Exemplo n.º 1
0
    def test_trc_with_boxes_traj(self):
        c = Cnf(self.in_file_w_genbox_cnf_path)
        t_origin = self.class_name(traj_path=self.in_file_w_genbox_path,
                                   in_cnf=self.in_file_w_genbox_cnf_path)

        # CNF was the last frame:
        testing.assert_allclose(actual=t_origin._unitcell_lengths[-1],
                                desired=c.GENBOX.length)

        # these should not be equal! as the box changes in NPT over time
        assert t_origin._unitcell_lengths[0][0] != c.GENBOX.length[0]
        assert t_origin._unitcell_lengths[0][1] != c.GENBOX.length[1]
        assert t_origin._unitcell_lengths[0][2] != c.GENBOX.length[2]
Exemplo n.º 2
0
    def to_cnf(self, frame_id: int = None, base_cnf: Cnf = None):
        from pygromos.files.blocks import coords

        if frame_id is None:
            frame_id = 0

        content_str = ("THIS IS THE FRAME AT TIMESTEP: " +
                       str(self.time[frame_id]) +
                       " OF THE TRAJECTORY WITH TITLE: \n" +
                       "\n".join(self.TITLE.content))

        if base_cnf is None:
            new_Cnf = self.get_dummy_cnf(self.xyz)
        else:
            if type(base_cnf) is Cnf:
                new_Cnf = base_cnf
            else:
                new_Cnf = Cnf(base_cnf)
        new_Cnf.TITLE = TITLE(content_str)

        new_Cnf.POSITION = POSITION([
            coords.atomP(
                resID=new_Cnf.POSITION.content[i].resID,
                resName=new_Cnf.POSITION.content[i].resName,
                atomType=new_Cnf.POSITION.content[i].atomType,
                atomID=i,
                xp=coord[0],
                yp=coord[1],
                zp=coord[2],
            ) for i, coord in enumerate(self.xyz[frame_id])
        ])

        if hasattr(new_Cnf, "GENBOX"):
            new_Cnf.GENBOX.length = list(self.unitcell_lengths[frame_id])
            new_Cnf.GENBOX.angles = list(self.unitcell_angles[frame_id])
            new_Cnf.GENBOX.euler = [0.0, 0.0, 0.0]
            new_Cnf.GENBOX.origin = [0.0, 0.0, 0.0]
        else:
            from pygromos.files.blocks.coord_blocks import GENBOX

            box_block = GENBOX(pbc=1,
                               length=list(self.unitcell_lengths[frame_id]),
                               angles=list(self.unitcell_angles[frame_id]))
            new_Cnf.add_block(block=box_block)

        if hasattr(new_Cnf, "TIMESTEP"):
            new_Cnf.TIMESTEP.t = self.time[frame_id]
            new_Cnf.TIMESTEP.step = self.step[frame_id]

        return new_Cnf
Exemplo n.º 3
0
    def get_dummy_cnf(self, xyz: np.array) -> Cnf:
        from pygromos.files.blocks import coords

        new_Cnf = Cnf(None)
        new_Cnf.add_block(
            blocktitle="TITLE",
            content="THis is a dummy top depending on the first Frame.")
        new_Cnf.add_block(
            blocktitle="POSITION",
            content=[
                coords.atomP(resID=1,
                             resName="DUM",
                             atomType="C",
                             atomID=i,
                             xp=coord[0],
                             yp=coord[1],
                             zp=coord[2]) for i, coord in enumerate(xyz[0])
            ],
        )
        return new_Cnf
Exemplo n.º 4
0
 def create_cnf(self, mol: str, in_cnf: Cnf = None, **kwargs) -> Cnf:
     return Cnf(in_value=mol)
Exemplo n.º 5
0
def ran_box(
    in_top_path: str,
    in_cnf_path: str,
    out_cnf_path: str = "",
    periodic_boundary_condition: str = "r",
    nmolecule: int = 1,
    dens: float = 1.0,
    threshold: float = None,
    layer: bool = False,
    boxsize: float = None,
    fixfirst: bool = False,
    seed: float = None,
    _binary_name: str = "ran_box",
    verbose: bool = True,
    return_command_only: bool = False,
) -> str:

