Exemplo n.º 1
0
    def parse(self, yaml_dict, **kwargs):
        self._parse_sections(yaml_dict)
        for name, dic in yaml_dict.get("modules", {}).items():
            self._parse_sections(dic)

        d = yaml_dict["controllers"]
        controllers = {
            name: self._resolve_class(name, "controller")
            for name in d
        }

        main_ctrl = yaml_dict["main_controller"]
        _type = main_ctrl.pop("type")
        main_ctrl_class = self._resolve_class(_type, "main")
        ctrl = main_ctrl_class(
            controllers.values(),
            sources=self.sources,
            transforms=self.transforms,
            opts=self.opts,
            views=self.views,
            loggers=self.loggers,
            client=default_client(),
            **kwargs,
            **main_ctrl,
        )

        return ctrl
Exemplo n.º 2
0
def main_app(client='default'):
    client = default_client() if client == 'default' else client
    logger = main_app.logger

    # ---------------------------------------------------------------------- #
    #                                SOURCES
    # ---------------------------------------------------------------------- #

    col_index = pd.MultiIndex.from_tuples([], names=('state', 'quantity'))
    df_peptides = pd.DataFrame(columns=col_index)

    col_index = pd.MultiIndex.from_tuples([], names=('state', 'exposure'))
    row_index = pd.RangeIndex(0, 1, name='r_number')
    df_rfu = pd.DataFrame(columns=col_index, index=row_index)

    col_index = pd.MultiIndex.from_tuples([], names=('fit_ID', 'state', 'quantity'))
    row_index = pd.RangeIndex(0, 1, name='r_number')
    df_rates = pd.DataFrame(columns=col_index, index=row_index)
    # todo make sure that proper-shaped df is used to initiate stream (and generalize for rectangles plot)

    col_index = pd.MultiIndex.from_tuples([], names=('fit_ID', 'state', 'quantity'))
    row_index = pd.RangeIndex(0, 1, name='r_number')
    df_global_fit = pd.DataFrame(columns=col_index, index=row_index)

    col_index = pd.MultiIndex.from_tuples([], names=('color_ID', 'state', 'quantity'))
    row_index = pd.RangeIndex(0, 1, name='r_number')
    df_colors = pd.DataFrame(columns=col_index, index=row_index)

    # Availble tables are predefined at launch, but are empty
    # this way GUI methods can add to them as multiindex subset
    # more tables can be added later by the gui
    tables = {'peptides': df_peptides,
              'rfu': df_rfu,
              'rates': df_rates,
              'global_fit': df_global_fit,
              'colors': df_colors}
    source = DataFrameSource(tables=tables, name='dataframe')

    #df = csv_to_dataframe(data_dir / 'ecSecB_apo_peptides.csv')
    #source.add_df(df, 'peptides', 'ecSecB_apo')

    src_list = [source]

    # ---------------------------------------------------------------------- #
    #                                TRANSFORMS
    # ---------------------------------------------------------------------- #

    # rescale_transform = RescaleTransform(field='deltaG', scale_factor=1e-3)
    #
    # cmap = mpl.cm.get_cmap('viridis')
    # norm = mpl.colors.Normalize(vmin=0, vmax=20)
    # cmap_transform = ApplyCmapTransform(cmap=cmap, norm=norm, field='deltaG')

    peptides_transform = PeptideLayoutTransform(value='rfu')

    reset_index_transform = ResetIndexTransform()

    trs_list = [peptides_transform, reset_index_transform]

    # ---------------------------------------------------------------------- #
    #                                FILTERS
    # ---------------------------------------------------------------------- #

    # unique_vals = list(np.sort(peptides_source.get_unique(table='peptides', field='exposure')))
    multiindex_select_filter = MultiIndexSelectFilter(field='state', name='select_index', table='peptides',
                                                      source=source)

    # unique_vals = list(np.sort(source.get_unique(table='peptides', field='exposure', state='ecSecB_apo')))
    slider_exposure_filter = UniqueValuesFilter(field='exposure', name='exposure_slider',
                                                table='peptides', filters=[multiindex_select_filter], source=source)

    filter_list = [multiindex_select_filter, slider_exposure_filter]

    # ---------------------------------------------------------------------- #
    #                                OPTS
    # ---------------------------------------------------------------------- #

    additional_opts = {'color': 'value', 'colorbar': True, 'responsive': True, 'clim': (0, 1), 'framewise': True,
                       'xlabel': "Residue Number", 'ylabel': '', 'yticks': 0, **global_opts}
    cmap_opts = CmapOpts(opts=additional_opts, name='cmap')

    opts_list = [cmap_opts]

    # ---------------------------------------------------------------------- #
    #                                VIEWS
    # ---------------------------------------------------------------------- #

    view_list = []

    rescale_transform = RescaleTransform(field='deltaG', scale_factor=1e-3)

    cmap = mpl.cm.get_cmap('viridis')
    norm = mpl.colors.Normalize(vmin=0, vmax=20)
    cmap_transform = ApplyCmapTransform(cmap=cmap, norm=norm, field='deltaG', name='cmap_transform')

    trs_list.append(rescale_transform)
    trs_list.append(cmap_transform)

    multiindex_select_global_fit_1 = MultiIndexSelectFilter(field='fit_ID', name='select_index_global_fit_lv1', table='global_fit',
                                                       source=source)
    multiindex_select_global_fit_2 = MultiIndexSelectFilter(field='state', name='select_index_global_fit_lv2', table='global_fit',
                                                       source=source, filters=[multiindex_select_global_fit_1])

    filter_list += [multiindex_select_global_fit_1, multiindex_select_global_fit_2]

