Exemplo n.º 1
0
def extractimage(imageParam):
    data = []
    # ap = argparse.ArgumentParser()
    # ap.add_argument("-t", "--training", required=True,
    # 	help="path to the training images")
    # args = vars(ap.parse_args())
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
    image_scale = 1

    # for imagePath in paths.list_images(args["training"]):
    img = cv2.imdecode(numpy.fromstring(imageParam.read(), numpy.uint8),
                       cv2.IMREAD_UNCHANGED)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        cv2.rectangle(gray, (x, y), (x + w, y + h), (255, 0, 0), 2)
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]

    desc = LocalBinaryPatterns(24, 8)
    if faces == ():
        return False
    else:
        hist = desc.describe(roi_gray)
        data.append(hist)
        return data
    # print(hist)
    # for x in hist:
    #     with open('data.txt', 'a') as f:
    #         f.write(str(x)+',')

    # with open('dataset.csv','wb') as file:
    # 	for line in data:
    # 		file.write(line)
                                     stepSize=stepSize,
                                     windowSize=(winW, winH)):
    # if the window does not meet our desired window size, ignore it
    if window.shape[0] != winH or window.shape[1] != winW:
        continue

    # THIS IS WHERE YOU WOULD PROCESS YOUR WINDOW, SUCH AS APPLYING A
    # MACHINE LEARNING CLASSIFIER TO CLASSIFY THE CONTENTS OF THE
    # WINDOW
    # WORKS WITH THIS...........BUT NOT THE cloudFeature call *****************
    gray = cv2.cvtColor(window, cv2.COLOR_BGR2GRAY)

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    claheGray = clahe.apply(gray)

    hist = desc.describe(claheGray)

    # set up histogram
    #hist = cloudFeature.get_feature_histogram(image)

    prediction = model.predict([hist])[0]

    # draw the window
    clone = image.copy()
    cv2.rectangle(clone, (x, y), (x + winW, y + winH), (0, 255, 0), 2)

    # display the image and the prediction
    cv2.putText(clone, prediction, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
                (0, 0, 255), 3)

    cv2.imshow("Window", clone)
Exemplo n.º 3
0
                required=True,
                help="path to the tesitng images")
args = vars(ap.parse_args())

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []

# loop over the training images
for imagePath in paths.list_images(args["training"]):
    # load the image, convert it to grayscale, and describe it
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = desc.describe(gray)

    # extract the label from the image path, then update the
    # label and data lists
    labels.append(imagePath.split("/")[-2])
    data.append(hist)

# train a Linear SVM on the data
model = LinearSVC(C=100.0, random_state=42)
model.fit(data, labels)

# loop over the testing images
for imagePath in paths.list_images(args["testing"]):
    # load the image, convert it to grayscale, describe it,
    # and classify it
    image = cv2.imread(imagePath)
Exemplo n.º 4
0
import cv2

data = []
ap = argparse.ArgumentParser()
ap.add_argument("-t",
                "--training",
                required=True,
                help="path to the training images")
args = vars(ap.parse_args())
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
image_scale = 1

for imagePath in paths.list_images(args["training"]):
    img = cv2.imread(imagePath)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        cv2.rectangle(gray, (x, y), (x + w, y + h), (255, 0, 0), 2)
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]

    rezise_img = cv2.resize(roi_gray, (300, 300))
    desc = LocalBinaryPatterns(24, 8)
    hist = desc.describe(rezise_img)
    data.append(hist)
# print(faces)
for x in data:
    with open('data.txt', 'a') as f:
        f.write(str(x) + ',')
def binary_function(type_rec):

    l = []
    # construct the argument parse and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-t",
                    "--training",
                    required=False,
                    default='images/training/',
                    help="path to the training images")
    ap.add_argument("-e",
                    "--testing",
                    required=False,
                    default='images/testing/',
                    help="path to the tesitng images")
    args = vars(ap.parse_args())
    # initialize the local binary patterns descriptor along with
    # the data and label lists
    if type_rec == 'symbol':
        desc = LocalBinaryPatterns(24, 8)
    else:
        desc = LocalBinaryPatterns(24, 3)
    data = []
    labels = []

    # loop over the training images
    for imagePath in paths.list_images(args["training"]):
        # for imagePath in os.listdir('images/training/'):
        # load the image, convert it to grayscale, and describe it
        image = cv2.imread(imagePath)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        hist = desc.describe(gray)
        # extract the label from the image path, then update the
        # label and data lists
        labels.append(imagePath.split(os.path.sep)[-2])
        data.append(hist)
    model = DecisionTreeClassifier(random_state=0)
    model.fit(data, labels)