    top = Top(in_value=in_top_path)
    cnf = Cnf(in_value=in_cnf_path)
    cog = np.array(cnf.center_of_geometry())

    if sum([len(cnf.residues[x]) for x in cnf.residues]) > 1:
        raise Exception("ran_box works only with one residue in the .cnf file!\nFound: " + str(cnf.get_residues()))

    # get volume and box length
    minwall = 0.12  # saftey distance of a bond length to box edge
    mol_mass = top.get_mass()
    volume = 1.66056 * nmolecule * mol_mass / dens
    box_length = volume ** (1.0 / 3.0)
    divider = int(np.ceil(nmolecule ** (1.0 / 3.0)))
    distance = (box_length - 2 * minwall) / float(divider)

    # calculate maxRandShift
    scale = 0.5  # scale can be manually decreased
    maxDist = 0
    for atom in copy.deepcopy(cnf).POSITION.content:
        pos = np.array([atom.xp, atom.yp, atom.zp])
        dis = np.linalg.norm(pos - cog)
        if dis > maxDist:
            maxDist = dis
    maxRandShift = (scale * distance) - maxDist
    if maxRandShift < 0:
        maxRandShift = 0
        if verbose:
            warnings.warn("Molecules might overlap! Check cnf manually or decrease the density")

    # create new cnf for return and set some attributes
    ret_cnf = copy.deepcopy(cnf)
    ret_cnf.POSITION.content = []
    if hasattr(ret_cnf, "LATTICESHIFTS"):
        delattr(ret_cnf, "LATTICESHIFTS")
    if hasattr(ret_cnf, "VELOCITY"):
        delattr(ret_cnf, "VELOCITY")
    if hasattr(ret_cnf, "STOCHINT"):
        delattr(ret_cnf, "STOCHINT")
    ret_cnf.GENBOX.pbc = 1
    ret_cnf.GENBOX.length = [box_length, box_length, box_length]
    ret_cnf.GENBOX.angles = [90, 90, 90]
    ret_cnf.TITLE.content = str(nmolecule) + " * " + cnf.POSITION.content[0].resName

    # add positions
    points = list(it.product(range(divider), range(divider), range(divider)))
    for ind, (xi, yi, zi) in enumerate(random.sample(points, nmolecule)):
        shift = np.array(
            [(xi + 0.5) * distance + minwall, (yi + 0.5) * distance + minwall, (zi + 0.5) * distance + minwall]
        )
        cnf.rotate(alpha=random.uniform(0, 360), beta=random.uniform(0, 360), gamma=random.uniform(0, 360))
        randomShift = np.array(
            [
                random.uniform(-maxRandShift, maxRandShift),
                random.uniform(-maxRandShift, maxRandShift),
                random.uniform(-maxRandShift, maxRandShift),
            ]
        )

        for atom in copy.deepcopy(cnf).POSITION.content:
            pos = np.array([atom.xp, atom.yp, atom.zp])
            atom.xp, atom.yp, atom.zp = pos - cog + shift + randomShift
            atom.resID = ind + 1
            atom.atomID += ind * cnf.POSITION.content[-1].atomID
            ret_cnf.POSITION.content.append(atom)

    ret_cnf.write(out_path=out_cnf_path)

    return out_cnf_path
Exemplo n.º 6
0
def chain_submission(
    simSystem: Gromos_System,
    out_dir_path: str,
    out_prefix: str,
    chain_job_repetitions: int,
    worker_script: str,
    job_submission_system: _SubmissionSystem,
    jobname: str,
    run_analysis_script_every_x_runs: int = 0,
    in_analysis_script_path: str = "",
    start_run_index: int = 1,
    prefix_command: str = "",
    previous_job_ID: int = None,
    work_dir: str = None,
    initialize_first_run: bool = True,
    reinitialize_every_run: bool = False,
    verbose: bool = False,
    verbose_lvl: int = 1,
) -> Tuple[int, str, Gromos_System]:
    """
        this function submits a chain of simulation steps to the queuing system and does the file managment.


