Exemplo n.º 1
0
    def test_SweepNeurons(self):
        """When the exponential term of a neuron is disabled and firing is off
        V_t should not have any effect on the rest potential."""

        # FIXME: Differs from HICANN to HICANN, this needs connection database
        analog = Coordinate.AnalogOnHICANN(0)
        adc_channel = 3
        bigcap = True
        trace_length = 1950

        neurons = [Coordinate.NeuronOnHICANN(Enum(ii)) for ii in range(512)]

        threshold_voltages = np.arange(0, 1024, step=20, dtype=np.ushort)
        membrane = np.zeros((len(neurons), threshold_voltages.size))

        nconf = HICANN.NeuronConfig()
        nconf.bigcap[int(top)] = bigcap
        nconf.bigcap[int(bottom)] = bigcap
        HICANN.set_neuron_config(self.h, nconf)

        for ii, V_t in enumerate(threshold_voltages):

            fgctrl = HICANN.FGControl()

            for nrn in neurons:
                fgctrl.setNeuron(nrn, HICANN.neuron_parameter.V_t, V_t)
                fgctrl.setNeuron(nrn, HICANN.neuron_parameter.I_bexp, 0)

            for block in [
                    Coordinate.FGBlockOnHICANN(Enum(xx)) for xx in range(4)
            ]:
                HICANN.set_fg_values(self.h, block, fgctrl.getBlock(block))

            for jj, neuron in enumerate(neurons):
                self.set_denmem_quads(neuron, enable_aout=True)
                self.set_analog(analog, neuron)

                trace, v, t = self.get_trace(adc_channel, trace_length)
                membrane[jj, ii] = v.mean()

        if False:
            import pylab
            import matplotlib

            fig, ax = pylab.subplots()
            cax = ax.imshow(membrane.T,
                            interpolation='nearest',
                            cmap=matplotlib.cm.coolwarm)
            fig.colorbar(cax, orientation='horizontal')
            fig.show()

        # Case 1: Radically different behaviour between upper neurons and lower neurons.
        std = membrane.std(axis=1)
        self.assertAlmostEqual(std[:256].mean(), std[256:].mean(), places=2)

        # Case 2: Ideally we would want uniform behaviour for all values of V_t.
        self.assertLess(membrane.mean(axis=0).std(), 0.05)
Exemplo n.º 2
0
 def get_all_functions(self, foo, fpga=False):
     all = self.tree.xpath('/boost_serialization/type[text()="%s"]' % foo)
     for n in all:
         hicann, parameters = self.get_parameters(n)
         if not fpga:
             hc = HICANNGlobal(Enum(self.values_to_int(self.recursive_dict(hicann))['e']))
         else:
             hc = HICANNGlobal(Enum(self.values_to_int(self.recursive_dict(hicann))['wafer'])) #or 'value'
         if self.coordinate.hicann() != hc and not fpga:
             print "ignore non-matching hicanns..."
             print "ignoring HICANN", hc, "(looking for", self.coordinate.hicann(), ")"
             continue
         else:
             yield hicann, parameters
Exemplo n.º 3
0
    def test_addWithNeuronSize(self):
        """tests manual placement with custom neuron size"""

        marocco = PyMarocco()

        useOne = HICANNOnWafer(Enum(276))
        useTwo = HICANNOnWafer(Enum(277))
        use = [useOne, useTwo]

        # place a population to a single HICANN (scalar parameter)
        pop = pynn.Population(10, pynn.IF_cond_exp, {})
        marocco.manual_placement.on_hicann(pop, useOne, 8)

        # place a population onto multiple HICANNs
        pop = pynn.Population(10, pynn.IF_cond_exp, {})
        marocco.manual_placement.on_hicann(pop, use, 4)

        # only set the neuron size for the population, but no HICANN.
        marocco.manual_placement.with_size(pop, 12)

        self.assertRaises(ValueError, marocco.manual_placement.with_size, pop,
                          1)
Exemplo n.º 4
0
    def __init__(self, xmlfile, coordinate):
        self.xmlfile = xmlfile
        self.coordinate = coordinate

        if self.coordinate.toNeuronOnQuad().x() != left:
            raise Exception("Simulator supports only left denmem")

