Exemplo n.º 1
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if  not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if  cache in ['cache', 'merge']: # cachein, cacheout, mergein, mergeout
        name_in  = '%sin' % cache
        name_out = '%sout' % cache
    else: # webip, webq, cliip, cliq
        name_in  = '%sip' % cache
        name_out = '%sq' % cache
    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])
    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in  = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',
             date_range, req_out, 'gv-',
    )
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
#    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
Exemplo n.º 2
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if cache in ['cache', 'merge']:  # cachein, cacheout, mergein, mergeout
        name_in = '%sin' % cache
        name_out = '%sout' % cache
    else:  # webip, webq, cliip, cliq
        name_in = '%sip' % cache
        name_out = '%sq' % cache

    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])

    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',\
             date_range, req_out, 'gv-',)
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
    #    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
Exemplo n.º 3
0
def plot_zipf(*freq):
	'''
	basic plotting using matplotlib and pylab
	'''
	ranks, frequencies = [], []
	langs, colors = [], []
	langs = ["English", "German", "Finnish"]
	colors = ['#FF0000', '#00FF00', '#0000FF']
	if bonus_part:
		colors.extend(['#00FFFF', '#FF00FF', '#FFFF00'])
		langs.extend(["English (Stemmed)", "German (Stemmed)", "Finnish (Stemmed)"])

	plt.subplot(111) # 1, 1, 1

	num = 6 if bonus_part else 3
	for i in xrange(num):
		ranks.append(range(1, len(freq[i]) + 1))
		frequencies.append([e[1] for e in freq[i]])

		# log x and y axi, both with base 10
		plt.loglog(ranks[i], frequencies[i], marker='', basex=10, color=colors[i], label=langs[i])

	plt.legend()
	plt.grid(True)
	plt.title("Zipf's law!")

	plt.xlabel('Rank')
	plt.ylabel('Frequency')

	plt.show()
Exemplo n.º 4
0
def serve_css(name, length, keys, values):
    from pylab import plt, mpl
    mpl.rcParams['font.sans-serif'] = ['SimHei']
    mpl.rcParams['axes.unicode_minus'] = False
    from matplotlib.font_manager import FontProperties
    # font = FontProperties(fname="d:\Users\ll.tong\Desktop\msyh.ttf", size=12)
    font = FontProperties(fname="/usr/share/fonts/msyh.ttf", size=11)
    plt.xlabel(u'')
    plt.ylabel(u'出现次数',fontproperties=font)
    plt.title(u'词频统计',fontproperties=font)
    plt.grid()
    keys = keys.decode("utf-8").split(' ')
    values = values.split(' ')
    valuesInt = []
    for value in values:
        valuesInt.append(int(value))

    plt.xticks(range(int(length)), keys)
    plt.plot(range(int(length)), valuesInt)
    plt.xticks(rotation=defaultrotation, fontsize=9,fontproperties=font)
    plt.yticks(fontsize=10,fontproperties=font)
    name = name + str(datetime.now().date()).replace(':', '') + '.png'
    imgUrl = 'static/temp/' + name
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(12.2, 2)
    plt.savefig(imgUrl, bbox_inches='tight', figsize=(20,4), dpi=100)
    plt.close()
    tempfile = static_file(name, root='./static/temp/')
    #os.remove(imgUrl)
    return tempfile
Exemplo n.º 5
0
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2 * 4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(_weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w * sample_rate / (2 * np.pi)

        ax.semilogx(freq,
                    20 * np.log10(np.abs(H) + 1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
Exemplo n.º 6
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20 * np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2 * 4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
Exemplo n.º 7
0
    def plot2(self,
              figNum,
              time1,
              data1,
              time2,
              data2,
              title='',
              units='',
              options=''):
        plt.figure(figNum)
        #         plt.hold(True);
        plt.grid(True)
        if title:
            self.title = title
        if not units:
            self.units = units

