Exemplo n.º 1
0
def test_call_module():
    """
    Run a command to see if call_module works.
    """
    data_fname = os.path.join(TEST_DATA_DIR, "points.txt")
    out_fname = "test_call_module.txt"
    with clib.Session() as lib:
        with GMTTempFile() as out_fname:
            lib.call_module("info",
                            "{} -C ->{}".format(data_fname, out_fname.name))
            assert os.path.exists(out_fname.name)
            output = out_fname.read().strip()
            assert output == "11.5309 61.7074 -2.9289 7.8648 0.1412 0.9338"
Exemplo n.º 2
0
def test_create_data_grid_range():
    """
    Create a grid specifying range and inc instead of dim.
    """
    with clib.Session() as lib:
        # Grids from matrices using range and int
        lib.create_data(
            family="GMT_IS_GRID|GMT_VIA_MATRIX",
            geometry="GMT_IS_SURFACE",
            mode="GMT_CONTAINER_ONLY",
            ranges=[150.0, 250.0, -20.0, 20.0],
            inc=[0.1, 0.2],
        )
Exemplo n.º 3
0
def test_parse_constant_composite():
    """
    Parsing a composite constant argument (separated by |) correctly.
    """
    lib = clib.Session()
    test_cases = ((family, via) for family in FAMILIES for via in VIAS)
    for family, via in test_cases:
        composite = "|".join([family, via])
        expected = lib[family] + lib[via]
        parsed = lib._parse_constant(composite,
                                     valid=FAMILIES,
                                     valid_modifiers=VIAS)
        assert parsed == expected
Exemplo n.º 4
0
def test_create_destroy_session():
    "Test that create and destroy session are called without errors"
    # Create two session and make sure they are not pointing to the same memory
    session1 = clib.Session()
    session1.create(name="test_session1")
    assert session1.session_pointer is not None
    session2 = clib.Session()
    session2.create(name="test_session2")
    assert session2.session_pointer is not None
    assert session2.session_pointer != session1.session_pointer
    session1.destroy()
    session2.destroy()
    # Create and destroy a session twice
    ses = clib.Session()
    for __ in range(2):
        with pytest.raises(GMTCLibNoSessionError):
            ses.session_pointer  # pylint: disable=pointless-statement
        ses.create("session1")
        assert ses.session_pointer is not None
        ses.destroy()
        with pytest.raises(GMTCLibNoSessionError):
            ses.session_pointer  # pylint: disable=pointless-statement
Exemplo n.º 5
0
def test_put_matrix_grid():
    "Check that assigning a numpy 2d array to an ASCII and NetCDF grid works"
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    wesn = [10, 15, 30, 40, 0, 0]
    inc = [1, 1]
    shape = ((wesn[3] - wesn[2]) // inc[1] + 1, (wesn[1] - wesn[0]) // inc[0] + 1)
    for dtype in dtypes:
        with clib.Session() as lib:
            grid = lib.create_data(
                family="GMT_IS_GRID|GMT_VIA_MATRIX",
                geometry="GMT_IS_SURFACE",
                mode="GMT_CONTAINER_ONLY",
                ranges=wesn[:4],
                inc=inc,
                registration="GMT_GRID_NODE_REG",
            )
            data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
            lib.put_matrix(grid, matrix=data)
            # Save the data to a file to see if it's being accessed correctly
            with GMTTempFile() as tmp_file:
                lib.write_data(
                    "GMT_IS_MATRIX",
                    "GMT_IS_POINT",
                    "GMT_CONTAINER_AND_DATA",
                    wesn,
                    tmp_file.name,
                    grid,
                )
                # Load the data and check that it's correct
                newdata = tmp_file.loadtxt(dtype=dtype)
                npt.assert_allclose(newdata, data)

