    return pop
Exemplo n.º 5
0
 def runTest(self):
     from dcgpy import symbolic_regression, generate_koza_quintic, kernel_set_double, moes4cgp
     import pygmo as pg
     import pickle
     X, Y = generate_koza_quintic()
     # Interface for the UDPs
     udp = symbolic_regression(points=X,
                               labels=Y,
                               rows=1,
                               cols=20,
                               levels_back=21,
                               arity=2,
                               kernels=kernel_set_double(
                                   ["sum", "diff", "mul", "pdiv"])(),
                               n_eph=2,
                               multi_objective=True,
                               parallel_batches=0)
     prob = pg.problem(udp)
     pop = pg.population(prob, 10)
     # Interface for the UDAs
     uda = moes4cgp(gen=5,
                    max_mut=3,
                    ftol=1e-3,
                    learn_constants=True,
                    seed=32)
     algo = pg.algorithm(uda)
     algo.set_verbosity(0)
     # Testing some evolutions
     pop = algo.evolve(pop)
     # In parallel
     archi = pg.archipelago(prob=prob, algo=algo, n=16, pop_size=4)
     archi.evolve()
     archi.wait_check()
     # In parallel via bfe
     uda.set_bfe(pg.bfe(pg.mp_bfe()))
     pop = uda.evolve(pop)
     # Pickling.
     self.assertTrue(repr(algo) == repr(pickle.loads(pickle.dumps(algo))))
Exemplo n.º 6
0
import sched, time
from threading import Timer

tpool = ThreadPool(processes=20)
bpool = ThreadPool(processes=20)


def bfeCallback(x):
    def temp():
        return udp.fitness(x)

    return bpool.apply_async(func=temp)


muBfe = multi_bfre(callback=bfeCallback)
bfe = pg.bfe(udbfe=muBfe)


def fdCallback(x):
    def temp():
        e = ExternalR(cmd="C:\\Program Files\\R\\R-4.0.2\\bin\\Rscript.exe",
                      args=["FireDrillUDP.R"],
                      cwd="C:\\repos\\lnu_anti-patterns\\optim")
        return e.fitness(x=x)

    res = tpool.apply(func=temp)
    return res


def fdBfeCallback(dvs):
    muBfe(prob=prob, dvs=dvs)
Exemplo n.º 7
0
class ext_proc_objf:
    def __init__(self, pathToExe):
        self.pathToExe = pathToExe


class my_bfre:
    def __call__(self, prob, dvs):
        nx = prob.get_nx()
        dvs_arr = np.reshape(dvs, (int(len(dvs) / nx), nx))
        res = [prob.fitness(x) for x in dvs_arr]
        # Remember that fitness() returns a vector
        return np.array(res).flatten()


bfe = pg.bfe(udbfe=my_bfre())


class sphere_1d:
    def get_bounds(self):
        return ([0], [1])

    def fitness(self, dv):
        return [dv[0]**2]

    def gradient(self, x):
        return pg.estimate_gradient(lambda x: self.fitness(x), x)


class toy_problem:
    def __init__(self, dim):
Exemplo n.º 8
0
if __name__ == "__main__":

    class sphere_1d:
        def get_bounds(self):
            return ([0], [1])

        def fitness(self, dv):
            i = 0
            while (i < 1e7):
                i = i + 1

            return [dv[0]**2]

    mpbfe = pg.mp_bfe(chunksize=1)
    pg.mp_bfe.init_pool(processes=4)
    bfe = pg.bfe(udbfe=mpbfe)

    udp = pg.schwefel(dim=19)
    prob = pg.problem(udp)
    algo = pg.algorithm(pg.simulated_annealing())
    pop = pg.population(prob=prob, b=bfe, size=22)

    archi = pg.archipelago(n=1, algo=algo, pop=pop)

    print(archi.get_champions_f())
    archi.evolve()
    archi.wait()
    print(archi.get_champions_f())

    print(pop.champion_f)
    pop = algo.evolve(pop)
Exemplo n.º 9
0
    #	 prob=prob,
    #	 size=7)
    # isl2 = pg.island(
    #	 udi=pg.mp_island(),
    #	 algo = pg.algorithm(pg.cstrs_self_adaptive(iters=500, algo=pg.simulated_annealing())),
    #	 prob=prob,
    #	 size=7)

    archi = pg.archipelago(
        n=0,
        t=pg.topology(udt=pg.fully_connected(n=80)),
        # udi=pg.mp_island(),
        # algo=pg.algorithm(pg.cstrs_self_adaptive(iters=1000, algo=pg.pso())),
        # prob=prob,
        # pop_size=16,
        b=pg.bfe(udbfe=multi_bfre2()))

    def addIsland(arc, algo):
        isl = pg.island(
            udi=pg.mp_island(),
            algo=algo,
            prob=prob,
            #b=pg.mp_bfe(),
            b=pg.bfe(udbfe=multi_bfre2()),
            size=16)
        arc.push_back(isl)

    for i in range(2):
        addIsland(arc=archi,
                  algo=pg.algorithm(
                      pg.cstrs_self_adaptive(iters=1000, algo=pg.de(gen=50))))