Exemplo n.º 1
0
 def test_rank_square(self):
     #Ranks of square matrices
     x = [[1.0, 2.0, 3.0, 4.0], [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual(svd.rank(mmul(transpose(x), x)), 2)
     x = [[1.0, 2.0, 3.0, 4.0]]
     self.assertEqual(svd.rank(mmul(transpose(x), x)), 1)
     x = [[1.0, 2.0, 3.0, 4.0], [1.0, 0.0, 0.0, 0.0],
          [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual(svd.rank(mmul(transpose(x), x)), 3)
Exemplo n.º 2
0
 def test_rank_square(self):
     #Ranks of square matrices
     x = [[1.0, 2.0, 3.0, 4.0],
          [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual( svd.rank( mmul( transpose(x), x) ),
                       2 )
     x = [[1.0, 2.0, 3.0, 4.0] ]
     self.assertEqual( svd.rank( mmul( transpose(x), x) ),
                       1 )
     x = [[1.0, 2.0, 3.0, 4.0],
          [1.0, 0.0,0.0,0.0],
          [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual( svd.rank( mmul( transpose(x), x) ),
                       3 )
Exemplo n.º 3
0
 def test_pinv_full_rank(self):
     """First check pinv on the matrices of full rank, when PINV is the same as INV"""
     M = [[1.0, 2.0, 3.0, 4.0], [3.0, 5.0, -1.0, 0.0],
          [2.0, -2.0, 1.0, 1.0], [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual(svd.rank(M), 4)  #Rank is full
     #print (svd.svd(M)[1])
     IM = svd.pinv(M)
     #print (svd.svd(IM)[1])
     IIM = svd.pinv(IM)
     #print ("----")
     #print (show_mat( mat_diff( M, IIM )))
     #print (show_mat( mmul(M, IM) ) )
     self.assertTrue(mat_eq(mmul(M, IM), eye(4), 1e-5))  #Inverse is right
     self.assertTrue(mat_eq(M, IIM,
                            1e-5))  #double pinv is the same as original
Exemplo n.º 4
0
 def test_pinv_full_rank(self):
     """First check pinv on the matrices of full rank, when PINV is the same as INV"""
     M = [[1.0, 2.0, 3.0, 4.0],
          [3.0, 5.0, -1.0, 0.0],
          [2.0, -2.0, 1.0, 1.0],
          [-5.0, -2.0, -1.0, 0.0]]
     self.assertEqual( svd.rank(M), 4 ) #Rank is full
     #print (svd.svd(M)[1])
     IM = svd.pinv(M)
     #print (svd.svd(IM)[1])
     IIM = svd.pinv(IM)
     #print ("----")
     #print (show_mat( mat_diff( M, IIM )))
     #print (show_mat( mmul(M, IM) ) )
     self.assertTrue( mat_eq( mmul(M, IM),
                              eye(4),
                              1e-5 ) ) #Inverse is right
     self.assertTrue( mat_eq( M, IIM, 1e-5 ) ) #double pinv is the same as original