Exemplo n.º 1
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([
        0.0, 0.0, 1.0,
        -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())
    ])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.marching_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
    while True:
        l = igl.eigen.MatrixXd()
        igl.edge_lengths(V_vis, F_vis, l)
        l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm()

        if l.maxCoeff() < max_l:
            break

        bad = l.rowwiseMaxCoeff() > max_l
        notbad = l.rowwiseMaxCoeff() <= max_l  # TODO replace by ~ operator
        F_vis_bad = igl.eigen.MatrixXi()
        F_vis_good = igl.eigen.MatrixXi()
        igl.slice_mask(F_vis, bad, 1, F_vis_bad)
        igl.slice_mask(F_vis, notbad, 1, F_vis_good)
        igl.upsample(V_vis, F_vis_bad)
        F_vis = igl.cat(1, F_vis_bad, F_vis_good)

    # Compute signed distance
    S_vis = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    N = igl.eigen.MatrixXd()
    C = igl.eigen.MatrixXd()

    # Bunny is a watertight mesh so use pseudonormal for signing
    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP,
                                     S_vis, I, C, N)

    # push to [0,1] range
    S_vis = 0.5 * (S_vis / max_distance) + 0.5
    C_vis = igl.eigen.MatrixXd()
    # color without normalizing
    igl.parula(S_vis, False, C_vis)

    if overlay:
        append_mesh(C_vis, F_vis, V_vis, V, F,
                    igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data().clear()
    viewer.data().set_mesh(V_vis, F_vis)
    viewer.data().set_colors(C_vis)
    viewer.core.lighting_factor = overlay
Exemplo n.º 2
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
    while True:
        l = igl.eigen.MatrixXd()
        igl.edge_lengths(V_vis, F_vis, l)
        l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm()

        if l.maxCoeff() < max_l:
            break

        bad = l.rowwiseMaxCoeff() > max_l
        notbad = l.rowwiseMaxCoeff() <= max_l  # TODO replace by ~ operator
        F_vis_bad = igl.eigen.MatrixXi()
        F_vis_good = igl.eigen.MatrixXi()
        igl.slice_mask(F_vis, bad, 1, F_vis_bad)
        igl.slice_mask(F_vis, notbad, 1, F_vis_good)
        igl.upsample(V_vis, F_vis_bad)
        F_vis = igl.cat(1, F_vis_bad, F_vis_good)

    # Compute signed distance
    S_vis = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    N = igl.eigen.MatrixXd()
    C = igl.eigen.MatrixXd()

    # Bunny is a watertight mesh so use pseudonormal for signing
    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)

    # push to [0,1] range
    S_vis = 0.5 * (S_vis / max_distance) + 0.5
    C_vis = igl.eigen.MatrixXd()
    # color without normalizing
    igl.parula(S_vis, False, C_vis)

    if overlay:
        append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    viewer.data.set_colors(C_vis)
    viewer.core.lighting_factor = overlay
Exemplo n.º 3
0
def reconstruct_npz(inname, outname):
    """
    Recontruct a 3D shape by deforming a template
    :param inname: input path
    :return: None (but save reconstruction)
    """
    if os.path.exists(outname):
        return
    with np.load(inname) as npl:
        V, F = npl['V'], npl['F']
        V = pca_whiten(V)
        max_axis = np.argmax((np.max(V, axis=0) - np.min(V, axis=0)))
        V = V[:, np.roll(np.arange(3), 1 - max_axis)]  # 1 means Y
        V *= 1.7
    assert (np.max(V, axis=0) - np.min(V, axis=0))[1] > 1.69
    while V.shape[0] < 1e4:
        eV, eF = p2e(V), p2e(F)
        NV, NF = igl.eigen.MatrixXd(), igl.eigen.MatrixXi()
        igl.upsample(eV, eF, NV, NF)
        V, F = e2p(NV), e2p(NF)

    input = trimesh.Trimesh(vertices=V, faces=F, process=False)
    scalefactor = 1.0
    if global_variables.opt.scale:
        input, scalefactor = scale(
            input, global_variables.mesh_ref_LR
        )  #scale input to have the same volume as mesh_ref_LR
    if global_variables.opt.clean:
        input = clean(input)  #remove points that doesn't belong to any edges
    test_orientation(input)

    inp_V = input.vertices
    if inp_V.shape[0] > 1e5:
        inp_V = inp_V[
            np.random.choice(inp_V.shape[0], int(1e5), replace=False), :]
    final_points, final_loss = run(inp_V, scalefactor)

    npz_path = os.path.dirname(outname)
    if not os.path.exists(npz_path): os.makedirs(npz_path)
    np.savez(outname, V=final_points, l=final_loss)
def upsample(mesh):
    v = igl.eigen.MatrixXd(mesh.v.astype(np.double))
    f = igl.eigen.MatrixXi(mesh.f)
    igl.upsample(v, f)
    mesh.v = np.array(v, dtype=np.float32, order='C')
    mesh.f = np.array(f, dtype=np.int32, order='C')