        # find (horizontally) neighboring denmem :)
        self.neighbor = None
        if coordinate.toNeuronOnQuad().x() == left:
            self.neighbor = NeuronOnHICANN(coordinate.toQuadrantOnHICANN(), NeuronOnQuad(right, coordinate.toNeuronOnQuad().y()))
        #elif coordinate.toNeuronOnQuad().x() == right:
        #    self.neighbor = NeuronOnHICANN(coordinate.toQuadrantOnHICANN(), NeuronOnQuad(left, coordinate.toNeuronOnQuad().y()))
        else:
            raise Exception("WARG")
        self.neighbor = NeuronGlobal(self.neighbor, self.coordinate.hicann())
        self.neighbor_fgblock = FGBlockOnHICANN(Enum(int(self.coordinate.toNeuronFGBlock().id())+1))

        self.tree = etree.parse(self.xmlfile)

        # storage of parameters -> to be used for transformation
        self.out = dict()

        # output: denmem simulator compatible data dictionary
        #self.json_out = {
        #    'voltages': {
        #        'neuron': {},
        #        'synapses0': {},
        #        'synapses1': {},
        #        'syndrv_synpart': {},
        #        'syndrv_synctrl': {}
        #    },
        #    'currents': {
        #        'neuron': {},
        #        'synapses0': {},
        #        'synapses1': {},
        #        'syndrv_synpart': {},
        #        'syndrv_synctrl': {}
        #    }
        #}
        self.json_out = copy.deepcopy(somedefault_values)
Exemplo n.º 5
0
def main(args):

    ip = IPv4.from_string(args.ip)
    on_wafer = False

    dnc = DNCOnFPGA(Enum(args.dnc))
    f = Coordinate.FPGAGlobal(Enum(0))
    fpga = Handle.FPGA(f, ip, dnc, on_wafer)
    hicann = fpga.get(dnc, HICANNOnDNC(Enum(args.hicann)))

    reset(hicann)
    init(hicann, True)

    # write FG Blocks first, before any topology
    set_fg_values(hicann, FGControl())

    # configure backgroud generator 7 for stimulation of Neuron0
    bg = BackgroundGeneratorArray()
    bg[7].enable(True)
    bg[7].random(False)
    bg[7].seed(200)
    bg[7].period(1500)
    bg[7].address(L1Address(0))
    set_background_generator(hicann, bg)

    # write default Neuron config
    set_neuron_config(hicann, NeuronConfig())

    neurons = [
        (NeuronOnHICANN(Enum(0)), L1Address(0)),
        (NeuronOnHICANN(Enum(1)), L1Address(32)),
    ]

    nquad = NeuronQuad()
    for nrn, addr in neurons:
        neu = nquad[nrn.toNeuronOnQuad()]
        neu.address(addr)
        neu.activate_firing(True)
        neu.enable_spl1_output(True)
        neu.enable_aout(True)

    set_denmem_quad(hicann, neurons[0][0].toQuadOnHICANN(), nquad)

    # config analog outputs to observe neurons
    aout = Analog()
    for idx, nrn in enumerate(neurons):
        aout.enable(AnalogOnHICANN(idx))
        if int(nrn[0].x()) % 2 == 0:  #even
            aout.set_membrane_top_even(AnalogOnHICANN(idx))
        else:
            aout.set_membrane_top_odd(AnalogOnHICANN(idx))

    set_analog(hicann, aout)

    # L1 Topology

    dncmerger = DNCMergerLine()
    for mm in map(DNCMergerOnHICANN, range(8)):
        dncmerger[mm].config = DNCMerger.RIGHT_ONLY
    set_dnc_merger(hicann, dncmerger)

    set_merger_tree(hicann, MergerTree())
    set_phase(hicann, 0)

    # write default RepeatBlocks
    for ii in map(RepeaterBlockOnHICANN, map(Enum, range(6))):
        set_repeater_block(hicann, ii, RepeaterBlock())

    cb = Crossbar()
    sw = SynapseSwitch()

    paths = [
        (SendingRepeaterOnHICANN(0), VLineOnHICANN(28),
         SynapseSwitchRowOnHICANN(Y(111), LEFT), 0),  # BG7 -> neuron0
        (SendingRepeaterOnHICANN(7), VLineOnHICANN(0),
         SynapseSwitchRowOnHICANN(Y(97), LEFT), 1)
    ]  # neuron0 -> neuron1

    for repeater, vline, row, target_nrn in paths:

        sr = HorizontalRepeater()
        sr.setOutput(RIGHT)
        set_repeater(hicann, repeater, sr)

        # crossbar switches
        cb.set(vline, repeater.line(), True)
        switches = cb.get_row(repeater.line(), row.toSideHorizontal())
        set_crossbar_switch_row(hicann, repeater.line(),
                                row.toSideHorizontal(), switches)

