Exemplo n.º 1
0
    def test_heatindex(self):
        ''' Test our heat index calculations '''
        t = datatypes.temperature(80.0, 'F')
        td = datatypes.temperature(70.0, 'F')
        hdx = meteorology.heatindex(t, td)
        self.assertAlmostEqual( hdx.value("F"), 83.93, 2)

        t = datatypes.temperature(30.0, 'F')
        hdx = meteorology.heatindex(t, td)
        self.assertAlmostEqual( hdx.value("F"), 30.00, 2)
Exemplo n.º 2
0
    def test_heatindex(self):
        ''' Test our heat index calculations '''
        t = datatypes.temperature(80.0, 'F')
        td = datatypes.temperature(70.0, 'F')
        hdx = meteorology.heatindex(t, td)
        self.assertAlmostEqual(hdx.value("F"), 83.93, 2)

        t = datatypes.temperature(30.0, 'F')
        hdx = meteorology.heatindex(t, td)
        self.assertAlmostEqual(hdx.value("F"), 30.00, 2)
Exemplo n.º 3
0
def test_heatindex():
    """ Test our heat index calculations """
    t = datatypes.temperature(80.0, "F")
    td = datatypes.temperature(70.0, "F")
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F") - 83.93) < 0.01

    t = datatypes.temperature(30.0, "F")
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F") - 30.00) < 0.01
Exemplo n.º 4
0
def test_heatindex():
    ''' Test our heat index calculations '''
    t = datatypes.temperature(80.0, 'F')
    td = datatypes.temperature(70.0, 'F')
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F") - 83.93) < 0.01

    t = datatypes.temperature(30.0, 'F')
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F") - 30.00) < 0.01
Exemplo n.º 5
0
    def test_vectorized(self):
        """See that heatindex and windchill can do lists"""
        temp = datatypes.temperature([0, 10], 'F')
        sknt = datatypes.speed([30, 40], 'MPH')
        val = meteorology.windchill(temp, sknt).value('F')
        self.assertAlmostEquals(val[0], -24.50, 2)

        t = datatypes.temperature([80.0, 90.0], 'F')
        td = datatypes.temperature([70.0, 60.0], 'F')
        hdx = meteorology.heatindex(t, td)
        self.assertAlmostEqual(hdx.value("F")[0], 83.93, 2)
Exemplo n.º 6
0
def one():
    pgconn = psycopg2.connect(database='asos',
                              host='localhost',
                              port=5555,
                              user='******')
    cursor = pgconn.cursor()
    nt = NetworkTable(["IA_ASOS", "AWOS"])
    ids = nt.sts.keys()
    ids.sort()

    print """
    <table class="table table-condensed table-striped">
    <thead>
    <tr><th>ID</th><th>Station Name</th><th>3 Sep Peak Heat Index</th>
    <th>Last Highest</th><th>Date</th></tr>
    </thead>
    """

    bah = nt.sts.keys()

    for sid in ids:
        cursor.execute(
            """
        select valid, tmpf, dwpf from alldata where
        station = %s and extract(month from valid) = 9
        and dwpf is not null and tmpf > 84 and valid > '1990-01-01'
        ORDER by valid DESC
        """, (sid, ))

        thisdate = [0, None, None, None]
        for _, row in enumerate(cursor):
            hdx = heatindex(temperature(row[1], 'F'),
                            temperature(row[2], 'F')).value('F')
            if row[0].strftime("%Y%m%d") == '20150903':
                if hdx > thisdate[0]:
                    thisdate = [hdx, row[0], row[1], row[2]]
                continue
            if thisdate[1] is None:
                break
            if hdx >= thisdate[0]:
                bah.remove(sid)
                print(('%s,%s,%.0f,(%.0f/%.0f),%.0f,(%.0f/%.0f),%s') %
                      (sid, nt.sts[sid]['name'], thisdate[0], thisdate[2],
                       thisdate[3], hdx, row[1], row[2],
                       row[0].strftime("%d %b %Y %I:%M %p")))
                break
    print 'missed', bah
    print "</table>"
Exemplo n.º 7
0
def one():
    pgconn = psycopg2.connect(database='asos', host='localhost', port=5555,
                              user='******')
    cursor = pgconn.cursor()
    nt = NetworkTable(["IA_ASOS", "AWOS"])
    ids = nt.sts.keys()
    ids.sort()

    print """
    <table class="table table-condensed table-striped">
    <thead>
    <tr><th>ID</th><th>Station Name</th><th>3 Sep Peak Heat Index</th>
    <th>Last Highest</th><th>Date</th></tr>
    </thead>
    """

    bah = nt.sts.keys()

