def setData(self,x,y,*args,**kwargin): """set Data x: inputs [N,D] t: targets [N] - targets are either -1,+1 or False/True """ assert isinstance(y,S.ndarray), 'setData requires numpy arrays' #check whether t is bool if y.dtype=='bool': y_ = S.ones([y.shape[0]]) y_[y] = +1 y_[~y] = -1 y = y_ else: assert len(SP.unique(y))==2, 'need either binary inputs or inputs of length 2 for classification' GPEP.setData(self,x=x,y=y,*args,**kwargin)
def setData(self, x, y, *args, **kwargin): """set Data x: inputs [N,D] t: targets [N] - targets are either -1,+1 or False/True """ assert isinstance(y, S.ndarray), 'setData requires numpy arrays' #check whether t is bool if y.dtype == 'bool': y_ = S.ones([y.shape[0]]) y_[y] = +1 y_[~y] = -1 y = y_ else: assert len( SP.unique(y) ) == 2, 'need either binary inputs or inputs of length 2 for classification' GPEP.setData(self, x=x, y=y, *args, **kwargin)
def predict(self,*argin,**kwargin): """Binary classification prediction""" #1. get Gaussian prediction [MU,S2] = GPEP.predict(self,*argin,**kwargin) #2. push thorugh sigmoid #predictive distribution is int_-inf^+inf normal(f|mu,s2)sigmoid(f) Pt = sigmoid ( MU / S.sqrt(1+S2)) return [Pt,MU,S2] pass
def predict(self, *argin, **kwargin): """Binary classification prediction""" #1. get Gaussian prediction [MU, S2] = GPEP.predict(self, *argin, **kwargin) #2. push thorugh sigmoid #predictive distribution is int_-inf^+inf normal(f|mu,s2)sigmoid(f) Pt = sigmoid(MU / S.sqrt(1 + S2)) return [Pt, MU, S2] pass