            # Save the data to a netCDF grid and check that xarray can load it
            with GMTTempFile() as tmp_grid:
                lib.write_data(
                    "GMT_IS_MATRIX",
                    "GMT_IS_SURFACE",
                    "GMT_CONTAINER_AND_DATA",
                    wesn,
                    tmp_grid.name,
                    grid,
                )
                with xr.open_dataarray(tmp_grid.name) as dataarray:
                    assert dataarray.shape == shape
                    npt.assert_allclose(dataarray.data, np.flipud(data))
                    npt.assert_allclose(
                        dataarray.coords["x"].actual_range, np.array(wesn[0:2])
                    )
                    npt.assert_allclose(
                        dataarray.coords["y"].actual_range, np.array(wesn[2:4])
                    )
Exemplo n.º 6
0
def test_put_vector_2d_fails():
    """
    Check that it fails with an exception for multidimensional arrays.
    """
    with clib.Session() as lib:
        dataset = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_VECTOR",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[1, 6, 1, 0],  # columns, rows, layers, dtype
        )
        data = np.array([[37, 12, 556], [37, 12, 556]], dtype="int32")
        with pytest.raises(GMTInvalidInput):
            lib.put_vector(dataset, column=0, vector=data)
Exemplo n.º 7
0
def test_put_vector_wrong_column():
    """
    Check that it fails with an exception when giving an invalid column.
    """
    with clib.Session() as lib:
        dataset = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_VECTOR",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[1, 3, 1, 0],  # columns, rows, layers, dtype
        )
        data = np.array([37, 12, 556], dtype="float32")
        with pytest.raises(GMTCLibError):
            lib.put_vector(dataset, column=1, vector=data)
Exemplo n.º 8
0
def test_virtual_file_bad_direction():
    """
    Test passing an invalid direction argument.
    """
    with clib.Session() as lib:
        vfargs = (
            "GMT_IS_DATASET|GMT_VIA_MATRIX",
            "GMT_IS_POINT",
            "GMT_IS_GRID",  # The invalid direction argument
            0,
        )
        with pytest.raises(GMTInvalidInput):
            with lib.open_virtual_file(*vfargs):
                print("This should have failed")
Exemplo n.º 9
0
def test_put_vector_invalid_dtype():
    """
    Check that it fails with an exception for invalid data types.
    """
    with clib.Session() as lib:
        dataset = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_VECTOR",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[2, 3, 1, 0],  # columns, rows, layers, dtype
        )
        data = np.array([37, 12, 556], dtype="object")
        with pytest.raises(GMTInvalidInput):
            lib.put_vector(dataset, column=1, vector=data)
Exemplo n.º 10
0
def test_create_data_fails():
    """
    Check that create_data raises exceptions for invalid input and output.
    """
    # Passing in invalid mode
    with pytest.raises(GMTInvalidInput):
        with clib.Session() as lib:
            lib.create_data(
                family="GMT_IS_DATASET",
                geometry="GMT_IS_SURFACE",
                mode="Not_a_valid_mode",
                dim=[0, 0, 1, 0],
                ranges=[150.0, 250.0, -20.0, 20.0],
                inc=[0.1, 0.2],
            )
    # Passing in invalid geometry
    with pytest.raises(GMTInvalidInput):
        with clib.Session() as lib:
            lib.create_data(
                family="GMT_IS_GRID",
                geometry="Not_a_valid_geometry",
                mode="GMT_CONTAINER_ONLY",
                dim=[0, 0, 1, 0],
                ranges=[150.0, 250.0, -20.0, 20.0],
                inc=[0.1, 0.2],
            )