    for sid in ids:
        cursor.execute("""
        select valid, tmpf, dwpf from alldata where
        station = %s and extract(month from valid) = 9
        and dwpf is not null and tmpf > 84 and valid > '1990-01-01'
        ORDER by valid DESC
        """, (sid,))

        thisdate = [0, None, None, None]
        for _, row in enumerate(cursor):
            hdx = heatindex(temperature(row[1], 'F'),
                            temperature(row[2], 'F')).value('F')
            if row[0].strftime("%Y%m%d") == '20150903':
                if hdx > thisdate[0]:
                    thisdate = [hdx, row[0], row[1], row[2]]
                continue
            if thisdate[1] is None:
                break
            if hdx >= thisdate[0]:
                bah.remove(sid)
                print(('%s,%s,%.0f,(%.0f/%.0f),%.0f,(%.0f/%.0f),%s'
                       ) % (sid, nt.sts[sid]['name'],
                            thisdate[0], thisdate[2], thisdate[3],
                            hdx, row[1], row[2],
                            row[0].strftime("%d %b %Y %I:%M %p")))
                break
    print 'missed', bah
    print "</table>"
Exemplo n.º 8
0
def test_vectorized():
    """See that heatindex and windchill can do lists"""
    temp = datatypes.temperature([0, 10], "F")
    sknt = datatypes.speed([30, 40], "MPH")
    val = meteorology.windchill(temp, sknt).value("F")
    assert abs(val[0] - -24.50) < 0.01

    t = datatypes.temperature([80.0, 90.0], "F")
    td = datatypes.temperature([70.0, 60.0], "F")
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F")[0] - 83.93) < 0.01

    tmpf = np.array([80.0, 90.0]) * units("degF")
    dwpf = np.array([70.0, 60.0]) * units("degF")
    smps = np.array([10.0, 20.0]) * units("meter per second")
    feels = meteorology.mcalc_feelslike(tmpf, dwpf, smps)
    assert abs(feels.to(units("degF")).magnitude[0] - 83.15) < 0.01

    tmpf = masked_array([80.0, np.nan], units("degF"), mask=[False, True])
    feels = meteorology.mcalc_feelslike(tmpf, dwpf, smps)
    assert abs(feels.to(units("degF")).magnitude[0] - 83.15) < 0.01
    assert feels.mask[1]
Exemplo n.º 9
0
def test_vectorized():
    """See that heatindex and windchill can do lists"""
    temp = datatypes.temperature([0, 10], 'F')
    sknt = datatypes.speed([30, 40], 'MPH')
    val = meteorology.windchill(temp, sknt).value('F')
    assert abs(val[0] - -24.50) < 0.01

    t = datatypes.temperature([80.0, 90.0], 'F')
    td = datatypes.temperature([70.0, 60.0], 'F')
    hdx = meteorology.heatindex(t, td)
    assert abs(hdx.value("F")[0] - 83.93) < 0.01

    tmpf = np.array([80., 90.]) * units('degF')
    dwpf = np.array([70., 60.]) * units('degF')
    smps = np.array([10., 20.]) * units('meter per second')
    feels = meteorology.mcalc_feelslike(tmpf, dwpf, smps)
    assert abs(feels.to(units("degF")).magnitude[0] - 83.15) < 0.01

    tmpf = masked_array([80., np.nan], units('degF'), mask=[False, True])
    feels = meteorology.mcalc_feelslike(tmpf, dwpf, smps)
    assert abs(feels.to(units("degF")).magnitude[0] - 83.15) < 0.01
    assert feels.mask[1]
Exemplo n.º 10
0
cursor.execute("""SELECT tmpf, dwpf from alldata where station = 'DSM' and
 tmpf >= 80 and dwpf > 0 and tmpf < 110""")
for row in cursor:
    otmpf.append(row[0])
    odwpf.append(row[1])

otmpf = dt.temperature(numpy.array(otmpf), 'F')
odwpf = dt.temperature(numpy.array(odwpf), 'F')
orelh = meteorology.relh(otmpf, odwpf)

tmpf = dt.temperature(numpy.arange(80, 110), 'F')
dwpf = dt.temperature(numpy.arange(40, 80), 'F')

(t, d) = numpy.meshgrid(tmpf.value("F"), dwpf.value("F"))

hindex = meteorology.heatindex(dt.temperature(t, 'F'), dt.temperature(d, 'F'))
counts = numpy.zeros(numpy.shape(hindex.value("F")), 'f')
for otmp, odwp in zip(otmpf.value("F"), odwpf.value("F")):
    if odwp < 40 or odwp >= 79.5:
        continue
    counts[(int(round(odwp)) - 40), int(round(otmp)) - 80] += 1.0

ttot = numpy.sum(counts, 0)
print ttot
ratio = numpy.ma.array(counts / ttot * 100.0)
#ratio.mask = numpy.where(ratio == 0, True, False)