    #     plt.cla()
        if self.preTitle:
            fig = plt.gcf()
            fig.canvas.set_window_title("Figure %d - %s" %
                                        (figNum, self.preTitle))
        plt.title("%s" % (self.title))
        plt.plot(time1, data1, options)
        plt.plot(time2, data2, options)
        plt.ylabel('(%s)' % (self.units))
        plt.xlabel('Time (s)')
        plt.margins(0.04)
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2*4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(
            _weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w*sample_rate / (2*np.pi)

        ax.semilogx(freq, 20*np.log10(np.abs(H)+1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
Exemplo n.º 9
0
    def subplotSingle2x(self,
                        figNum,
                        plotNum,
                        numRows,
                        numCols,
                        time,
                        data,
                        title='',
                        units='',
                        options=''):

        print("subplotSingle2x")

        plt.figure(figNum)
        if title:
            self.title = title
        if not units:
            self.units = units
        if self.preTitle:
            fig = plt.gcf()
            fig.canvas.set_window_title("%s" % (figNum, self.preTitle))
        if not figNum in self.sharex.keys():
            self.sharex[figNum] = plt.subplot(numRows, numCols, plotNum)
            plt.plot(time, data, options)

        plt.subplot(numRows, numCols, plotNum, sharex=self.sharex[figNum])
        #         plt.hold(True);
        plt.grid(True)
        plt.title("%s" % (self.title))
        plt.plot(time, data, options)
        plt.ylabel('(%s)' % (self.units))
        plt.margins(0.04)
    def plot_post_disp_decomposition(
        self,
        site,
        cmpt,
        loc=2,
        leg_fs=7,
        marker_for_obs='x',
    ):
        y = self.plot_post_obs_linres(site,
                                      cmpt,
                                      label='obs.',
                                      marker=marker_for_obs)
        y += self.plot_post_disp_pred_added(site, cmpt, label='pred.')
        y += self.plot_R_co(site,
                            cmpt,
                            style='-^',
                            label='Rco',
                            color='orange')
        y += self.plot_E_aslip(site, cmpt, color='green')
        y += self.plot_R_aslip(site, cmpt, color='black')

        plt.grid('on')

        plt.legend(loc=loc, prop={'size': leg_fs})
        plt.ylabel(r'meter')
        plt.gcf().autofmt_xdate()
        plt.title('Postseismic Disp. : {site} - {cmpt}'.format(
            site=get_site_true_name(site_id=site), cmpt=cmpt))
Exemplo n.º 11
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20*np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2*4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
    def plot_cumu_disp_decomposition(self,
                                     site,
                                     cmpt,
                                     loc=2,
                                     leg_fs=7,
                                     if_ylim=False):
        self.plot_cumu_obs_linres(site, cmpt)
        y = self.plot_cumu_disp_pred_added(site, cmpt, label='pred.')
        y += self.plot_R_co(site,
                            cmpt,
                            style='-^',
                            label='Rco',
                            color='orange')
        y += self.plot_E_cumu_slip(site, cmpt, color='green')
        y += self.plot_R_aslip(site, cmpt, color='black')

        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        plt.ylabel(r'meter')
        plt.legend(loc=loc, prop={'size': leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site=get_site_true_name(site_id=site), cmpt=cmpt))
Exemplo n.º 13
0
    def test_screenstate_1(self):
        from gdesk import gui
        from pylab import plt
        from pathlib import Path

        gui.load_layout('console')

        samplePath = Path(r'./samples')

        gui.img.select(1)
        gui.img.open(samplePath / 'kodim05.png')
        gui.img.zoom_fit()
        plt.plot(gui.vs.mean(2).mean(1))
        plt.title('Column means of image 1')
        plt.xlabel('Column Number')
        plt.ylabel('Mean')
        plt.grid()
        plt.show()

        gui.img.select(2)
        gui.img.open(samplePath / 'kodim23.png')
        gui.img.zoom_full()
        plt.figure()
        plt.plot(gui.vs.mean(2).mean(0))
        plt.title('Row means of image 2')
        plt.xlabel('Row Number')
        plt.ylabel('Mean')
        plt.grid()
        plt.show()
Exemplo n.º 14
0
def plot_pre(fn):
    t = read_t(fn)
    y = read_y(fn)
    yres = read_yres(fn)

    plt.plot_date(t+_adj_dates, y, 'x', color='lightblue')
    plt.plot_date(t+_adj_dates, yres, 'x', color='lightgreen')