    # If the data pointer returned is None (NULL pointer)
    with pytest.raises(GMTCLibError):
        with clib.Session() as lib:
            with mock(lib, "GMT_Create_Data", returns=None):
                lib.create_data(
                    family="GMT_IS_DATASET",
                    geometry="GMT_IS_SURFACE",
                    mode="GMT_CONTAINER_ONLY",
                    dim=[11, 10, 2, 0],
                )
Exemplo n.º 11
0
def test_virtualfile_from_vectors_arraylike():
    "Pass array-like vectors to a dataset"
    size = 13
    x = list(range(0, size, 1))
    y = tuple(range(size, size * 2, 1))
    z = range(size * 2, size * 3, 1)
    with clib.Session() as lib:
        with lib.virtualfile_from_vectors(x, y, z) as vfile:
            with GMTTempFile() as outfile:
                lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
                output = outfile.read(keep_tabs=True)
        bounds = "\t".join(
            ["<{:.0f}/{:.0f}>".format(min(i), max(i)) for i in (x, y, z)])
        expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
        assert output == expected
Exemplo n.º 12
0
def test_virtualfile_from_vectors_arraylike():
    """
    Pass array-like vectors to a dataset.
    """
    size = 13
    x = list(range(0, size, 1))
    y = tuple(range(size, size * 2, 1))
    z = range(size * 2, size * 3, 1)
    with clib.Session() as lib:
        with lib.virtualfile_from_vectors(x, y, z) as vfile:
            with GMTTempFile() as outfile:
                lib.call_module("info", f"{vfile} ->{outfile.name}")
                output = outfile.read(keep_tabs=True)
        bounds = "\t".join([f"<{min(i):.0f}/{max(i):.0f}>" for i in (x, y, z)])
        expected = f"<vector memory>: N = {size}\t{bounds}\n"
        assert output == expected
Exemplo n.º 13
0
def test_write_data_fails():
    "Check that write data raises an exception for non-zero return codes"
    # It's hard to make the C API function fail without causing a Segmentation
    # Fault. Can't test this if by giving a bad file name because if
    # output=='', GMT will just write to stdout and spaces are valid file
    # names. Use a mock instead just to exercise this part of the code.
    with clib.Session() as lib:
        with mock(lib, "GMT_Write_Data", returns=1):
            with pytest.raises(GMTCLibError):
                lib.write_data(
                    "GMT_IS_VECTOR",
                    "GMT_IS_POINT",
                    "GMT_WRITE_SET",
                    [1] * 6,
                    "some-file-name",
                    None,
                )
Exemplo n.º 14
0
def test_virtualfile_from_vectors_one_string_or_object_column(dtype):
    """
    Test passing in one column with string or object dtype into virtual file
    dataset.
    """
    size = 5
    x = np.arange(size, dtype=np.int32)
    y = np.arange(size, size * 2, 1, dtype=np.int32)
    strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"], dtype=dtype)
    with clib.Session() as lib:
        with lib.virtualfile_from_vectors(x, y, strings) as vfile:
            with GMTTempFile() as outfile:
                lib.call_module("convert", f"{vfile} ->{outfile.name}")
                output = outfile.read(keep_tabs=True)
        expected = "".join(f"{i}\t{j}\t{k}\n"
                           for i, j, k in zip(x, y, strings))
        assert output == expected
Exemplo n.º 15
0
def test_virtualfile_from_matrix():
    """
    Test transforming a matrix to virtual file dataset.
    """
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    shape = (7, 5)
    for dtype in dtypes:
        data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
        with clib.Session() as lib:
            with lib.virtualfile_from_matrix(data) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info", f"{vfile} ->{outfile.name}")
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join(
                [f"<{col.min():.0f}/{col.max():.0f}>" for col in data.T])
            expected = f"<matrix memory>: N = {shape[0]}\t{bounds}\n"
            assert output == expected
Exemplo n.º 16
0
def test_virtualfile_from_vectors_transpose():
    "Test transforming matrix columns to virtual file dataset"
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    shape = (7, 5)
    for dtype in dtypes:
        data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
        with clib.Session() as lib:
            with lib.virtualfile_from_vectors(*data.T) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info",
                                    "{} -C ->{}".format(vfile, outfile.name))
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join([
                "{:.0f}\t{:.0f}".format(col.min(), col.max()) for col in data.T
            ])
            expected = "{}\n".format(bounds)
            assert output == expected
Exemplo n.º 17
0
def test_create_data_dataset():
    "Run the function to make sure it doesn't fail badly."
    with clib.Session() as lib:
        # Dataset from vectors
        data_vector = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_VECTOR",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[10, 20, 1, 0],  # columns, rows, layers, dtype
        )
        # Dataset from matrices
        data_matrix = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_MATRIX",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[10, 20, 1, 0],
        )
        assert data_vector != data_matrix
Exemplo n.º 18
0
def test_virtualfile_from_vectors_two_string_or_object_columns(dtype):
    """
    Test passing in two columns of string or object dtype into virtual file
    dataset.
    """
    size = 5
    x = np.arange(size, dtype=np.int32)
    y = np.arange(size, size * 2, 1, dtype=np.int32)
    strings1 = np.array(["a", "bc", "def", "ghij", "klmno"], dtype=dtype)
    strings2 = np.array(["pqrst", "uvwx", "yz!", "@#", "$"], dtype=dtype)
    with clib.Session() as lib:
        with lib.virtualfile_from_vectors(x, y, strings1, strings2) as vfile:
            with GMTTempFile() as outfile:
                lib.call_module("convert", f"{vfile} ->{outfile.name}")
                output = outfile.read(keep_tabs=True)
        expected = "".join(f"{h}\t{i}\t{j} {k}\n"
                           for h, i, j, k in zip(x, y, strings1, strings2))
        assert output == expected
Exemplo n.º 19
0
def test_virtualfile_from_vectors():
    "Test the automation for transforming vectors to virtual file dataset"
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    size = 10
    for dtype in dtypes:
        x = np.arange(size, dtype=dtype)
        y = np.arange(size, size * 2, 1, dtype=dtype)
        z = np.arange(size * 2, size * 3, 1, dtype=dtype)
        with clib.Session() as lib:
            with lib.virtualfile_from_vectors(x, y, z) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info",
                                    "{} ->{}".format(vfile, outfile.name))
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join([
                "<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (x, y, z)
            ])
            expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
            assert output == expected
Exemplo n.º 20
0
def test_virtualfile_from_vectors():
    """
    Test the automation for transforming vectors to virtual file dataset.
    """
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    size = 10
    for dtype in dtypes:
        x = np.arange(size, dtype=dtype)
        y = np.arange(size, size * 2, 1, dtype=dtype)
        z = np.arange(size * 2, size * 3, 1, dtype=dtype)
        with clib.Session() as lib:
            with lib.virtualfile_from_vectors(x, y, z) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info", f"{vfile} ->{outfile.name}")
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join(
                [f"<{i.min():.0f}/{i.max():.0f}>" for i in (x, y, z)])
            expected = f"<vector memory>: N = {size}\t{bounds}\n"
            assert output == expected
Exemplo n.º 21
0
def test_fails_for_wrong_version():
    "Make sure the clib.Session raises an exception if GMT is too old"

