Exemplo n.º 1
0
 def test_eval_helper(self):
     eval_data = sim.evaluate_approximation("approx_funcs", self.weights,
                                            self.dates, self.spat_int, .1)
     if show_plots:
         p = vt.PgAnimatedPlot(eval_data)
         app.exec_()
         del p
Exemplo n.º 2
0
 def test_animated_plot(self):
     if show_plots:
         lim = 50
         short_data = vis.EvalData([
             self.test_data[0].input_data[0][0:lim],
             self.test_data[0].input_data[1][0:lim]
         ],
                                   self.test_data[0].output_data[0:lim,
                                                                 0:lim],
                                   name="short set")
         pt = vis.PgAnimatedPlot(self.test_data + [short_data],
                                 title="Test Plot")
         app.exec_()
Exemplo n.º 3
0
    def test_trajectory(self):
        # build flatness based trajectory generator
        fs = tr.FlatString(y0=self.y0,
                           y1=self.y1,
                           z0=self.z_start,
                           z1=self.z_end,
                           t0=self.t_start,
                           dt=2,
                           params=self.params)
        zz, tt = np.meshgrid(self.z_values, self.t_values)
        x_values = fs.system_state(zz, tt)
        u_values = fs.control_input(self.t_values)
        eval_data_x = vis.EvalData([self.t_values, self.z_values], x_values)

        if show_plots:
            # plot stuff
            pw = pg.plot(title="control_input")
            pw.plot(self.t_values, u_values)
            ap = vis.PgAnimatedPlot(eval_data_x)
            app.exec_()
Exemplo n.º 4
0
    def test_modal(self):
        self.act_funcs = "eig_funcs"
        a2, a1, a0, alpha, beta = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real(self.eig_val))
        B = a2 * np.array(
            [self.adjoint_eig_funcs[i](self.l) for i in range(self.n)])
        ss_modal = sim.StateSpace(self.act_funcs,
                                  A,
                                  B,
                                  input_handle=controller)

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_modal, np.zeros((len(self.adjoint_eig_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Exemplo n.º 5
0
    def test_fem(self):
        self.act_funcs = "fem_funcs"
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs,
                                                   self.act_funcs, controller,
                                                   self.param, self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_weak, np.zeros((len(self.fem_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-3)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Exemplo n.º 6
0
evald_appr_xi = vis.EvalData(evald_modal_xi.input_data,
                             evald_shifted_x.output_data +
                             evald_modal_xi.output_data -
                             evald_modal_T0_xid.output_data,
                             name="x_i(t) approximated")

# evaluate approximation of x
evald_fem_x = sim.evaluate_approximation("fem_funcs",
                                         q,
                                         t,
                                         spatial_domain,
                                         name="x(z,t) simulation")

# pyqtgraph visualisations
win1 = vis.PgAnimatedPlot(
    [evald_fem_x, evald_modal_xi, evald_appr_xi, evald_xd, evald_xi_desired],
    dt=temporal_domain.step)
win2 = vis.PgSurfacePlot([evald_xd], title=evald_xd.name, grid_height=1)
win3 = vis.PgSurfacePlot([evald_fem_x], title=evald_fem_x.name, grid_height=1)

# plots
vis.MplSurfacePlot([evald_appr_xi])
vis.MplSlicePlot(
    [evald_xd, evald_fem_x],
    spatial_point=0,
    legend_label=[evald_xd.name, evald_fem_x.name],
)

# show pyqtgraph and matplotlib plots/visualizations
pg.QtGui.QApplication.instance().exec_()
plt.show()
Exemplo n.º 7
0
# input with feedback
control_law = sim.SimulationInputSum([traj, controller])

# determine (A,B) with modal-transfomation
A = np.diag(eig_values)
B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

# evaluate desired output data
z_d = np.linspace(0, l, len(spatial_domain))
y_d, t_d = tr.gevrey_tanh(T, 80)
C = tr.coefficient_recursion(np.zeros(y_d.shape), y_d, param)
x_l = tr.power_series(z_d, t_d, C)
evald_traj = vis.EvalData([t_d, z_d], x_l, name="x(z,t) desired")

