Exemplo n.º 1
0
def test_nx2igraph_with_labels(nx_graph):
    ig_graph = pyintergraph.nx2igraph(nx_graph)
    nodemap = {v.index: v["name"] for v in ig_graph.vs()}

    assert list(nx_graph.nodes()) == [v["name"] for v in ig_graph.vs()]
    assert [e for e in nx_graph.edges()] == \
            [(nodemap[e.tuple[0]], nodemap[e.tuple[1]])  for e in ig_graph.es()]
Exemplo n.º 2
0
def test_round_robin_ig(ig_graph):

    graph_tool_graph = pyintergraph.igraph2gt(ig_graph,
                                              labelname="somelabelname")

    nx_graph = pyintergraph.gt2nx(graph_tool_graph, labelname="somelabelname")

    reversed_ig_graph = pyintergraph.nx2igraph(nx_graph)

    assert list(v.index for v in ig_graph.vs()) == list(
        v.index for v in reversed_ig_graph.vs())
    assert list(e.tuple for e in ig_graph.es()) == list(
        e.tuple for e in reversed_ig_graph.es())
    assert ig_graph.edge_attributes() == reversed_ig_graph.edge_attributes()
    assert set(ig_graph.vertex_attributes()).add("name") == set(
        reversed_ig_graph.vertex_attributes()).add("name")
    assert type(ig_graph) == type(reversed_ig_graph)
edge_labels = {}
count = 0
for i, origin_state in enumerate(new_data):
    for j, destination_state in enumerate(origin_state):
        rate = new_data[i][j]

        if rate > 0:
            count = count + 1
            try:

                G.add_edge(indices[i], indices[j], weight=rate)
            except:
                pdb.set_trace()
print('ol')
matrix = nx.to_scipy_sparse_matrix(G)

for inflation in [i / 10 for i in range(15, 26)]:
    result = mc.run_mcl(matrix, inflation=inflation)
    clusters = mc.get_clusters(result)
    Q = mc.modularity(matrix=result, clusters=clusters)
    print("inflation:", inflation, "modularity:", Q)
#communities_generator = community.girvan_newman(G)
#top_level_communities = next(communities_generator)

result = mc.run_mcl(matrix)  # run MCL with default parameters
clusters = mc.get_clusters(result)

pdb.set_trace()
GG = pyintergraph.nx2igraph(G, labelname="node_label")
clusters = nx.clustering(G, weight='weight')
Exemplo n.º 4
0
 def communities(self, graph):
     return self.grouping(
         leiden.find_partition(pyintergraph.nx2igraph(graph),
                               leiden.ModularityVertexPartition))
Exemplo n.º 5
0
def test_nx2igraph_raises(wrong_input):
    with pytest.raises(TypeError):
        g = pyintergraph.nx2igraph(wrong_input)