        # synapse driver switches
        sw.set(vline, row.line(), True)
        set_syndriver_switch_row(hicann, row, sw.get_row(row))

        # Synapse Driver
        driver = SynapseDriver()
        driver.set_l1()

        rconfig = RowConfig()
        rconfig.set_gmax_div(LEFT, 1)
        rconfig.set_gmax_div(RIGHT, 1)
        rconfig.set_syn_in(LEFT, 1)
        driver[TOP] = driver[BOTTOM] = rconfig

        set_synapse_driver(hicann, row.toSynapseDriverOnHICANN(), driver)

        # Synapses

        nrn = int(neurons[target_nrn][0].x())

        # synapse decoders
        decoders = DecoderDoubleRow()
        for ii in range(2):
            for jj in range(256):
                decoders[ii][jj] = 0xf  # blocks L1Addres(0)
            decoders[ii][nrn] = 0

        set_decoder_double_row(hicann, row.toSynapseDriverOnHICANN(), decoders)

        # synapse weights
        weights = WeightRow()
        weights[nrn] = 15

        set_weights_row(hicann,
                        SynapseRowOnHICANN(row.toSynapseDriverOnHICANN(), TOP),
                        weights)
        set_weights_row(
            hicann, SynapseRowOnHICANN(row.toSynapseDriverOnHICANN(), BOTTOM),
            weights)
Exemplo n.º 6
0
    def extract_fg_values(self):
        ncolumns = 24
        nrows = 128
        if not self.out.has_key('fg_shared'):
            self.out['fg_shared'] = [None, None]

        for hicann, parameters in self.get_all_functions('set_fg_values'):

            assert len(parameters) in [1, 2]
            fgc = None
            fgb_left = None
            fgb_right = None

            # FGCtrl-based overload
            if len(parameters) == 1:
                fgc = self.coordinate.toNeuronFGBlock()
                fgb_left = parameters[0].xpath('blocks/elems/item')[int(fgc.id())]
                fgb_right = parameters[0].xpath('blocks/elems/item')[int(self.neighbor_fgblock.id())]

            # FGBlockOnHICANN + FGBlock data overload
            elif len(parameters) == 2:
                fgc = FGBlockOnHICANN(Enum(int(self.recursive_dict(parameters[0])['e'])))
                if fgc == self.coordinate.toNeuronFGBlock():
                    fgb_left = parameters[1]
                elif fgc == self.neighbor_fgblock:
                    fgb_right = parameters[1]
                else:
                    continue

            shared_left = None
            neuron = None

            if fgb_left is not None: # neuron is on the left :)
                shared_left = array([int(x) for x in fgb_left.xpath('shared/elems/item/value/text()')]).reshape(ncolumns)
                neuron = array([int(x) for x in fgb_left.xpath('neuron/elems/item/elems/item/value/text()')]).reshape((nrows, ncolumns))
            if fgb_right is not None:
                shared_right = array([int(x) for x in fgb_right.xpath('shared/elems/item/value/text()')]).reshape(ncolumns)

            if shared_left is not None:
                self.out['fg_shared'][int(left)] = [int(x) for x in shared_left]
            if shared_right is not None:
                self.out['fg_shared'][int(right)] = [int(x) for x in shared_right]
            self.out['fg_neuron'] = [ self.values_to_int(neuron[self.coordinate.toNeuronOnFGBlock()]), # left
                                      self.values_to_int(neuron[self.neighbor.toNeuronOnFGBlock()]) ]  # right

        mydictupdates = copy.deepcopy(emptyjson)

        # translate shared FG parameters
        for key, data in fg_name_lut['shared'].items():
            HALbeType   = data[0]
            leftOrRight = data[1]
            sectionName = data[2]
            valueWidth  = data[3]
            if leftOrRight == left:
                mydictupdates[sectionName]['neuron'][key] = {
                    'width': valueWidth,
                    'values': valueWidth * [self.out['fg_shared'][int(leftOrRight)][FGBlock.getSharedHardwareIdx(self.coordinate.toNeuronFGBlock(), HALbeType)]]
                }
            else:
                mydictupdates[sectionName]['neuron'][key] = {
                    'width': valueWidth,
                    'values': valueWidth * [self.out['fg_shared'][int(leftOrRight)][FGBlock.getSharedHardwareIdx(self.neighbor_fgblock, HALbeType)]]
                }