    # Mock GMT_Get_Default to return an old version
    def mock_defaults(api, name, value):  # pylint: disable=unused-argument
        "Return an old version"
        if name == b"API_VERSION":
            value.value = b"5.4.3"
        else:
            value.value = b"bla"
        return 0

    lib = clib.Session()
    with mock(lib, "GMT_Get_Default", mock_func=mock_defaults):
        with pytest.raises(GMTVersionError):
            with lib:
                assert lib.info["version"] != "5.4.3"
    # Make sure the session is closed when the exception is raised.
    with pytest.raises(GMTCLibNoSessionError):
        assert lib.session_pointer
Exemplo n.º 22
0
def test_virtualfile_from_matrix_slice():
    "Test transforming a slice of a larger array to virtual file dataset"
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    shape = (10, 6)
    for dtype in dtypes:
        full_data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
        rows = 5
        cols = 3
        data = full_data[:rows, :cols]
        with clib.Session() as lib:
            with lib.virtualfile_from_matrix(data) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info",
                                    "{} ->{}".format(vfile, outfile.name))
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join([
                "<{:.0f}/{:.0f}>".format(col.min(), col.max())
                for col in data.T
            ])
            expected = "<matrix memory>: N = {}\t{}\n".format(rows, bounds)
            assert output == expected
Exemplo n.º 23
0
def test_virtualfile_from_data_required_z_matrix(array_func, kind):
    """
    Test that function works when third z column in a matrix is needed and
    provided.
    """
    shape = (5, 3)
    dataframe = pd.DataFrame(data=np.arange(shape[0] *
                                            shape[1]).reshape(shape),
                             columns=["x", "y", "z"])
    data = array_func(dataframe)
    with clib.Session() as lib:
        with lib.virtualfile_from_data(data=data, required_z=True) as vfile:
            with GMTTempFile() as outfile:
                lib.call_module("info", f"{vfile} ->{outfile.name}")
                output = outfile.read(keep_tabs=True)
        bounds = "\t".join([
            f"<{i.min():.0f}/{i.max():.0f}>"
            for i in (dataframe.x, dataframe.y, dataframe.z)
        ])
        expected = f"<{kind} memory>: N = {shape[0]}\t{bounds}\n"
        assert output == expected
Exemplo n.º 24
0
def test_put_strings():
    """
    Check that assigning a numpy array of dtype str to a dataset works.
    """
    with clib.Session() as lib:
        dataset = lib.create_data(
            family="GMT_IS_DATASET|GMT_VIA_VECTOR",
            geometry="GMT_IS_POINT",
            mode="GMT_CONTAINER_ONLY",
            dim=[2, 5, 1, 0],  # columns, rows, layers, dtype
        )
        x = np.array([1, 2, 3, 4, 5], dtype=np.int32)
        y = np.array([6, 7, 8, 9, 10], dtype=np.int32)
        strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"],
                           dtype=np.str)
        lib.put_vector(dataset, column=lib["GMT_X"], vector=x)
        lib.put_vector(dataset, column=lib["GMT_Y"], vector=y)
        lib.put_strings(dataset,
                        family="GMT_IS_VECTOR|GMT_IS_DUPLICATE",
                        strings=strings)
        # Turns out wesn doesn't matter for Datasets
        wesn = [0] * 6
        # Save the data to a file to see if it's being accessed correctly
        with GMTTempFile() as tmp_file:
            lib.write_data(
                "GMT_IS_VECTOR",
                "GMT_IS_POINT",
                "GMT_WRITE_SET",
                wesn,
                tmp_file.name,
                dataset,
            )
            # Load the data and check that it's correct
            newx, newy, newstrings = tmp_file.loadtxt(unpack=True,
                                                      dtype=[("x", np.int32),
                                                             ("y", np.int32),
                                                             ("text", "<U7")])
            npt.assert_array_equal(newx, x)
            npt.assert_array_equal(newy, y)
            npt.assert_array_equal(newstrings, strings)
Exemplo n.º 25
0
def test_put_vector_mixed_dtypes():
    """
    Passing a numpy array of mixed dtypes to a dataset.