    Parameters
    ----------
    simSystem : Gromos_System
        simulation system
    out_dir_path : str
        out directory path
    out_prefix : str
        out prefix for simulation files
    chain_job_repetitions : int
        how often, should the simulation be repeated (in continuation)
    worker_script : str
        worker, that should be submitted. This script will be executed at each scheduled job.
    job_submission_system : _SubmissionSystem
        submission system, what type of submission?
    jobname : str
        name of the simulation job
    run_analysis_script_every_x_runs : int, optional
        run analysis in between - (careful will not be overwritten, make sure final analysis is correct.), by default 0
    in_analysis_script_path : str, optional
        analysis script for simulation, that should be applied (will at least be applied after the full simulation chain.), by default ""
    start_run_index : int, optional
        start index of the job chain., by default 1
    prefix_command : str, optional
        any bash prefix commands, before submitting?, by default ""
    previous_job_ID : int, optional
        ID of the prefious job, to be chained to. , by default None
    work_dir : str, optional
        dir to wich the work in progress will be written. if None a tmp-srcatch dir will be used with LSF!, by default None
    initialize_first_run : bool, optional
        should the velocities for the first run be initialized?, by default True
    reinitialize_every_run : bool, optional
        should in every run, the velocities be reinitialized?, by default False
    verbose : bool, optional
        more bla bla, by default False
    verbose_lvl : int, optional
        nicely define ammount of bla bla, by default 1

    Returns
    -------
    Tuple[int, str, Gromos_System]
        Tuple[previous_job_ID, tmp_jobname, simSystem]
        will return the last job_ID, the last tmp_jobname and the final gromosSystem.

    Raises
    ------
    ValueError
        if submission fails. This can habe various reasons, always check also the present files! (*omd etc.)
    """

    if verbose:
        print("\nChainSubmission - " + out_prefix + "\n" + "=" * 30 + "\n")
    if (verbose) and verbose_lvl >= 2:
        print("start_run_index " + str(start_run_index))
    if (verbose) and verbose_lvl >= 2:
        print("job reptitions " + str(chain_job_repetitions))

    if job_submission_system is not LOCAL:
        simSystem._future_promise = True

    ana_id = None
    job_submission_system.job_duration = job_submission_system.job_duration
    for runID in range(start_run_index, chain_job_repetitions + 1):

        if verbose:
            print("\n submit  " + jobname + "_" + str(runID) + "\n" + spacer3)

        tmp_outprefix = out_prefix + "_" + str(runID)
        tmp_jobname = jobname + "_" + str(runID)
        tmp_outdir = out_dir_path + "/" + tmp_outprefix
        tmp_out_cnf = tmp_outdir + "/" + tmp_outprefix + ".cnf"

        # Checks if run should be skipped!
        do_skip, previous_job_ID = do_skip_job(
            tmp_out_cnf=tmp_out_cnf,
            simSystem=simSystem,
            tmp_jobname=tmp_jobname,
            job_submission_system=job_submission_system,
            previous_job=previous_job_ID,
            verbose=verbose,
        )

        if not do_skip:
            bash.make_folder(tmp_outdir)

            # build COMMANDS:
            if len(prefix_command) > 1:
                prefix_command += " && "

            # We will write the arguments to the python script in a bash array
            # to make it simpler to read in our input files.