(fig, ax) = plt.subplots(1, 1)

cmap = cm.get_cmap('jet')
cmap.set_under("tan")
Exemplo n.º 11
0
    idx = indices[sid]['idx']
    name = nc.variables["stationName"][idx].tostring().replace('\x00','')
    latitude = nc.variables['latitude'][idx]
    longitude = nc.variables['longitude'][idx]
    tmpf = s(nc.variables['temperature'][idx])
    dwpf = s(nc.variables['dewpoint'][idx])
    qcd = nc.variables['temperatureQCD'][idx][0]
    if qcd < -10 or qcd > 10:
        tmpf = "M"
        dwpf = "M"
    heat = "M"
    if tmpf != "M" and dwpf != "M":
        t = temperature(nc.variables['temperature'][idx], 'K')
        d = temperature(nc.variables['dewpoint'][idx], 'K')
        relh = meteorology.relh(t, d).value("%")
        heat = "%5.1f" % (meteorology.heatindex(t, d).value("F"),)
    drct = s2( nc.variables['windDir'][idx])
    smps = s2( nc.variables['windSpeed'][idx])
    sped = "M"
    if smps != "M":
        sped = "%5.1f" % (nc.variables['windSpeed'][idx] * 2.23694,)

    wcht = "M"
    if tmpf != "M" and sped != "M":
        t = temperature(nc.variables['temperature'][idx], 'K')
        sped = speed( nc.variables['windSpeed'][idx], 'MPS')
        wcht = "%5.1f" % (meteorology.windchill(t, sped).value("F"),) 

    ts = indices[sid]['ts']

    out.write("%5.5s %25.25s %8.4f %10.4f %02i %02i %5s %5s %5s %5s %5s %5s\n" % (sid, name, latitude,
Exemplo n.º 12
0
cursor.execute("""SELECT tmpf, dwpf from alldata where station = 'DSM' and
 tmpf >= 80 and dwpf > 0 and tmpf < 110""")
for row in cursor:
    otmpf.append( row[0] )
    odwpf.append( row[1] )
    
otmpf = dt.temperature(numpy.array(otmpf), 'F')
odwpf = dt.temperature(numpy.array(odwpf), 'F')
orelh = meteorology.relh(otmpf, odwpf)

tmpf = dt.temperature(numpy.arange(80,110), 'F')
dwpf = dt.temperature(numpy.arange(40,80), 'F')

(t, d) = numpy.meshgrid(tmpf.value("F"), dwpf.value("F"))

hindex = meteorology.heatindex(dt.temperature(t,'F'), dt.temperature(d, 'F'))
counts = numpy.zeros( numpy.shape(hindex.value("F")), 'f')
for otmp, odwp in zip(otmpf.value("F"), odwpf.value("F")):
    if odwp < 40 or odwp >= 79.5:
        continue
    counts[(int(round(odwp)) - 40), int(round(otmp)) - 80 ] += 1.0

ttot = numpy.sum(counts,0)
print ttot
ratio = numpy.ma.array(counts / ttot * 100.0)
#ratio.mask = numpy.where(ratio == 0, True, False)

(fig, ax) = plt.subplots(1,1)

cmap = cm.get_cmap('jet')
cmap.set_under("tan")
Exemplo n.º 13
0
Arquivo: p93.py Projeto: iny/iem
def plotter(fdict):
    """ Go """
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    ASOS = psycopg2.connect(database='asos', host='iemdb', user='******')

    ctx = get_autoplot_context(fdict, get_description())
    station = ctx['zstation']
    network = ctx['network']
    highlightyear = ctx['year']
    ytd = ctx['ytd']
    varname = ctx['var']
    inc = ctx['inc']
    nt = NetworkTable(network)
    doylimiter = get_doylimit(ytd, varname)
    tmpflimit = "and tmpf >= 50" if varname != 'windchill' else 'and tmpf < 50'
    if varname not in ['windchill', 'heatindex']:
        tmpflimit = ""

    df = read_sql("""
    SELECT to_char(valid, 'YYYYmmddHH24') as d, avg(tmpf)::int as tmpf,
    avg(dwpf)::int as dwpf,
    avg(coalesce(sknt, 0)) as sknt
    from alldata WHERE station = %s """ + tmpflimit + """
    and dwpf <= tmpf and valid > '1973-01-01'
    and report_type = 2 """ + doylimiter + """ GROUP by d
    """,
                  ASOS,
                  params=(station, ),
                  index_col=None)
    df['year'] = df['d'].apply(lambda x: int(x[:4]))