        # translate neuron FG parameters
        for key, data in fg_name_lut['neuron'].items():
            HALbeType   = data[0]
            sectionName = data[1]
            valueWidth  = data[2]
            
            mydictupdates[sectionName]['neuron'][key] = {
                'width': valueWidth,
                'values': [ self.out['fg_neuron'][int(left) ][FGBlock.getNeuronHardwareIdx(self.coordinate.toNeuronFGBlock(), HALbeType)],
                            self.out['fg_neuron'][int(right)][FGBlock.getNeuronHardwareIdx(self.coordinate.toNeuronFGBlock(), HALbeType)] ]
            }

            #if str(key) == 'Vsyni':
                #print "jap"
                #print mydictupdates

        # convert FG DAC values to voltages/currents
        for k, v in mydictupdates['voltages'].items():
            for k2, v2 in v.items():
                v2['values'] = self.dac_to_volt(v2['values'])
        for k, v in mydictupdates['currents'].items():
            for k2, v2 in v.items():
                v2['values'] = self.dac_to_current(v2['values'])

        #print 'zzz', mydictupdates
        #print mydictupdates['voltages']['neuron'].keys()
        merge(self.json_out, mydictupdates)
Exemplo n.º 7
0
                'width': 4,
                'values': self.out['syn_weights'+str(i)]['db']
            }
                        
        merge(self.json_out, mydictupdates)


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-i', '--input-file', help='Specify HALbe XML input file')
    parser.add_argument('-o', '--output-file', help='Specify SimDenmem output file')
    parser.add_argument('-N', '--neuron', default=0, type=int, help='Specify NeuronOnHICANN for simulation')
    parser.add_argument('-H', '--hicann', default=216, type=int, help='Specify HICANNGlobal for simulation')
    args = parser.parse_args()

    inf  = args.input_file
    outf = args.output_file
    nrn  = args.neuron

    # non-empty source file
    assert os.path.exists(inf) and os.stat(inf).st_size != 0
    # empty target file
    #assert not os.path.exists(outf) or os.stat(outf).st_size == 0

    ng = NeuronGlobal(NeuronOnHICANN(Enum(args.neuron)), HICANNGlobal(Enum(args.hicann)))

    sim = HALbeXML2Sim2Denmem(inf, ng)
    sim.extract()
    sim.write(outf)
Exemplo n.º 8
0
# This test checks API properties of ManualPlacement::on_hicann

import pyhmf as pynn

import pyhalbe, pymarocco
from pymarocco import PyMarocco
from pyhalbe.Coordinate import HICANNOnWafer, Enum

marocco = PyMarocco()

useOne = HICANNOnWafer(Enum(276))
useTwo = HICANNOnWafer(Enum(277))
use = [useOne, useTwo]
use_tpl = tuple(use)

# place a population to a single HICANN (scalar parameter)
pop = pynn.Population(10, pynn.IF_cond_exp, {})
marocco.manual_placement.on_hicann(pop, useOne)

# place a population onto multiple HICANNs
# using a Python list()
pop = pynn.Population(10, pynn.IF_cond_exp, {})
marocco.manual_placement.on_hicann(pop, use)

# place a population onto multiple HICANNs
# using a Python tuple()
pop = pynn.Population(10, pynn.IF_cond_exp, {})
marocco.manual_placement.on_hicann(pop, use_tpl)
Exemplo n.º 9
0
    def test_BGToNeuronMembrane(self):
        """Try to send periodic events from a background generator to a neuron.
        Please note that this test relies on the default config values in most objects
        and only changes those necessary to run the test."""

        weight = 15
        period = 700 * 2
        event = HICANN.L1Address(0)
        offevent = HICANN.L1Address(55)

        trace_length = 19500

        exc = True
        inh = False
        E_syn = (570, 570)

        firing = False
        firingevent = HICANN.L1Address(42)

        # FIXME: Differs from HICANN to HICANN, this needs connection database
        analog = Coordinate.AnalogOnHICANN(1)
        adc_channel = 7

        neuron = Coordinate.NeuronOnHICANN(Enum(15))
        vline = Coordinate.VLineOnHICANN(28)  # or 60, 92, 124
        driver = Coordinate.SynapseDriverOnHICANN(Y(111), left)
        synapse_row = Coordinate.SynapseRowOnHICANN(driver, top)

        ##############################
        #  set floating gate values  #
        ##############################

        fgcfg = HICANN.FGConfig()
        fgctrl = HICANN.FGControl()