    linsec = read_linsec(fn)

    ch = cut_ts(t, linsec)
    
    plt.plot_date(t[ch]+_adj_dates, y[ch], 'x', color='blue', label='original')
    plt.plot_date(t[ch]+_adj_dates, yres[ch], 'x', color='green', label='residual')

    outliers = read_outlier(fn)
    idx = outlier_index(t, outliers)

    plt.plot_date(t[idx]+_adj_dates, y[idx], 'o', mec='red', mew=1, mfc='blue')
    plt.plot_date(t[idx]+_adj_dates, yres[idx], 'o', mec='red', mew=1, mfc='green')

    for jump in read_jumps(fn):
        plt.axvline(jump + _adj_dates, color='red', ls='--')

    plt.grid('on')
    site = basename(fn).split('.')[0]
    cmpt = basename(fn).split('.')[1]
    plt.title('%s - %s'%(site, cmpt))
Exemplo n.º 15
0
    def plot(self, new_plot=False, xlim=None, ylim=None, title=None, figsize=None,
             xlabel=None, ylabel=None, fontsize=None, show_legend=True, grid=True):
        """
        Plot data using matplotlib library. Use show() method for matplotlib to see result or ::

            %pylab inline

        in IPython to see plot as cell output.

        :param bool new_plot: create or not new figure
        :param xlim: x-axis range
        :param ylim: y-axis range
        :type xlim: None or tuple(x_min, x_max)
        :type ylim: None or tuple(y_min, y_max)
        :param title: title
        :type title: None or str
        :param figsize: figure size
        :type figsize: None or tuple(weight, height)
        :param xlabel: x-axis name
        :type xlabel: None or str
        :param ylabel: y-axis name
        :type ylabel: None or str
        :param fontsize: font size
        :type fontsize: None or int
        :param bool show_legend: show or not labels for plots
        :param bool grid: show grid or not

        """
        xlabel = self.xlabel if xlabel is None else xlabel
        ylabel = self.ylabel if ylabel is None else ylabel
        figsize = self.figsize if figsize is None else figsize
        fontsize = self.fontsize if fontsize is None else fontsize
        self.fontsize_ = fontsize
        self.show_legend_ = show_legend
        title = self.title if title is None else title
        xlim = self.xlim if xlim is None else xlim
        ylim = self.ylim if ylim is None else ylim
        new_plot = self.new_plot or new_plot

        if new_plot:
            plt.figure(figsize=figsize)

        plt.xlabel(xlabel, fontsize=fontsize)
        plt.ylabel(ylabel, fontsize=fontsize)
        plt.title(title, fontsize=fontsize)
        plt.tick_params(axis='both', labelsize=fontsize)
        plt.grid(grid)

        if xlim is not None:
            plt.xlim(xlim)

        if ylim is not None:
            plt.ylim(ylim)

        self._plot()