# simulate
t, q = sim.simulate_state_space(ss, initial_weights, temporal_domain)

# pyqtgraph visualization
evald_x = sim.evaluate_approximation("eig_funcs", q, t, spatial_domain,
                                     name="x(z,t) with x(z,0)=" + str(init_profile))
win1 = vis.PgAnimatedPlot([evald_x, evald_traj], title="animation", dt=temporal_domain.step)
win2 = vis.PgSurfacePlot([evald_x], title=evald_x.name, grid_height=1)
win3 = vis.PgSurfacePlot([evald_traj], title=evald_traj.name, grid_height=1)
pg.QtGui.QApplication.instance().exec_()

# visualization
vis.MplSlicePlot([evald_x, evald_traj], time_point=1, legend_label=["$x(z,1)$", "$x_d(z,1)$"], legend_location=2)
plt.show()
Exemplo n.º 8
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param,
                                                                d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(
            self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
            for om in eig_freq_t
        ])
        init_adjoint_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param_t,
                                             self.dz.bounds)
            for om in eig_freq_t
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [
            cr.normalize_function(init_eig_funcs_t[i],
                                  init_adjoint_eig_funcs_t[i])
            for i in range(self.n)
        ]
        eig_funcs_t = np.array(
            [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([
            ef.TransformedSecondOrderEigenfunction(
                self.eig_val_t[i],
                [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0],
                [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t",
                      self.adjoint_eig_funcs_t,
                      overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable(
            "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                          1,
                                                          location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(
            integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(
            -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [
            ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)
        ]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [
            ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
            ph.ScalarTerm(field_variable,
                          self.transform_i_at_l * a1_z(self.l) / 2 / a2)
        ]
        self.x_ti_at_l = [
            ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)
        ]
        self.xd_ti_at_l = [
            ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
            ph.ScalarTerm(field_variable_t,
                          self.transform_ti_at_l * a1_t / 2 / a2)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(
            lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz,
            original_beta=beta_i,
            target_beta=beta_ti,
            trajectory=self.traj,
            scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Exemplo n.º 9
0
    def test_it(self):
        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        # create (not normalized) eigenfunctions
        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(
            param, self.l, n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2)
        eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t,
                                             dz.bounds).scale(eig_funcs[i](0))
            for i in range(n)
        ])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, self.l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # controller initialization
        x_at_l = ph.FieldVariable("eig_funcs", location=self.l)
        xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                 1,
                                                 location=self.l)
        x_t_at_l = ph.FieldVariable("eig_funcs_t",
                                    weight_label="eig_funcs",
                                    location=self.l)
        xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t",
                                                   1,
                                                   weight_label="eig_funcs",
                                                   location=self.l)
        combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z)
        int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti
                                                        ) / 2 / a2 * z
        controller = ct.Controller(
            ct.ControlLaw([
                ph.ScalarTerm(x_at_l,
                              (beta_i - beta_ti - int_kernel_zz(self.l))),
                ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)),
                ph.ScalarTerm(x_at_l, beta_ti),
                ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)),
                ph.ScalarTerm(x_t_at_l,
                              -a1_t / 2 / a2 * combined_transform(self.l)),
                ph.ScalarTerm(xd_at_l, 1),
                ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l))
            ]))

        # init trajectory
        traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type,
                                actuation_type)
        traj.scale = combined_transform(self.l)

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])
        # control_law = sim.simInputSum([traj])