        # Set same reverse potential for both synaptic inputs (for all neurons)
        for ii in range(512):
            nrn = Coordinate.NeuronOnHICANN(Enum(ii))
            fgctrl.setNeuron(nrn, HICANN.neuron_parameter.E_synx, E_syn[0])
            fgctrl.setNeuron(nrn, HICANN.neuron_parameter.E_syni, E_syn[1])
            fgctrl.setNeuron(nrn, HICANN.neuron_parameter.I_bexp, 0)

        for block in Coordinate.iter_all(Coordinate.FGBlockOnHICANN):
            HICANN.set_fg_config(self.h, block, fgcfg)
        HICANN.set_fg_values(self.h, fgctrl)

        ##############################
        #  set global neuron config  #
        ##############################

        nconf = HICANN.NeuronConfig()
        nconf.bigcap[int(top)] = True
        nconf.bigcap[int(bottom)] = True
        HICANN.set_neuron_config(self.h, nconf)

        #################
        #  set mergers  #
        #################

        dnc = HICANN.DNCMergerLine()
        for i in range(8):
            mer = Coordinate.DNCMergerOnHICANN(i)
            dnc[mer].slow = True
            dnc[mer].config = HICANN.Merger.RIGHT_ONLY

        # Tree defaults to one on one passthrough (forward downwards)
        tree = HICANN.MergerTree()

        HICANN.set_dnc_merger(self.h, dnc)
        HICANN.set_merger_tree(self.h, tree)

        ##########################
        #  background generator  #
        ##########################

        # We use one background generator to provide events
        gens = HICANN.BackgroundGeneratorArray()
        g = gens[7]
        g.enable(True)
        g.random(False)
        g.period(period)
        g.address(event)
        HICANN.set_background_generator(self.h, gens)

        # Forward its output to this HICANN
        srepeater = Coordinate.OutputBufferOnHICANN(7).repeater()

        sr = HICANN.HorizontalRepeater()
        sr.setOutput(right)

        HICANN.set_repeater(self.h, srepeater.horizontal(), sr)

        ###############################################
        #  connect via Crossbars and SynapseSwitches  #
        ###############################################

        hline = srepeater.toHLineOnHICANN()

        cb = HICANN.Crossbar()
        cb.set(vline, hline, True)

        HICANN.set_crossbar_switch_row(
            self.h, hline, vline.toSideHorizontal(),
            cb.get_row(hline, vline.toSideHorizontal()))

        # Connect VLine to synapse driver
        sw = HICANN.SynapseSwitch()
        sw.set(vline, driver.toHLineOnHICANN(), True)

        HICANN.set_syndriver_switch_row(
            self.h, driver.toSynapseSwitchRowOnHICANN(),
            sw.get_row(driver.toSynapseSwitchRowOnHICANN()))

        ########################
        #  set synapse driver  #
        ########################

        drv = HICANN.SynapseDriver()
        drv.set_l1()
        drv[top].set_syn_in(left, exc)
        drv[top].set_syn_in(right, inh)
        drv[bottom].set_syn_in(left, exc)
        drv[bottom].set_syn_in(right, inh)

        HICANN.set_synapse_driver(self.h, driver, drv)

        decoders = HICANN.DecoderDoubleRow()
        weights = HICANN.WeightRow()

        # Reset decoders and weights to 'off' state
        for ii in range(2):
            for jj in range(256):
                decoders[ii][jj] = offevent.getSynapseDecoderMask()

        for ii in range(256):
            weights[ii] = 0

        # Only enable decoders/weights for background generator and neuron
        decoders[0][int(neuron.x())] = event.getSynapseDecoderMask()
        weights[int(neuron.x())] = weight

        HICANN.set_decoder_double_row(self.h, driver, decoders)
        HICANN.set_weights_row(self.h, synapse_row, weights)

        ###################
        #  get ADC trace  #
        ###################

        self.set_denmem_quads(neuron,
                              address=firingevent,
                              activate_firing=firing,
                              enable_aout=True)
        self.set_analog(analog, neuron)
        trace, v, t = self.get_trace(adc_channel, trace_length)

        if False:
            import pylab
            fig, ax = pylab.subplots()
            ax.plot(t, v)
            pylab.show()

        ## Case 1: Sometimes the membrane seems 'stuck' at 1.2V
        self.assertNotAlmostEqual(v.mean(), 1.2, places=1)
        self.assertGreater(v.std(), 0.01)