    df2 = df
    title2 = VDICT[varname]
    compop = np.greater
    inctitle = ''
    if varname == 'heatindex':
        df['heatindex'] = pymet.heatindex(temperature(df['tmpf'].values, 'F'),
                                          temperature(df['dwpf'].values,
                                                      'F')).value('F')
        inctitle = " [All Obs Included]"
        if inc == 'no':
            df2 = df[df['heatindex'] > df['tmpf']]
            inctitle = " [Only Additive]"
        else:
            df2 = df
        maxval = int(df2['heatindex'].max() + 1)
        LEVELS[varname] = np.arange(maxval - 31, maxval)
    elif varname == 'windchill':
        compop = np.less
        df['year'] = df['d'].apply(lambda x: (int(x[:4]) - 1)
                                   if int(x[4:6]) < 7 else int(x[:4]))
        df['windchill'] = pymet.windchill(temperature(df['tmpf'].values, 'F'),
                                          speed(df['sknt'].values,
                                                'KT')).value('F')
        inctitle = " [All Obs Included]"
        if inc == 'no':
            df2 = df[df['windchill'] < df['tmpf']]
            inctitle = " [Only Additive]"
        else:
            df2 = df
        minval = int(df2['windchill'].min() - 1)
        LEVELS[varname] = np.arange(minval, minval + 51)
    else:
        maxval = int(df2[varname].max() + 1)
        LEVELS[varname] = np.arange(maxval - 31, maxval)

    minyear = max([1973, nt.sts[station]['archive_begin'].year])
    maxyear = datetime.date.today().year
    years = float((maxyear - minyear) + 1)
    x = []
    y = []
    y2 = []
    fig = plt.figure(figsize=(9, 6))
    ax = fig.add_axes([0.1, 0.1, 0.6, 0.8])
    yloc = 1.0
    xloc = 1.13
    yrlabel = ("%s" %
               (highlightyear, ) if varname != 'windchill' else '%s-%s' %
               (highlightyear, highlightyear + 1))
    ax.text(xloc + 0.08,
            yloc + 0.04,
            'Avg:',
            transform=ax.transAxes,
            color='b')
    ax.text(xloc + 0.21,
            yloc + 0.04,
            yrlabel,
            transform=ax.transAxes,
            color='r')
    df3 = df2[df2['year'] == highlightyear]
    for level in LEVELS[varname]:
        x.append(level)
        y.append(len(df2[compop(df2[varname], level)]) / years)
        y2.append(len(df3[compop(df3[varname], level)]))
        if level % 2 == 0:
            ax.text(xloc, yloc, '%s' % (level, ), transform=ax.transAxes)
            ax.text(xloc + 0.08,
                    yloc,
                    '%.1f' % (y[-1], ),
                    transform=ax.transAxes,
                    color='b')
            ax.text(xloc + 0.21,
                    yloc,
                    '%.0f' % (y2[-1], ),
                    transform=ax.transAxes,
                    color='r')
            yloc -= 0.04
    ax.text(xloc, yloc, 'n=%s' % (len(df2.index), ), transform=ax.transAxes)
    for x0, y0, y02 in zip(x, y, y2):
        ax.plot([x0, x0], [y0, y02], color='k')
    rdf = pd.DataFrame({'level': x, 'avg': y, 'd%s' % (highlightyear, ): y2})
    x = np.array(x, dtype=np.float64)
    ax.scatter(x, y, color='b', label='Avg')
    ax.scatter(x, y2, color='r', label=yrlabel)
    ax.grid(True)
    ymax = int(max([max(y), max(y2)]))
    ax.set_xlim(x[0] - 0.5, x[-1] + 0.5)
    dy = 24 * (int(ymax / 240) + 1)
    ax.set_yticks(range(0, ymax, dy))
    ax.set_ylim(-0.5, ymax + 5)
    ax2 = ax.twinx()
    ax2.set_ylim(-0.5, ymax + 5)
    ax2.set_yticks(range(0, ymax, dy))
    ax2.set_yticklabels(["%.0f" % (s, ) for s in np.arange(0, ymax, dy) / 24])
    ax2.set_ylabel("Expressed in 24 Hour Days")
    ax.set_ylabel("Hours Per Year")
    ax.set_xlabel("%s $^\circ$F" % (VDICT[varname], ))
    title = 'till %s' % (datetime.date.today().strftime("%-d %b"), )
    title = "Entire Year" if ytd == 'no' else title
    ax.set_title(("[%s] %s %s-%s\n"
                  "%s Histogram (%s)%s") %
                 (station, nt.sts[station]['name'], minyear,
                  datetime.date.today().year, title2, title, inctitle))
    ax.legend(loc='best', scatterpoints=1)
    return fig, rdf
Exemplo n.º 14
0
def main(argv):
    """Go Main Go"""
    network = argv[1]
    wxcfn = argv[2]