        # determine (A,B) with modal-transformation
        A = np.diag(np.real(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Exemplo n.º 10
0
    def test_it(self):
        param = [2., -1.5, -3., 2., .5]
        a2, a1, a0, alpha, beta = param

        l = 1.
        spatial_disc = 11
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 2e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        # create test functions
        nodes_1, ini_funcs_1 = sf.cure_interval(sf.LagrangeFirstOrder,
                                                dz.bounds,
                                                node_count=spatial_disc)
        register_base("init_funcs_1", ini_funcs_1, overwrite=True)
        nodes_2, ini_funcs_2 = sf.cure_interval(sf.LagrangeSecondOrder,
                                                dz.bounds,
                                                node_count=spatial_disc)
        register_base("init_funcs_2", ini_funcs_2, overwrite=True)

        def test_dd():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # derive state-space system
            rad_pde = ut.get_parabolic_dirichlet_weak_form(
                "init_funcs_2", "init_funcs_2", u, param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape),
                                            dt)

            return t, q

        def test_rd():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'dirichlet'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

            # integral terms
            int1 = ph.IntegralTerm(
                ph.Product(
                    ph.TemporalDerivedFieldVariable("init_funcs_2", order=1),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                    ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2)
            int3 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=1),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1)
            int4 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2", order=0),
                    ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=1,
                                                   location=l),
                    ph.TestFunction("init_funcs_2", order=0, location=l)), -a2)
            s2 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=0,
                                                   location=0),
                    ph.TestFunction("init_funcs_2", order=0, location=0)),
                a2 * alpha)
            s3 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_2",
                                                   order=0,
                                                   location=0),
                    ph.TestFunction("init_funcs_2", order=1, location=0)), -a2)
            s4 = ph.ScalarTerm(
                ph.Product(
                    ph.Input(u),
                    ph.TestFunction("init_funcs_2", order=1, location=l)), a2)

            # derive state-space system
            rad_pde = sim.WeakFormulation(
                [int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape),
                                            dt)

            return t, q

        def test_dr():
            # trajectory
            bound_cond_type = 'dirichlet'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # integral terms
            int1 = ph.IntegralTerm(
                ph.Product(
                    ph.TemporalDerivedFieldVariable("init_funcs_1", order=1),
                    ph.TestFunction("init_funcs_1", order=0)), dz.bounds)
            int2 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=1),
                    ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2)
            int3 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                    ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1)
            int4 = ph.IntegralTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1", order=0),
                    ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0)
            # scalar terms from int 2
            s1 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=0,
                                                   location=l),
                    ph.TestFunction("init_funcs_1", order=0, location=l)), -a1)
            s2 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=0,
                                                   location=l),
                    ph.TestFunction("init_funcs_1", order=0, location=l)),
                a2 * beta)
            s3 = ph.ScalarTerm(
                ph.Product(
                    ph.SpatialDerivedFieldVariable("init_funcs_1",
                                                   order=1,
                                                   location=0),
                    ph.TestFunction("init_funcs_1", order=0, location=0)), a2)
            s4 = ph.ScalarTerm(
                ph.Product(
                    ph.Input(u),
                    ph.TestFunction("init_funcs_1", order=0, location=l)), -a2)
            # derive state-space system
            rad_pde = sim.WeakFormulation(
                [int1, int2, int3, int4, s1, s2, s3, s4])
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape),
                                            dt)

            # check if (x'(0,t_end) - 1.) < 0.1
            self.assertLess(
                np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) *
                       (q[-1, 0] - q[-1, 1])) - 1, 0.1)
            return t, q

        def test_rr():
            # trajectory
            bound_cond_type = 'robin'
            actuation_type = 'robin'
            u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)
            # derive state-space system
            rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1",
                                                       "init_funcs_1", u,
                                                       param, dz.bounds)
            cf = sim.parse_weak_formulation(rad_pde)
            ss = cf.convert_to_state_space()

            # simulate system
            t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape),
                                            dt)

            # check if (x(0,t_end) - 1.) < 0.1
            self.assertLess(
                np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1)
            return t, q

        t, q = test_dr()
        _, _ = test_rr()
        # TODO: fit LagrangeSecondOrder to test_dd and test_rd
        # t, q = test_dd()
        # t, q = test_rd()