    See https://github.com/GenericMappingTools/pygmt/issues/255
    """
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    for dtypex, dtypey in itertools.permutations(dtypes, r=2):
        with clib.Session() as lib:
            dataset = lib.create_data(
                family="GMT_IS_DATASET|GMT_VIA_VECTOR",
                geometry="GMT_IS_POINT",
                mode="GMT_CONTAINER_ONLY",
                dim=[2, 5, 1, 0],  # columns, rows, layers, dtype
            )
            x = np.array([1, 2, 3, 4, 5], dtype=dtypex)
            y = np.array([6, 7, 8, 9, 10], dtype=dtypey)
            lib.put_vector(dataset, column=lib["GMT_X"], vector=x)
            lib.put_vector(dataset, column=lib["GMT_Y"], vector=y)
            # Turns out wesn doesn't matter for Datasets
            wesn = [0] * 6
            # Save the data to a file to see if it's being accessed correctly
            with GMTTempFile() as tmp_file:
                lib.write_data(
                    "GMT_IS_VECTOR",
                    "GMT_IS_POINT",
                    "GMT_WRITE_SET",
                    wesn,
                    tmp_file.name,
                    dataset,
                )
                # Load the data and check that it's correct
                newx, newy = tmp_file.loadtxt(unpack=True,
                                              dtype=[("x", dtypex),
                                                     ("y", dtypey)])
                assert x.dtype == newx.dtype
                assert y.dtype == newy.dtype
                npt.assert_allclose(newx, x)
                npt.assert_allclose(newy, y)
Exemplo n.º 26
0
def test_virtualfile_from_vectors_pandas():
    "Pass vectors to a dataset using pandas Series"
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    size = 13
    for dtype in dtypes:
        data = pd.DataFrame(data=dict(
            x=np.arange(size, dtype=dtype),
            y=np.arange(size, size * 2, 1, dtype=dtype),
            z=np.arange(size * 2, size * 3, 1, dtype=dtype),
        ))
        with clib.Session() as lib:
            with lib.virtualfile_from_vectors(data.x, data.y, data.z) as vfile:
                with GMTTempFile() as outfile:
                    lib.call_module("info",
                                    "{} ->{}".format(vfile, outfile.name))
                    output = outfile.read(keep_tabs=True)
            bounds = "\t".join([
                "<{:.0f}/{:.0f}>".format(i.min(), i.max())
                for i in (data.x, data.y, data.z)
            ])
            expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
            assert output == expected
Exemplo n.º 27
0
def test_put_vector():
    """
    Check that assigning a numpy array to a dataset works.
    """
    dtypes = "float32 float64 int32 int64 uint32 uint64".split()
    for dtype in dtypes:
        with clib.Session() as lib:
            dataset = lib.create_data(
                family="GMT_IS_DATASET|GMT_VIA_VECTOR",
                geometry="GMT_IS_POINT",
                mode="GMT_CONTAINER_ONLY",
                dim=[3, 5, 1, 0],  # columns, rows, layers, dtype
            )
            x = np.array([1, 2, 3, 4, 5], dtype=dtype)
            y = np.array([6, 7, 8, 9, 10], dtype=dtype)
            z = np.array([11, 12, 13, 14, 15], dtype=dtype)
            lib.put_vector(dataset, column=lib["GMT_X"], vector=x)
            lib.put_vector(dataset, column=lib["GMT_Y"], vector=y)
            lib.put_vector(dataset, column=lib["GMT_Z"], vector=z)
            # Turns out wesn doesn't matter for Datasets
            wesn = [0] * 6
            # Save the data to a file to see if it's being accessed correctly
            with GMTTempFile() as tmp_file:
                lib.write_data(
                    "GMT_IS_VECTOR",
                    "GMT_IS_POINT",
                    "GMT_WRITE_SET",
                    wesn,
                    tmp_file.name,
                    dataset,
                )
                # Load the data and check that it's correct
                newx, newy, newz = tmp_file.loadtxt(unpack=True, dtype=dtype)
                npt.assert_allclose(newx, x)
                npt.assert_allclose(newy, y)
                npt.assert_allclose(newz, z)
Exemplo n.º 28
0
def test_get_default_fails():
    "Make sure get_default raises an exception for invalid names"
    with clib.Session() as lib:
        with pytest.raises(GMTCLibError):
            lib.get_default("NOT_A_VALID_NAME")
Exemplo n.º 29
0
def test_put_vector_string_dtype():
    """
    Passing string type vectors to a dataset.
    """
    # input string vectors: numbers, longitudes, latitudes, and datetimes
    vectors = np.array([
        ["10", "20.0", "-30.0", "3.5e1"],
        ["10W", "30.50E", "30:30W", "40:30:30.500E"],
        ["10N", "30.50S", "30:30N", "40:30:30.500S"],
        [
            "2021-02-03", "2021-02-03T04", "2021-02-03T04:05:06.700",
            "T04:50:06.700"
        ],
    ])
    # output vectors in double or string type
    # Notes:
    # 1. longitudes and latitudes are stored in double in GMT
    # 2. The default output format for datetime is YYYY-mm-ddTHH:MM:SS
    expected_vectors = [
        [10.0, 20.0, -30.0, 35],
        [-10, 30.5, -30.5, 40.508472],
        [10, -30.50, 30.5, -40.508472],
        [
            "2021-02-03T00:00:00",
            "2021-02-03T04:00:00",
            "2021-02-03T04:05:06",
            f"{datetime.utcnow().strftime('%Y-%m-%d')}T04:50:06",
        ],
    ]