    opts = {'xlabel': 'Residue Number', 'ylabel': 'ΔG (kJ mol⁻¹)', 'colorbar': False,  **global_opts}
    deltaG = hvPlotAppView(source=source, name='gibbs', x='r_number', y='deltaG', kind='scatter', c='color',
                           table='global_fit', transforms=[cmap_transform, rescale_transform], streaming=True,
                           filters=[multiindex_select_global_fit_1, multiindex_select_global_fit_2],
                           responsive=True, opts=opts) #issue 154: deltaG units

    view_list.append(deltaG)

    coverage = hvRectangleAppView(source=source, name='coverage', table='peptides', opts=cmap_opts.opts,
                                  streaming=True,
                                  transforms=[peptides_transform],
                                  filters=[multiindex_select_filter, slider_exposure_filter])
    view_list.append(coverage)

    multiindex_select_rates_1 = MultiIndexSelectFilter(field='fit_ID', name='select_index_rates_lv1', table='rates',
                                                       source=source)
    multiindex_select_rates_2 = MultiIndexSelectFilter(field='state', name='select_index_rates_lv2', table='rates',
                                                       source=source, filters=[multiindex_select_rates_1])

    filter_list += [multiindex_select_rates_1, multiindex_select_rates_2]
    # perhaps consider derivedsource for the views

    opts = {'logy': True, 'xlabel': "Residue Number", 'ylabel': "Rate (min⁻¹)", 'colorbar': False, **global_opts}
    rates = hvPlotAppView(source=source, name='rates', x='r_number', y='rate', kind='scatter', # c='color'
                           table='rates', streaming=True, responsive=True, opts=opts,
                          transforms=[reset_index_transform],
                          filters=[multiindex_select_rates_1, multiindex_select_rates_2]
                           )
    view_list.append(rates)


    multiindex_select_colors_1 = MultiIndexSelectFilter(field='color_ID', name='select_index_colors_lv1', table='colors',
                                                       source=source)
    multiindex_select_colors_2 = MultiIndexSelectFilter(field='state', name='select_index_colors_lv2', table='colors',
                                                       source=source, filters=[multiindex_select_colors_1])
    filter_list += [multiindex_select_colors_1, multiindex_select_colors_2]
    protein_view = NGLView(source=source, name='protein', table='colors',
                               filters=[multiindex_select_colors_1, multiindex_select_colors_2]
                               )
    view_list.append(protein_view)

    log_view = LoggingView(logger=logger, level=logging.INFO, name='Info log')
    debug_log_view = LoggingView(logger=logger, level=logging.DEBUG, name='Debug log')
    view_list.append(log_view)
    view_list.append(debug_log_view)

    sources = {src.name: src for src in src_list}
    transforms = {trs.name: trs for trs in trs_list}
    filters = {filt.name: filt for filt in filter_list}
    views = {view.name: view for view in view_list}
    opts = {opt.name: opt for opt in opts_list}

    control_panels = [
        PeptideFileInputControl,
        CoverageControl,
        InitialGuessControl,
        FitControl,
        ClassificationControl,
        ProteinControl,
        GraphControl,
        # FitResultControl,
        FileExportControl,
        # ProteinViewControl,
        # OptionsControl
    ]

    if DEBUG:
        control_panels.append(DeveloperControl)

    ctrl = PyHDXController(control_panels,
                           sources=sources,
                           transforms=transforms,
                           filters=filters,
                           opts=opts,
                           views=views,
                           client=client,
                           logger=logger)

    elvis = GoldenElvis(ExtendedGoldenTemplate, ExtendedGoldenDarkTheme,
                        title=VERSION_STRING_SHORT)

    ctrl.logger.addHandler(get_default_handler(sys.stdout))

    elvis.compose(ctrl, elvis.column(
        elvis.stack(
            elvis.view(ctrl.views['protein']),
            elvis.view(ctrl.views['coverage']),
        ),
        elvis.row(
            elvis.stack(
                elvis.view(ctrl.views['rates']),
                elvis.view(ctrl.views['gibbs']),
            ),
            elvis.stack(
                elvis.view(ctrl.views['Info log']),
                elvis.view(ctrl.views['Debug log'])
            )
        )
        )
    )

    return ctrl
Exemplo n.º 3
0
directory = Path(__file__).parent
test_data_dir = directory / 'test_data'

guess = False  # guess true requires dask cluster at config defined ip/port
control = ('Full deuteration control', 0.167)

data = read_dynamx(test_data_dir / 'ecSecB_apo.csv', test_data_dir / 'ecSecB_dimer.csv')

pmt = PeptideMasterTable(data, drop_first=1, ignore_prolines=True, remove_nan=False)
pmt.set_control(control)
temperature, pH = 273.15 + 30, 8.

hdxm = HDXMeasurement(pmt.get_state('SecB WT apo'), sequence=sequence, temperature=temperature, pH=pH)

if guess:
    client = default_client()
    wt_avg_result = fit_rates_weighted_average(hdxm, bounds=(1e-2, 800))
    output = wt_avg_result.output
    output.to_file(directory / 'test_data' / 'ecSecB_guess.txt')
else:
    output = csv_to_protein(directory / 'test_data' / 'ecSecB_guess.txt')

gibbs_guess = hdxm.guess_deltaG(output['rate'])
fr_torch = fit_gibbs_global(hdxm, gibbs_guess, epochs=epochs, r1=2)
fr_torch.output.to_file(directory / 'test_data' / 'ecSecB_torch_fit.txt')

hdxm_dimer = HDXMeasurement(pmt.get_state('SecB his dimer apo'), sequence=sequence_dimer,
                            temperature=temperature, pH=pH)

hdx_set = HDXMeasurementSet([hdxm_dimer, hdxm])