        if show_legend:
            plt.legend(loc='best', scatterpoints=1)
Exemplo n.º 16
0
 def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0, sh[0]))
     plt.gca().set_xticks(range(0, sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
Exemplo n.º 17
0
 def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0,sh[0]))
     plt.gca().set_xticks(range(0,sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
Exemplo n.º 18
0
def plotSigmoidTanh(fname=None):
    fig, ax = plt.subplots()
    xs = np.linspace(-10.0, 10.0, num = 50, endpoint=True)
    ys = [sigmoidTanh(x, 0.9) for x in xs]
    ax.plot(xs, ys, 'black')
    plt.title("y=sigmoid(s)")
    plt.grid(True)
    if fname:
        plt.savefig(fname)
    plt.show()
Exemplo n.º 19
0
 def test_dip(self):
     xf = arange(0, 425)
     dips = self.fm.get_dip(xf)
     plt.plot(xf,dips)
     plt.grid('on')
     plt.gca().set_xticks(self.fm.Y_PC)
     plt.ylim([0, 30])
     plt.gca().invert_yaxis()
     plt.savefig(join(self.outs_dir, '~y_fc_dips.png'))
     plt.close()
Exemplo n.º 20
0
def plot_iou(checkpoint_dir, iou_list):
    x = range(0, len(iou_list))
    y = iou_list
    plt.switch_backend('agg')
    plt.plot(x, y, color='red', marker='o', label='IOU')
    plt.xticks(range(0, len(iou_list) + 3, (len(iou_list) + 10) // 10))
    plt.legend()
    plt.grid()
    plt.savefig(os.path.join(checkpoint_dir, 'iou_fig.pdf'))
    plt.close()
Exemplo n.º 21
0
def plot_loss(checkpoint_dir, loss_list, save_pred_every):
    x = range(0, len(loss_list) * save_pred_every, save_pred_every)
    y = loss_list
    plt.switch_backend('agg')
    plt.plot(x, y, color='blue', marker='o', label='Train loss')
    plt.xticks(range(0, len(loss_list) * save_pred_every + 3, (len(loss_list) * save_pred_every + 10) // 10))
    plt.legend()
    plt.grid()
    plt.savefig(os.path.join(checkpoint_dir, 'loss_fig.pdf'))
    plt.close()
Exemplo n.º 22
0
 def test_dip(self):
     xf = arange(0, 425)
     dips = self.fm.get_dip(xf)
     plt.plot(xf, dips)
     plt.grid('on')
     plt.gca().set_xticks(self.fm.Y_PC)
     plt.ylim([0, 30])
     plt.gca().invert_yaxis()
     plt.savefig(join(self.outs_dir, '~y_fc_dips.png'))
     plt.close()
Exemplo n.º 23
0
def plot_precisonAndjac(checkpoint_dir, pre_list, jac_list):
    x = range(0, len(pre_list))
    y = pre_list
    y2 = jac_list
    plt.switch_backend('agg')
    plt.plot(x, y, color='red', marker='o', label='precision')
    plt.plot(x, y2, color='blue', marker='o', label='jaccard')
    plt.xticks(range(0, len(pre_list) + 3, (len(pre_list) + 10) // 10))
    plt.legend()
    plt.grid()
    plt.savefig(os.path.join(checkpoint_dir, 'precisionAndjac_fig1.pdf'))
    plt.close()
Exemplo n.º 24
0
def plot_fault_framework(fault_framework):
    fm = fault_framework
    plt.plot(fm.Y_PC, fm.DEP, '-o')
    plt.axis('equal')
    plt.axhline(0, color='black')
    plt.gca().set_yticks(fm.DEP)
    plt.gca().set_xticks(fm.Y_PC)
    plt.grid('on')
    plt.xlabel('From trench to continent(km)')
    plt.ylabel('depth (km)')

    for xi, yi, dip in zip(fm.Y_PC, fm.DEP, fm.DIP_D):
        plt.text(xi, yi, 'dip = %.1f'%dip)

    plt.gca().invert_yaxis()
Exemplo n.º 25
0
def plotSigmoidBias(fname=None):
    fig, ax = plt.subplots()
    xs = np.linspace(-10.0, 10.0, num = 50, endpoint=True)
    ys = [sigmoid(1.0 * x - 5.0) for x in xs]
    ax.plot(xs, ys, 'black', linestyle='-', label='sig(1.0 * x - 1.0 * 5)')
    ys = [sigmoid(1.0 * x) for x in xs]
    ax.plot(xs, ys, 'black', linestyle='--', label='sig(1.0 * x + 1.0 * 0)')
    ys = [sigmoid(1.0 * x + 5.0) for x in xs]
    ax.plot(xs, ys, 'black', linestyle='-.', label='sig(1.0 * x + 1.0 * 5)')
    legend = ax.legend(loc='best', framealpha=0.5)
    plt.title("y=sig(s * w1 + 1.0 * w2)")
    plt.grid(True)
    if fname:
        plt.savefig(fname)
    plt.show()
Exemplo n.º 26
0
def plot_fault_framework(fault_framework):
    fm = fault_framework
    plt.plot(fm.Y_PC, fm.DEP, '-o')
    plt.axis('equal')
    plt.axhline(0, color='black')
    plt.gca().set_yticks(fm.DEP)
    plt.gca().set_xticks(fm.Y_PC)
    plt.grid('on')
    plt.xlabel('From trench to continent(km)')
    plt.ylabel('depth (km)')