    # loop over all possible combinations of input types
    for i, j in itertools.combinations_with_replacement(range(4), r=2):
        with clib.Session() as lib:
            dataset = lib.create_data(
                family="GMT_IS_DATASET|GMT_VIA_VECTOR",
                geometry="GMT_IS_POINT",
                mode="GMT_CONTAINER_ONLY",
                dim=[2, 4, 1, 0],  # columns, rows, layers, dtype
            )
            lib.put_vector(dataset, column=lib["GMT_X"], vector=vectors[i])
            lib.put_vector(dataset, column=lib["GMT_Y"], vector=vectors[j])
            # Turns out wesn doesn't matter for Datasets
            wesn = [0] * 6
            # Save the data to a file to see if it's being accessed correctly
            with GMTTempFile() as tmp_file:
                lib.write_data(
                    "GMT_IS_VECTOR",
                    "GMT_IS_POINT",
                    "GMT_WRITE_SET",
                    wesn,
                    tmp_file.name,
                    dataset,
                )
                # Load the data
                output = np.genfromtxt(tmp_file.name,
                                       dtype=None,
                                       names=("x", "y"),
                                       encoding=None)
                # check that the output is correct
                # Use npt.assert_allclose for numeric arrays
                # and npt.assert_array_equal for string arrays
                if i != 3:
                    npt.assert_allclose(output["x"], expected_vectors[i])
                else:
                    npt.assert_array_equal(output["x"], expected_vectors[i])
                if j != 3:
                    npt.assert_allclose(output["y"], expected_vectors[j])
                else:
                    npt.assert_array_equal(output["y"], expected_vectors[j])
Exemplo n.º 30
0
import xarray as xr
from packaging.version import Version
from pygmt import Figure, clib
from pygmt.clib.conversion import dataarray_to_matrix
from pygmt.clib.session import FAMILIES, VIAS
from pygmt.exceptions import (
    GMTCLibError,
    GMTCLibNoSessionError,
    GMTInvalidInput,
    GMTVersionError,
)
from pygmt.helpers import GMTTempFile

TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data")

with clib.Session() as _lib:
    gmt_version = Version(_lib.info["version"])


@contextmanager
def mock(session, func, returns=None, mock_func=None):
    """
    Mock a GMT C API function to make it always return a given value.

    Used to test that exceptions are raised when API functions fail by
    producing a NULL pointer as output or non-zero status codes.

    Needed because it's not easy to get some API functions to fail without
    inducing a Segmentation Fault (which is a good thing because libgmt usually
    only fails with errors).
    """