            md_args = "md_args=(\n"

            md_args += "-out_dir " + tmp_outdir + "\n"
            md_args += "-in_cnf_path " + simSystem.cnf.path + "\n"
            md_args += "-in_imd_path " + simSystem.imd.path + "\n"
            md_args += "-in_top_path " + simSystem.top.path + "\n"
            md_args += "-runID " + str(runID) + "\n"

            # OPTIONAL ARGS
            if simSystem.disres is not None:
                md_args += "-in_disres_path " + simSystem.disres.path + "\n"
            if simSystem.ptp is not None:
                md_args += "-in_perttopo_path " + simSystem.ptp.path + "\n"
            if simSystem.refpos is not None:
                md_args += "-in_refpos_path " + simSystem.refpos.path + "\n"
            if simSystem.qmmm is not None:
                md_args += "-in_qmmm_path " + simSystem.qmmm.path + " "
            if simSystem.posres is not None:
                md_args += "-in_posres_path " + simSystem.posres.path + "\n"

            md_args += "-nmpi " + str(job_submission_system.nmpi) + "\n"
            md_args += "-nomp " + str(job_submission_system.nomp) + "\n"
            md_args += "-initialize_first_run " + str(
                initialize_first_run) + "\n"
            md_args += "-reinitialize_every_run " + str(
                reinitialize_every_run) + "\n"
            md_args += "-gromosXX_bin_dir " + str(
                simSystem.gromosXX.bin) + "\n"
            md_args += "-gromosXX_check_binary_paths " + str(
                simSystem.gromosXX._check_binary_paths) + "\n"

            if work_dir is not None:
                md_args += "-work_dir " + str(work_dir) + "\n"

            if hasattr(simSystem.imd, "WRITETRAJ"):
                if simSystem.imd.WRITETRAJ.NTWX > 0:
                    md_args += "-out_trc " + str(True) + "\n"
                if simSystem.imd.WRITETRAJ.NTWE > 0:
                    md_args += "-out_tre " + str(True) + "\n"
                if simSystem.imd.WRITETRAJ.NTWV > 0:
                    md_args += "-out_trv " + str(True) + "\n"
                if simSystem.imd.WRITETRAJ.NTWF > 0:
                    md_args += "-out_trf " + str(True) + "\n"
                if simSystem.imd.WRITETRAJ.NTWG > 0:
                    md_args += "-out_trg " + str(True) + "\n"

            md_args += "-zip_trajectories " + str(
                job_submission_system.zip_trajectories) + "\n"

            md_args += ")\n"  # closing the bash array which stores all arguments.

            # add zip option here

            # MAIN commands
            md_script_command = prefix_command + "\n\n" + md_args + "\n"
            md_script_command += "python3 " + worker_script + '  "${md_args[@]}" \n'

            if verbose:
                print("PREVIOUS ID: ", previous_job_ID)
                if verbose_lvl >= 2:
                    print("COMMAND: ", md_script_command)

            # SCHEDULE THE COMMANDS
            try:
                if verbose:
                    print("\tSIMULATION")
                os.chdir(tmp_outdir)
                sub_job = Submission_job(
                    command=md_script_command,
                    jobName=tmp_jobname,
                    submit_from_dir=tmp_outdir,
                    queue_after_jobID=previous_job_ID,
                    outLog=tmp_outdir + "/" + out_prefix + "_md.out",
                    errLog=tmp_outdir + "/" + out_prefix + "_md.err",
                    sumbit_from_file=True,
                )
                previous_job_ID = job_submission_system.submit_to_queue(
                    sub_job)
                if verbose:
                    print("SIMULATION ID: ", previous_job_ID)
            except ValueError as err:  # job already in the queue
                raise ValueError("ERROR during submission of main job " +
                                 str(tmp_jobname) + ":\n" +
                                 "\n".join(err.args))