    utc = datetime.datetime.utcnow()
    utc = utc.replace(tzinfo=pytz.UTC)

    out = open(wxcfn, 'w')
    out.write("""Weather Central 001d0300 Surface Data TimeStamp=%s
   12
   5 Station
   25 Station Name
   8 Lat
   10 Lon
   2 Hour
   2 Minute
   5 Air Temperature F
   5 Dew Point F
   5 Wind Direction deg
   5 Wind Speed mph
   5 Heat Index F
   5 Wind Chill F
""" % (utc.strftime("%Y.%m.%d.%H%M"), ))

    fn = None
    for i in range(4):
        now = utc - datetime.timedelta(hours=i)
        testfn = now.strftime("/mesonet/data/madis/mesonet1/%Y%m%d_%H00.nc")
        if os.path.isfile(testfn):
            fn = testfn
            break

    if fn is None:
        sys.exit()

    indices = {}
    BOGUS = datetime.datetime(2000, 1, 1)
    BOGUS = BOGUS.replace(tzinfo=pytz.UTC)

    nc = ncopen(fn)

    providers = chartostring(nc.variables["dataProvider"][:])
    stations = chartostring(nc.variables["stationId"][:])
    names = chartostring(nc.variables["stationName"][:])
    for i, provider in enumerate(providers):
        if provider != network:
            continue
        sid = stations[i]
        # We have an ob!
        ticks = int(nc.variables["observationTime"][i])
        ts = datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=ticks)
        ts = ts.replace(tzinfo=pytz.UTC)

        if ts > indices.get(sid, {'ts': BOGUS})['ts']:
            indices[sid] = {'ts': ts, 'idx': i}

    for sid in indices:
        idx = indices[sid]['idx']
        name = names[idx]
        latitude = nc.variables['latitude'][idx]
        longitude = nc.variables['longitude'][idx]
        tmpf = s(nc.variables['temperature'][idx])
        dwpf = s(nc.variables['dewpoint'][idx])
        qcd = nc.variables['temperatureQCD'][idx][0]
        if qcd < -10 or qcd > 10:
            tmpf = "M"
            dwpf = "M"
        heat = "M"
        if tmpf != "M" and dwpf != "M":
            t = temperature(nc.variables['temperature'][idx], 'K')
            d = temperature(nc.variables['dewpoint'][idx], 'K')
            # relh = meteorology.relh(t, d).value("%")
            heat = "%5.1f" % (meteorology.heatindex(t, d).value("F"), )
        drct = s2(nc.variables['windDir'][idx])
        smps = s2(nc.variables['windSpeed'][idx])
        sped = "M"
        if smps != "M":
            sped = "%5.1f" % (nc.variables['windSpeed'][idx] * 2.23694, )

        wcht = "M"
        if tmpf != "M" and sped != "M":
            t = temperature(nc.variables['temperature'][idx], 'K')
            sped = speed(nc.variables['windSpeed'][idx], 'MPS')
            wcht = "%5.1f" % (meteorology.windchill(t, sped).value("F"), )

        ts = indices[sid]['ts']

        out.write(("%5.5s %25.25s %8.4f %10.4f "
                   "%02i %02i %5s %5s %5s %5s %5s %5s\n") %
                  (sid, name, latitude, longitude, ts.hour, ts.minute, tmpf,
                   dwpf, drct, sped, heat, wcht))

    nc.close()
    out.close()
    pqstr = "data c 000000000000 wxc/wxc_%s.txt bogus txt" % (
        network.lower(), )
    subprocess.call("/home/ldm/bin/pqinsert -p '%s' %s" % (pqstr, wxcfn),
                    shell=True)
    os.remove(wxcfn)
Exemplo n.º 15
0
    idx = indices[sid]['idx']
    name = nc.variables["stationName"][idx].tostring().replace('\x00', '')
    latitude = nc.variables['latitude'][idx]
    longitude = nc.variables['longitude'][idx]
    tmpf = s(nc.variables['temperature'][idx])
    dwpf = s(nc.variables['dewpoint'][idx])
    qcd = nc.variables['temperatureQCD'][idx][0]
    if qcd < -10 or qcd > 10:
        tmpf = "M"
        dwpf = "M"
    heat = "M"
    if tmpf != "M" and dwpf != "M":
        t = temperature(nc.variables['temperature'][idx], 'K')
        d = temperature(nc.variables['dewpoint'][idx], 'K')
        relh = meteorology.relh(t, d).value("%")
        heat = "%5.1f" % (meteorology.heatindex(t, d).value("F"), )
    drct = s2(nc.variables['windDir'][idx])
    smps = s2(nc.variables['windSpeed'][idx])
    sped = "M"
    if smps != "M":
        sped = "%5.1f" % (nc.variables['windSpeed'][idx] * 2.23694, )