    # loop over the testing images
    for imagePath in paths.list_images(args["testing"]):
        # for imagePath in os.listdir('images/testing/'):
        # load the image, convert it to grayscale, describe it,
        # and classify it
        image = cv2.imread(imagePath)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        hist = desc.describe(gray)
        prediction = model.predict(hist.reshape(1, -1))

        # display the image and the prediction
        # cv2.putText(image, prediction[0], (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
        # 	1.0, (0, 0, 255), 3)
        # cv2.imshow("Image", image)
        # cv2.waitKey(0)
        l.append([prediction[0], imagePath])

    # print (l)
    if type_rec == 'symbol':
        result = symbol(l[0][0])
        string = "The symbol is " + str(
            l[0][0]
        ) + " Meaning of symbol: " + result[0] + " Reference: " + result[1]
    else:
        s_p = []
        for i in l:
            s_p.append(i[0])
        patt = ', '.join(s_p)
        string = "The symbols identified are " + patt

    return string
Exemplo n.º 6
0
                help="path to the training images")
args = vars(ap.parse_args())

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []

print("[INFO] Labeling Images...")
# loop over the training images
for imagePath in paths.list_images(args["training"]):
    # load the image, convert it to grayscale, and describe it
    image = cv2.imread(imagePath, 0)
    #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = desc.describe(image)
    # extract the label from the image path, then update the
    # label and data lists
    # label = imagePath.split("\\")[1]
    labels.append(imagePath.split("\\")[1])
    data.append(hist)

print("[INFO] Images Labeled...")
#data = data.reshape(-1,1)
#labels = labels.reshape(-1,1)
# train a Linear SVM on the data
model = LinearSVC(C=100.0, random_state=42, max_iter=5000)
print("[INFO] SVM loaded...")
print("[INFO] Model fitting...")
model.fit(data, labels)
print("[INFO] Model fitted...")
Exemplo n.º 7
0
    patch_height = (img_height // patch_size) + 1
    patch_length = patch_width * patch_height

    img_name = path.split('.')[0] + ".JPG"
    img = cv2.imread("data/test_images_site_32/" + img_name)
    img = imutils.resize(img, width=1024)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    (img_h, img_s, img_v) = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))

    # Store gray patch descriptions
    for (patch_id, (x, y, win)) in enumerate(
            sliding_window(img_gray,
                           stepSize=patch_size,
                           windowSize=(win_size, win_size))):

        hist4 = desc4.describe(win)
        hist4 /= hist4.sum()
        hist4 = hist4.reshape(1, -1)
        proba_4 = model_lbp.predict_proba(hist4)

        lbp_probas[img_id, patch_id] = proba_4

    # Precompute h and s histograms
    for (patch_id, (x, y, win_h, win_s)) in enumerate(
            sliding_window_double(img_h,
                                  img_s,
                                  stepSize=patch_size,
                                  windowSize=(win_size, win_size))):

        h_flat = win_h.reshape(1, win_h.shape[0] * win_h.shape[1])
        s_flat = win_s.reshape(1, win_s.shape[0] * win_s.shape[1])
Exemplo n.º 8
0
            cv2.waitKey(0)

        elif search == 1:
            # load the index and initialize the searchers
            file_rgb = open("index_rgb.cpickle" + ".pkl", 'rb')
            index_rgb = pickle.load(file_rgb)
            searcher_rgb = Searcher(index_rgb)
            desc_rgb = RGBHistogram([8, 8, 8])
            queryFeatures_rgb = desc_rgb.describe(queryImage)

            file_lbp = open("index_lbp.cpickle" + ".pkl", 'rb')
            index_lbp = pickle.load(file_lbp)
            searcher_lbp = Searcher(index_lbp)
            desc_lbp = LocalBinaryPatterns(24, 8)
            gray_lbp = cv2.cvtColor(queryImage, cv2.COLOR_BGR2GRAY)
            queryFeatures_lbp = desc_lbp.describe(gray_lbp)

            file_hog = open("index_hog.cpickle" + ".pkl", 'rb')
            index_hog = pickle.load(file_hog)
            searcher_hog = Searcher(index_hog)
            winSize = (64, 64)
            blockSize = (16, 16)
            blockStride = (8, 8)
            cellSize = (8, 8)
            nbins = 9
            derivAperture = 1
            winSigma = 4.
            histogramNormType = 0
            L2HysThreshold = 2.0000000000000001e-01
            gammaCorrection = 0
            nlevels = 64
Exemplo n.º 9
0
        # Ensure patch size
        if flag_resize_patch:
            window_gray = imutils.resize(window_gray, width=100)
            window_hsv = imutils.resize(window_hsv, width=100)