            # OPTIONAL schedule - analysis inbetween.
            if (runID > 1 and run_analysis_script_every_x_runs != 0
                    and runID % run_analysis_script_every_x_runs == 0
                    and runID < chain_job_repetitions):

                if (verbose) and verbose_lvl >= 2:
                    print("\tINBETWEEN ANALYSIS")
                sub_job = Submission_job(
                    command=in_analysis_script_path,
                    jobName=jobname + "_intermediate_ana_run_" + str(runID),
                    outLog=tmp_outdir + "/" + out_prefix + "_inbetweenAna.out",
                    errLog=tmp_outdir + "/" + out_prefix + "_inbetweenAna.err",
                    queue_after_jobID=previous_job_ID,
                )
                try:
                    ana_id = job_submission_system.submit_to_queue(sub_job)
                    if (verbose) and verbose_lvl >= 2:
                        print("\n")
                except ValueError as err:  # job already in the queue
                    print("ERROR during submission of analysis command of " +
                          sub_job.jobName + ":\n")
                    print("\n".join(err.args))
        else:
            if (verbose) and verbose_lvl >= 2:
                print("Did not submit!")
        if (verbose) and verbose_lvl >= 2:
            print("\n")
        if (verbose) and verbose_lvl >= 2:
            print("job_postprocess ")
        prefix_command = ""

        # Resulting cnf is provided to use it in further approaches.
        simSystem.cnf = Cnf(tmp_out_cnf, _future_file=True)

    if ana_id is not None:
        previous_job_ID = ana_id

    return previous_job_ID, tmp_jobname, simSystem
Exemplo n.º 7
0
    def __init__(
        self,
        xyz=None,
        topology=None,
        time=None,
        unitcell_lengths=None,
        unitcell_angles=None,
        traj_path=None,
        in_cnf: [str, Cnf] = None,
        timestep_duration: float = 0.002,
        _future_file: bool = False,
    ):

        self._future_file = _future_file
        if xyz is None and topology is None and traj_path is None and in_cnf is None:
            self._future_file = None

        if traj_path is not None and (traj_path.endswith(".h5")
                                      or traj_path.endswith(".hf5")):
            trj = self.load(traj_path)
            self.__dict__.update(vars(trj))

        elif traj_path is not None and (traj_path.endswith(".trc")
                                        or traj_path.endswith(".trc.gz")):

            # Parse TRC
            compress = False
            if traj_path.endswith(".gz"):
                traj_path = bash.compress_gzip(in_path=traj_path, extract=True)
                compress = True

            unitcell_angles = None
            unitcell_lengths = None

            if isinstance(traj_path, str):
                xyz, step, time, unitcell_lengths, unitcell_angles = self.parse_trc_efficiently(
                    traj_path)

            if compress:
                traj_path = bash.compress_gzip(in_path=traj_path)

            # Topology from Cnf
            if isinstance(in_cnf, str):
                in_cnf = Cnf(in_cnf)
            elif isinstance(in_cnf, Cnf) and hasattr(in_cnf, "POSITION"):
                pass
            else:
                in_cnf = self.get_dummy_cnf(xyz)

            # get cnf boxDims
            if hasattr(in_cnf, "GENBOX") and (unitcell_lengths is None
                                              and unitcell_angles is None):
                unitcell_angles = np.array(
                    list(in_cnf.GENBOX.angles) * len(xyz)).reshape(
                        len(xyz), len(in_cnf.GENBOX.length))
                unitcell_lengths = np.array(
                    list(in_cnf.GENBOX.length) * len(xyz)).reshape(
                        len(xyz), len(in_cnf.GENBOX.length))

            # Topo tmp file
            tmpFile = tempfile.NamedTemporaryFile(suffix="_tmp.pdb")
            in_cnf.write_pdb(tmpFile.name)
            single = mdtraj.load_pdb(tmpFile.name)
            tmpFile.close()

            super().__init__(
                xyz=xyz,
                topology=single.topology,
                time=time,
                unitcell_lengths=unitcell_lengths,
                unitcell_angles=unitcell_angles,
            )
            self._step = step

        elif not (xyz is None and topology is None):
            super().__init__(
                xyz=xyz,
                topology=topology,
                time=time,
                unitcell_lengths=unitcell_lengths,
                unitcell_angles=unitcell_angles,
            )

            self._step = np.array(np.round(self._time / timestep_duration),
                                  dtype=int)
            self.TITLE = TITLE(
                content=" Generic Title... to be changed by YOU!")