    wcht = "M"
    if tmpf != "M" and sped != "M":
        t = temperature(nc.variables['temperature'][idx], 'K')
        sped = speed(nc.variables['windSpeed'][idx], 'MPS')
        wcht = "%5.1f" % (meteorology.windchill(t, sped).value("F"), )

    ts = indices[sid]['ts']

    out.write(
Exemplo n.º 16
0
    acursor.execute("""SELECT valid, tmpf, dwpf, sknt, skyc1, skyc2, skyc3 from
    alldata where station = 'AMW' and valid BETWEEN '%s 00:00' and '%s 23:59' 
    and tmpf > -30 and dwpf > -30
  """ % (day.strftime("%Y-%m-%d"),day.strftime("%Y-%m-%d")))
    relh = []
    tmpf = []
    heat = 'N'
    windchill = 'N'
    clcount = 0
    for row2 in acursor:
        t = temperature(row2[1], 'F')
        td = temperature(row2[2], 'F')

        
        if met.heatindex(t, td).value('F') > 90:
            heat = 'Y'
            if t.value('F') < 50:
                print t.value('F'), td.value('F'), met.heatindex(t, td).value('F')
        if row2[1] < 32 and row2[3] > 10:
            windchill = 'Y' #approx
        
        sky = 'Clear'
        if 'OVC' in [row2[4], row2[5], row2[6]]:
            sky = 'Overcast'
        elif 'BKN' in [row2[4], row2[5], row2[6]]:
            sky = 'Broken'
        elif 'FEW' in [row2[4], row2[5], row2[6]]:
            sky = 'Fair Skies'
        if row2[0].hour > 7 and row2[0].hour < 18:
            relh.append( met.relh(t,td).value('%') )
Exemplo n.º 17
0
ASOS = psycopg2.connect(database='asos', host='iemdb', user='******')
cursor = ASOS.cursor()

cursor.execute("""
  SELECT valid, tmpf, dwpf from alldata where station = 'DSM' and
  tmpf >= 80 and dwpf > -50 and valid > '1935-01-01'
  and (extract(minute from valid) = 0 or extract(minute from valid) > 52)
""")

hits3 = np.zeros( (2014-1935), 'f')
hits5 = np.zeros( (2014-1935), 'f')
total = np.zeros( (2014-1935), 'f')
for row in cursor:
    t = dt.temperature(row[1], 'F')
    d = dt.temperature(row[2], 'F')
    hdx = met.heatindex(t, d)
    
    if (hdx.value("F") - 3) >= row[1]:
        hits3[ row[0].year - 1935 ] += 1.0
    if (hdx.value("F") - 5) >= row[1]:
        hits5[ row[0].year - 1935 ] += 1.0
    total[ row[0].year - 1935 ] += 1.0


(fig, ax) = plt.subplots(2,1, sharex=True)

val = hits3 / total * 100.0
avg = np.average(val)
bars = ax[0].bar(np.arange(1935,2014)-0.4, val , ec='b', fc='b')
ax[0].plot([1933,2013], [avg,avg], c='k')
for bar in bars:
Exemplo n.º 18
0
def plotter(fdict):
    """ Go """
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    ASOS = psycopg2.connect(database='asos', host='iemdb', user='******')
    cursor = ASOS.cursor(cursor_factory=psycopg2.extras.DictCursor)

    station = fdict.get('zstation', 'DSM')
    network = fdict.get('network', 'IA_ASOS')
    highlightyear = int(fdict.get('year', 2015))
    nt = NetworkTable(network)

    cursor.execute("""
    SELECT to_char(valid, 'YYYYmmddHH24') as d, avg(tmpf), avg(dwpf)
    from alldata WHERE station = %s and tmpf >= 80 and dwpf >= 30
    and dwpf <= tmpf and valid > '1973-01-01' GROUP by d
    """, (station, ))

    rows = []
    for row in cursor:
        t = temperature(row[1], 'F')
        d = temperature(row[2], 'F')
        h = pymet.heatindex(t, d)
        if h.value('F') >= t.value('F'):
            rows.append(dict(year=int(row[0][:4]), heatindex=h.value('F')))