        # Describe gray patch
        (kps, descs) = dad.describe(window_gray)
        if kps is None or descs is None:
            continue
        hist = bovw.describe(descs)
        hist /= hist.sum()
        hist = hist.toarray()

        # Get lbp descriptions
        hist4 = desc4.describe(window_gray)
        hist8 = desc8.describe(window_gray)

        hist4 /= hist4.sum()
        hist8 /= hist8.sum()

        hist4 = hist4.reshape(1, -1)
        hist8 = hist8.reshape(1, -1)

        proba_4 = model_lbp4.predict_proba(hist4).flatten()
        proba_8 = model_lbp8.predict_proba(hist8).flatten()

        # Apply idf factor to histogram
        if idf is not None:
            idf = idf.reshape(1, -1)
            hist *= idf
Exemplo n.º 10
0
trainingPath = "/home/krzysztof/Dokumenty/SNR_grupa1/images/training"
keyboard = glob.glob(trainingPath + "/keyboard" + "/*.*")
carpet = glob.glob(trainingPath + "/carpet" + "/*.*")
area_rug = glob.glob(trainingPath + "/area_rug" + "/*.*")
wrapping_paper = glob.glob(trainingPath + "/wrapping_paper" + "/*.*")
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []
paths = carpet + keyboard + area_rug + wrapping_paper
print("Ekstrakcja cech\n")
for imagePath in paths:
    print(imagePath + "\n")
    image = cv2.imread(imagePath)
    print(str(image.shape) + "\n")
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # Skala szarości
    hist = desc.describe(gray)  # LBP na obrazie - zwraca histogram

    # extract the label from the image path, then update the
    # label and data lists
    labels.append(imagePath.split("/")[-2])
    data.append(hist)

# Koniec aktu 1: Mamy cechy obrazu. Następnie można użyć ich do rozpoznawania obrazów
# Akt 2
print("Uczenie SVC\n")
model = LinearSVC(C=100.0, random_state=42)
model.fit(data, labels)
print("Testowanie\n")
# Testing
keyboardTestPath = "/home/krzysztof/Dokumenty/SNR_grupa1/images/testing/keyboard.png"
carpetTestPath = "/home/krzysztof/Dokumenty/SNR_grupa1/images/testing/carpet.png"
Exemplo n.º 11
0
                required=True,
                help="path to the training images")
ap.add_argument("-e", "--testing", required=True, help="blah")
args = vars(ap.parse_args())

bob = LocalBinaryPatterns(24, 8)
data = []
labels = []

for imagePath in paths.list_images(args['training']):
    # image = io.imread(imagePath)
    # # stretch = exposure.rescale_intensity(image)
    # grey = skimage.color.rgb2gray(image)
    image = cv2.imread(imagePath)
    grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = bob.describe(grey)
    labels.append(imagePath.split(os.path.sep)[-2])
    data.append(hist)

StandardScaler.transform(data)
model = LinearSVC(C=1000.0, random_state=42)
model.fit(data, labels)

for imagePath in paths.list_images(args['testing']):
    # image = io.imread(imagePath)
    # stretch = exposure.rescale_intensity(image)
    # grey = skimage.color.rgb2gray(stretch)
    image = cv2.imread(imagePath)
    grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = bob.describe(grey)
    prediction = model.predict(hist.reshape(1, -1))
Exemplo n.º 12
0
widgets = [
    "Analyzing Images: ",
    progressbar.Percentage(), " ",
    progressbar.Bar(), " ",
    progressbar.ETA()
]
pbar = progressbar.ProgressBar(maxval=len(training_set),
                               widgets=widgets).start()

for i, image_path in enumerate(training_set):
    # load the image, convert it to grayscale, and describe it
    image = cv2.imread(image_path)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    hist4 = desc4.describe(gray)
    hist4 /= hist4.sum()
    data4.append(hist4)

    hist8 = desc8.describe(gray)
    hist8 /= hist8.sum()
    data8.append(hist8)

    label = image_path.split(os.path.sep)[-2]
    labels.append(label)

    pbar.update(i)

pbar.finish()

# train a Linear SVM on the data