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("init_funcs_1",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Exemplo n.º 11
0
    def test_modal(self):
        order = 8

        def char_eq(w):
            return w * (np.sin(w) + self.params.m * w * np.cos(w))

        def phi_k_factory(freq, derivative_order=0):
            def eig_func(z):
                return np.cos(
                    freq * z) - self.params.m * freq * np.sin(freq * z)

            def eig_func_dz(z):
                return -freq * (np.sin(freq * z) +
                                self.params.m * freq * np.cos(freq * z))

            def eig_func_ddz(z):
                return freq**2 * (-np.cos(freq * z) +
                                  self.params.m * freq * np.sin(freq * z))

            if derivative_order == 0:
                return eig_func
            elif derivative_order == 1:
                return eig_func_dz
            elif derivative_order == 2:
                return eig_func_ddz
            else:
                raise ValueError

        # create eigenfunctions
        eig_frequencies = ut.find_roots(char_eq,
                                        n_roots=order,
                                        grid=np.arange(0, 1e3, 2),
                                        rtol=-2)
        print("eigenfrequencies:")
        print(eig_frequencies)

        # create eigen function vectors
        class SWMFunctionVector(cr.ComposedFunctionVector):
            """
            String With Mass Function Vector, necessary due to manipulated scalar product
            """
            @property
            def func(self):
                return self.members["funcs"][0]

            @property
            def scalar(self):
                return self.members["scalars"][0]

        eig_vectors = []
        for n in range(order):
            eig_vectors.append(
                SWMFunctionVector(
                    cr.Function(phi_k_factory(eig_frequencies[n]),
                                derivative_handles=[
                                    phi_k_factory(eig_frequencies[n],
                                                  der_order)
                                    for der_order in range(1, 3)
                                ],
                                domain=self.dz.bounds,
                                nonzero=self.dz.bounds),
                    phi_k_factory(eig_frequencies[n])(0)))

        # normalize eigen vectors
        norm_eig_vectors = [cr.normalize_function(vec) for vec in eig_vectors]
        norm_eig_funcs = np.array([vec.func for vec in norm_eig_vectors])
        register_base("norm_eig_funcs", norm_eig_funcs, overwrite=True)

        norm_eig_funcs[0](1)

        # debug print eigenfunctions
        if 0:
            func_vals = []
            for vec in eig_vectors:
                func_vals.append(np.vectorize(vec.func)(self.dz))

            norm_func_vals = []
            for func in norm_eig_funcs:
                norm_func_vals.append(np.vectorize(func)(self.dz))

            clrs = ["r", "g", "b", "c", "m", "y", "k", "w"]
            for n in range(1, order + 1, len(clrs)):
                pw_phin_k = pg.plot(title="phin_k for k in [{0}, {1}]".format(
                    n, min(n + len(clrs), order)))
                for k in range(len(clrs)):
                    if k + n > order:
                        break
                    pw_phin_k.plot(x=np.array(self.dz),
                                   y=norm_func_vals[n + k - 1],
                                   pen=clrs[k])

            app.exec_()

        # create terms of weak formulation
        terms = [
            ph.IntegralTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", order=(2, 0)),
                ph.TestFunction("norm_eig_funcs")),
                            self.dz.bounds,
                            scale=-1),
            ph.ScalarTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", order=(2, 0), location=0),
                ph.TestFunction("norm_eig_funcs", location=0)),
                          scale=-1),
            ph.ScalarTerm(
                ph.Product(ph.Input(self.u),
                           ph.TestFunction("norm_eig_funcs", location=1))),
            ph.ScalarTerm(ph.Product(
                ph.FieldVariable("norm_eig_funcs", location=1),
                ph.TestFunction("norm_eig_funcs", order=1, location=1)),
                          scale=-1),
            ph.ScalarTerm(
                ph.Product(
                    ph.FieldVariable("norm_eig_funcs", location=0),
                    ph.TestFunction("norm_eig_funcs", order=1, location=0))),
            ph.IntegralTerm(
                ph.Product(ph.FieldVariable("norm_eig_funcs"),
                           ph.TestFunction("norm_eig_funcs", order=2)),
                self.dz.bounds)
        ]
        modal_pde = sim.WeakFormulation(terms, name="swm_lib-modal")
        eval_data = sim.simulate_system(modal_pde,
                                        self.ic,
                                        self.dt,
                                        self.dz,
                                        der_orders=(2, 0))