    minyear = max([1973, nt.sts[station]['archive_begin'].year])
    maxyear = datetime.date.today().year
    years = float((maxyear - minyear) + 1)
    df = pd.DataFrame(rows)
    x = []
    y = []
    y2 = []
    (fig, ax) = plt.subplots(1, 1)
    yloc = 0.9
    ax.text(0.7, 0.94, 'Avg:',
            transform=ax.transAxes, color='b')
    ax.text(0.85, 0.94, '%s:' % (highlightyear,),
            transform=ax.transAxes, color='r')
    for level in range(90, 121):
        x.append(level)
        y.append(len(df[df['heatindex'] >= level]) / years)
        y2.append(len(df[np.logical_and(df['heatindex'] >= level,
                                        df['year'] == highlightyear)]))
        if level % 2 == 0:
            ax.text(0.6, yloc, '%s' % (level,),
                    transform=ax.transAxes)
            ax.text(0.7, yloc, '%.1f' % (y[-1],),
                    transform=ax.transAxes, color='b')
            ax.text(0.85, yloc, '%.0f' % (y2[-1],),
                    transform=ax.transAxes, color='r')
            yloc -= 0.04
    x = np.array(x, dtype=np.float64)
    ax.scatter(x, y, color='b', label='Avg')
    ax.scatter(x, y2, color='r', label="%s" % (highlightyear,))
    ax.grid(True)
    ax.set_ylim(-0.5, int(max(y)) + 5)
    ax.set_xlim(89.5, 120.5)
    ax.set_yticks(range(0, int(max(y)), 24))
    ax.set_ylabel("Hours Per Year")
    ax.set_xlabel("Heat Index Temp $^\circ$F")
    ax.set_title(("[%s] %s %s-%s\n"
                  "Heat Index (when accretive to air temp) Histogram"
                  ) % (station, nt.sts[station]['name'],
                       minyear,
                       datetime.date.today().year))
    ax.legend(loc=(0.2, 0.8), scatterpoints=1)
    return fig, df
Exemplo n.º 19
0
def plotter(fdict):
    """ Go """
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    ASOS = psycopg2.connect(database='asos', host='iemdb', user='******')

    ctx = get_autoplot_context(fdict, get_description())
    station = ctx['zstation']
    network = ctx['network']
    highlightyear = ctx['year']
    ytd = ctx['ytd']
    varname = ctx['var']
    nt = NetworkTable(network)
    doylimiter = ""
    if ytd == 'yes':
        doylimiter = (" and extract(doy from valid) < "
                      " extract(doy from 'TODAY'::date) ")

    df = read_sql("""
    SELECT to_char(valid, 'YYYYmmddHH24') as d, avg(tmpf)::int as tmpf,
    avg(dwpf)::int as dwpf
    from alldata WHERE station = %s and tmpf >= 50
    and dwpf <= tmpf and valid > '1973-01-01'
    and report_type = 2 """ + doylimiter + """ GROUP by d
    """, ASOS, params=(station, ), index_col=None)
    df['year'] = df['d'].apply(lambda x: int(x[:4]))

    df2 = df
    title2 = VDICT[varname]
    if varname == 'heatindex':
        title2 = "Heat Index (when accretive to air temp)"
        df['heatindex'] = df[['tmpf', 'dwpf']].apply(
            lambda x: pymet.heatindex(temperature(x[0], 'F'),
                                      temperature(x[1],
                                                  'F')).value('F'), axis=1)
        df2 = df[df['heatindex'] > df['tmpf']]