        else:
            self._unitcell_lengths = []
            self._unitcell_angles = []
            self._xyz = np.array([], ndmin=2)
            self._topology = None
            self._future_file = True

        self.path = traj_path
Exemplo n.º 8
0
def TI_sampling(
    in_gromos_system: Gromos_System,
    project_dir: str = None,
    step_name="lambda_sampling",
    lambda_values: List[float] = np.arange(0, 1.1, 0.1),
    subSystem: _SubmissionSystem = LOCAL(),
    n_productions: int = 3,
    n_equilibrations: int = 1,
    randomize: bool = False,
    dual_cnf: List[str] = None,
    verbose: bool = True,
):
    """
    This function will automatically submit N independent (different lambda)
    MD simulations with a lambda dependent potential energy.

    Parameters
    ----------
        in_gromos_system: Gromos_System
            input gromos system
        project_dir: str
            directory in which simulation input files are found
        step_name: str
            subdirectory of project_dir, in which we will write the output
            important: allows to run multiple random seeds with a different "step_name"
        lambda_values: List [float]
            List of lambda values for each independent simulation
        subSystem: _SubmissionSystem
            where will the calculation run
        n_productions: int
            number of chunks each independent simulation is broken down into
        n_equilibrations: int
            number of chunks of equilibration preceding the production for each independent simulation
        randomize: bool
            Choose a random number for the initial random seed (same for all lambda values)
        dual_cnf: List [str], optional
            If provided, should be the path to two conformations (matching end states A and B) which
            can be used as initial conformations
            Simulations with a lambda value between 0 and 0.5 will use the first as starting conformation

    Returns
    --------
        lam_system: Gromos_System
            Gromos system of the simulation submitted last
    """

    if project_dir is None:
        project_dir = in_gromos_system.work_folder

    work_dir = bash.make_folder(project_dir + "/" + step_name)

    # Select a random seed here so all lambda windows have the same
    if randomize:
        in_gromos_system.imd.randomize_seed()

    in_gromos_system.save(work_dir)
    general_system_name_prefix = in_gromos_system.name

    lam_systems = []
    for lam in lambda_values:
        lam = np.round(lam, 4)

        lam_system = deepcopy(in_gromos_system)
        lam_system.name = general_system_name_prefix + "_l_" + str(lam)
        lam_system.work_folder = work_dir

        # Choose different conformations depending on lambda point.
        # e.g. this allows to use RE-EDS SSM conformations.
        # dual_cnf[i] contains the path of the cnf to use
        if dual_cnf is not None and lam <= 0.5:
            lam_system.cnf = Cnf(dual_cnf[0])
        elif dual_cnf is not None:
            lam_system.cnf = Cnf(dual_cnf[1])

        # IMD
        # Pertubation
        # Pertubation of system.
        pert_block = PERTURBATION(NTG=1,
                                  NRDGL=0,
                                  RLAM=lam,
                                  DLAMT=0,
                                  ALPHC=0.5,
                                  ALPHLJ=0.5,
                                  NLAM=2,
                                  NSCALE=0)
        lam_system.imd.add_block(block=pert_block)

        # Calculate additional lambda points
        if not hasattr(lam_system, "PRECALCLAM"):
            # Note: This assumes uniformely distributed lambda values
            precalc_lam_block = PRECALCLAM(NRLAM=len(lambda_values),
                                           MINLAM=0,
                                           MAXLAM=1)
            lam_system.imd.add_block(block=precalc_lam_block)