        # display results
        if show_plots:
            win = vis.PgAnimatedPlot(eval_data[0:2],
                                     title="modal approx and derivative")
            win2 = vis.PgSurfacePlot(eval_data[0])
            app.exec_()

        # test for correct transition
        self.assertTrue(
            np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))
Exemplo n.º 12
0
    def test_fem(self):
        """
        use best documented fem case to test all steps in simulation process
        """

        # enter string with mass equations
        # nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
        nodes, ini_funcs = sf.cure_interval(sf.LagrangeSecondOrder,
                                            self.dz.bounds,
                                            node_count=11)
        register_base("init_funcs", ini_funcs, overwrite=True)
        int1 = ph.IntegralTerm(ph.Product(
            ph.TemporalDerivedFieldVariable("init_funcs", 2),
            ph.TestFunction("init_funcs")),
                               self.dz.bounds,
                               scale=self.params.sigma * self.params.tau**2)
        s1 = ph.ScalarTerm(ph.Product(
            ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0),
            ph.TestFunction("init_funcs", location=0)),
                           scale=self.params.m)
        int2 = ph.IntegralTerm(ph.Product(
            ph.SpatialDerivedFieldVariable("init_funcs", 1),
            ph.TestFunction("init_funcs", order=1)),
                               self.dz.bounds,
                               scale=self.params.sigma)
        s2 = ph.ScalarTerm(
            ph.Product(ph.Input(self.u),
                       ph.TestFunction("init_funcs", location=1)),
            -self.params.sigma)

        # derive sate-space system
        string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test")
        self.cf = sim.parse_weak_formulation(string_pde)
        ss = self.cf.convert_to_state_space()

        # generate initial conditions for weights
        q0 = np.array([
            cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2)
        ]).flatten()

        # simulate
        t, q = sim.simulate_state_space(ss, q0, self.dt)

        # calculate result data
        eval_data = []
        for der_idx in range(2):
            eval_data.append(
                sim.evaluate_approximation(
                    "init_funcs",
                    q[:,
                      der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size],
                    t, self.dz))
            eval_data[-1].name = "{0}{1}".format(
                self.cf.name, "_" + "".join(["d" for x in range(der_idx)]) +
                "t" if der_idx > 0 else "")

        # display results
        if show_plots:
            win = vis.PgAnimatedPlot(eval_data[:2],
                                     title="fem approx and derivative")
            win2 = vis.PgSurfacePlot(eval_data[0])
            app.exec_()

        # test for correct transition
        self.assertTrue(
            np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))

        # save some test data for later use
        root_dir = os.getcwd()
        if root_dir.split(os.sep)[-1] == "tests":
            res_dir = os.sep.join([os.getcwd(), "resources"])
        else:
            res_dir = os.sep.join([os.getcwd(), "tests", "resources"])

        if not os.path.isdir(res_dir):
            os.makedirs(res_dir)

        file_path = os.sep.join([res_dir, "test_data.res"])
        with open(file_path, "w+b") as f:
            dump(eval_data, f)
Exemplo n.º 13
0
    def test_it(self):
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        param = [2., 1.5, -3., -1., -.5]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, alpha, beta = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n)

        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)
        rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs",
                                                   "adjoint_eig_funcs", u,
                                                   param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real_if_close(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u)

        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(
            np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])),
                        np.sort(np.linalg.eigvals(ss_modal.A[1])),
                        rtol=1e-05,
                        atol=0.))
        self.assertTrue(
            np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1]))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)
            eval_d = sim.evaluate_approximation("eig_funcs",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()