    minyear = max([1973, nt.sts[station]['archive_begin'].year])
    maxyear = datetime.date.today().year
    years = float((maxyear - minyear) + 1)
    x = []
    y = []
    y2 = []
    (fig, ax) = plt.subplots(1, 1)
    yloc = 0.9
    ax.text(0.7, 0.94, 'Avg:',
            transform=ax.transAxes, color='b')
    ax.text(0.85, 0.94, '%s:' % (highlightyear,),
            transform=ax.transAxes, color='r')
    for level in LEVELS[varname]:
        x.append(level)
        y.append(len(df2[df2[varname] >= level]) / years)
        y2.append(len(df[np.logical_and(df[varname] >= level,
                                        df['year'] == highlightyear)]))
        if level % 2 == 0:
            ax.text(0.6, yloc, '%s' % (level,),
                    transform=ax.transAxes)
            ax.text(0.7, yloc, '%.1f' % (y[-1],),
                    transform=ax.transAxes, color='b')
            ax.text(0.85, yloc, '%.0f' % (y2[-1],),
                    transform=ax.transAxes, color='r')
            yloc -= 0.04
    for x0, y0, y02 in zip(x, y, y2):
        c = 'r' if y02 > y0 else 'b'
        ax.plot([x0, x0], [y0, y02], color=c)
    rdf = pd.DataFrame({'level': x, 'avg': y, 'd%s' % (highlightyear,): y2})
    x = np.array(x, dtype=np.float64)
    ax.scatter(x, y, color='b', label='Avg')
    ax.scatter(x, y2, color='r', label="%s" % (highlightyear,))
    ax.grid(True)
    ymax = int(max([max(y), max(y2)]))
    ax.set_xlim(x[0] - 0.5, x[-1] + 0.5)
    dy = 24 * (int(ymax / 240) + 1)
    ax.set_yticks(range(0, ymax, dy))
    ax.set_ylim(-0.5, ymax + 5)
    ax2 = ax.twinx()
    ax2.set_ylim(-0.5, ymax + 5)
    ax2.set_yticks(range(0, ymax, dy))
    ax2.set_yticklabels(["%.0f" % (s,) for s in np.arange(0, ymax, dy) / 24])
    ax2.set_ylabel("Expressed in 24 Hour Days")
    ax.set_ylabel("Hours Per Year")
    ax.set_xlabel("%s $^\circ$F" % (VDICT[varname],))
    title = 'till %s' % (datetime.date.today().strftime("%-d %b"),)
    title = "Entire Year" if ytd == 'no' else title
    ax.set_title(("[%s] %s %s-%s\n"
                  "%s Histogram (%s)"
                  ) % (station, nt.sts[station]['name'],
                       minyear,
                       datetime.date.today().year, title2, title))
    ax.legend(loc=(0.2, 0.8), scatterpoints=1)
    return fig, rdf
Exemplo n.º 20
0
Arquivo: p93.py Projeto: nbackas/iem
def plotter(fdict):
    """ Go """
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt
    ASOS = psycopg2.connect(database='asos', host='iemdb', user='******')
    cursor = ASOS.cursor(cursor_factory=psycopg2.extras.DictCursor)

    station = fdict.get('zstation', 'DSM')
    network = fdict.get('network', 'IA_ASOS')
    highlightyear = int(fdict.get('year', 2015))
    nt = NetworkTable(network)

    cursor.execute(
        """
    SELECT to_char(valid, 'YYYYmmddHH24') as d, avg(tmpf), avg(dwpf)
    from alldata WHERE station = %s and tmpf >= 80 and dwpf >= 30
    and dwpf <= tmpf and valid > '1973-01-01' GROUP by d
    """, (station, ))

    rows = []
    for row in cursor:
        t = temperature(row[1], 'F')
        d = temperature(row[2], 'F')
        h = pymet.heatindex(t, d)
        if h.value('F') >= t.value('F'):
            rows.append(dict(year=int(row[0][:4]), heatindex=h.value('F')))

    minyear = max([1973, nt.sts[station]['archive_begin'].year])
    maxyear = datetime.date.today().year
    years = float((maxyear - minyear) + 1)
    df = pd.DataFrame(rows)
    x = []
    y = []
    y2 = []
    (fig, ax) = plt.subplots(1, 1)
    yloc = 0.9
    ax.text(0.7, 0.94, 'Avg:', transform=ax.transAxes, color='b')
    ax.text(0.85,
            0.94,
            '%s:' % (highlightyear, ),
            transform=ax.transAxes,
            color='r')
    for level in range(90, 121):
        x.append(level)
        y.append(len(df[df['heatindex'] >= level]) / years)
        y2.append(
            len(df[np.logical_and(df['heatindex'] >= level,
                                  df['year'] == highlightyear)]))
        if level % 2 == 0:
            ax.text(0.6, yloc, '%s' % (level, ), transform=ax.transAxes)
            ax.text(0.7,
                    yloc,
                    '%.1f' % (y[-1], ),
                    transform=ax.transAxes,
                    color='b')
            ax.text(0.85,
                    yloc,
                    '%.0f' % (y2[-1], ),
                    transform=ax.transAxes,
                    color='r')
            yloc -= 0.04
    x = np.array(x, dtype=np.float64)
    ax.scatter(x, y, color='b', label='Avg')
    ax.scatter(x, y2, color='r', label="%s" % (highlightyear, ))
    ax.grid(True)
    ax.set_ylim(-0.5, int(max(y)) + 5)
    ax.set_xlim(89.5, 120.5)
    ax.set_yticks(range(0, int(max(y)), 24))
    ax.set_ylabel("Hours Per Year")
    ax.set_xlabel("Heat Index Temp $^\circ$F")
    ax.set_title(("[%s] %s %s-%s\n"
                  "Heat Index (when accretive to air temp) Histogram") %
                 (station, nt.sts[station]['name'], minyear,
                  datetime.date.today().year))
    ax.legend(loc=(0.2, 0.8), scatterpoints=1)
    return fig, df