        # Submit
        out_gromos_system = _TI_lam_step(
            in_gromos_system=lam_system,
            project_dir=work_dir,
            step_name=lam_system.name,
            submission_system=subSystem,
            in_imd_path=None,
            simulation_runs=n_productions,
            equilibration_runs=n_equilibrations,
            verbose=verbose,
        )

        out_gromos_system.save(out_gromos_system.work_folder +
                               "/sd_out_system.obj")
        lam_systems.append(out_gromos_system)

    return lam_system
Exemplo n.º 9
0
class test_trc(unittest.TestCase):
    class_name = trc.Trc
    help_class = Cnf(in_test_file_path + "/trc/in_test.cnf")
    in_file_path = in_test_file_path + "/trc/in_test.trc"
    in_file_path_h5 = in_test_file_path + "/trc/in_test_trc.h5"
    in_file_w_genbox_path = in_test_file_path + "/trc/in_test_genbox.trc"
    in_file_w_genbox_cnf_path = in_test_file_path + "/trc/in_test_genbox.cnf"

    outpath = root_out + "/out_trc1.h5"
    trc_outpath = root_out + "/out_.trc.gz"

    # Constructors
    def test_constructor_empty(self):
        t = self.class_name()
        assert isinstance(t, self.class_name)
        # print(t)

    def test_constructor_trc_file_path(self):
        t = self.class_name(traj_path=self.in_file_path,
                            in_cnf=self.help_class)
        assert isinstance(t, self.class_name)
        # print(t)

    def test_constructor_trc_file_noTop_path(self):
        t = self.class_name(traj_path=self.in_file_path)
        assert isinstance(t, self.class_name)
        # print(t)

    def test_constructor_trc_h5_file_path(self):
        t = self.class_name(traj_path=self.in_file_path_h5)
        assert isinstance(t, self.class_name)
        # print(t)

    def test_write(self):
        t = self.class_name(traj_path=self.in_file_path,
                            in_cnf=self.help_class)
        t.save(self.outpath)

    def test_trc_with_boxes_traj(self):
        c = Cnf(self.in_file_w_genbox_cnf_path)
        t_origin = self.class_name(traj_path=self.in_file_w_genbox_path,
                                   in_cnf=self.in_file_w_genbox_cnf_path)

        # CNF was the last frame:
        testing.assert_allclose(actual=t_origin._unitcell_lengths[-1],
                                desired=c.GENBOX.length)

        # these should not be equal! as the box changes in NPT over time
        assert t_origin._unitcell_lengths[0][0] != c.GENBOX.length[0]
        assert t_origin._unitcell_lengths[0][1] != c.GENBOX.length[1]
        assert t_origin._unitcell_lengths[0][2] != c.GENBOX.length[2]

    def test_to_trc_file(self):
        # Read in trc
        t_origin = self.class_name(traj_path=self.in_file_path,
                                   in_cnf=self.help_class)

        # take a subset of frames
        t = t_origin[[5, 7, 12]]

        # write trc
        t.write_trc(self.trc_outpath)

        # read in new trc
        t_new = self.class_name(traj_path=self.trc_outpath,
                                in_cnf=self.help_class)

        # test if new trc coordinates have correct shapes
        assert t_new.xyz.shape[0] == 3
        assert t_new.xyz.shape[1] == t_origin.xyz.shape[1]
        assert t_new.xyz.shape[2] == t_origin.xyz.shape[2]

    def test_to_conf(self):
        t = self.class_name(traj_path=self.in_file_path,
                            in_cnf=self.help_class)

        # TEST DUMMY
        conf_60 = t.to_cnf(60)
        conf_60_None = t[60].to_cnf()
        assert conf_60 == conf_60_None

        # TEST with base
        conf_60 = t.to_cnf(60, base_cnf=self.help_class)
        conf_60_None = t[60].to_cnf(base_cnf=self.help_class)
        assert conf_60 == conf_60_None