    for xi, yi, dip in zip(fm.Y_PC, fm.DEP, fm.DIP_D):
        plt.text(xi, yi, 'dip = %.1f' % dip)

    plt.gca().invert_yaxis()
Exemplo n.º 27
0
def draw(x, y, x_text, y_text, title):
    plt.figure(figsize=(30, 5))
    plt.plot(x, y, color='red', label='data_check_result')
    for i in range(1, len(x)):
        plt.text(x[i], y[i], str((x[i], round(y[i], 4))))
    #plt.text(x,y,(x,y),color='red')
    plt.xlabel(x_text)
    plt.ylabel(y_text)
    plt.title(title)
    plt.grid(True)
    plt.legend()
    pic = time.strftime("%Y-%m-%d_%H_%S_%M", time.localtime()) + ".pdf"

    plt.savefig(pic)
    plt.show()
Exemplo n.º 28
0
    def test_dep(self):
        xf = arange(0, 425)
        deps = self.fm.get_dep(xf)
        plt.plot(xf, deps)

        plt.gca().set_yticks(self.fm.DEP)
        plt.gca().set_xticks(self.fm.Y_PC)

        plt.grid('on')
        plt.title('Ground x versus depth')
        plt.xlabel('Ground X (km)')
        plt.ylabel('depth (km)')
        plt.axis('equal')
        plt.gca().invert_yaxis()
        plt.savefig(join(self.outs_dir, '~Y_PC_vs_deps.png'))
        plt.close()
Exemplo n.º 29
0
Arquivo: map.py Projeto: mengboy1/nnet
 def plotMap(self, fname=None):
     fig, ax = plt.subplots()
     ax.plot([self.o1[0], self.a[0], self.o2[0]],
             [self.o1[1], self.a[1], self.o2[1]],
             'r',
             label='Trajectory 0')
     ax.plot([self.o1[0], self.b[0], self.o2[0]],
             [self.o1[1], self.b[1], self.o2[1]],
             'b--',
             label='Trajectory 1')
     legend = ax.legend(loc='best', framealpha=0.5)
     plt.title("Map")
     plt.grid(True)
     if fname:
         plt.savefig(fname)
     plt.show()
Exemplo n.º 30
0
    def test_dep(self):
        xf = arange(0, 425)
        deps = self.fm.get_dep(xf)
        plt.plot(xf,deps)

        plt.gca().set_yticks(self.fm.DEP)
        plt.gca().set_xticks(self.fm.Y_PC)
        
        plt.grid('on')
        plt.title('Ground x versus depth')
        plt.xlabel('Ground X (km)')
        plt.ylabel('depth (km)')
        plt.axis('equal')
        plt.gca().invert_yaxis()
        plt.savefig(join(self.outs_dir, '~Y_PC_vs_deps.png'))
        plt.close()
Exemplo n.º 31
0
    def plotNE(self, figNum, north, east, title='', units='', options=''):

        plt.figure(figNum)
        #     plt.cla()
        #         plt.hold(True);
        plt.grid(True)
        if title:
            self.title = title
        if not units:
            self.units = units
        if self.preTitle:
            fig = plt.gcf()
            fig.canvas.set_window_title("%s" % (self.preTitle))
        plt.title("%s" % (self.title))
        plt.plot(east, north, options)
        plt.xlabel('East (%s)' % (self.units))
        plt.ylabel('North (%s)' % (self.units))
Exemplo n.º 32
0
def plot_pre(fn):
    t = read_t(fn)
    y = read_y(fn)
    yres = read_yres(fn)

    plt.plot_date(t + _adj_dates, y, 'x', color='lightblue')
    plt.plot_date(t + _adj_dates, yres, 'x', color='lightgreen')

    linsec = read_linsec(fn)

    ch = cut_ts(t, linsec)

    plt.plot_date(t[ch] + _adj_dates,
                  y[ch],
                  'x',
                  color='blue',
                  label='original')
    plt.plot_date(t[ch] + _adj_dates,
                  yres[ch],
                  'x',
                  color='green',
                  label='residual')

    outliers = read_outlier(fn)
    idx = outlier_index(t, outliers)

    plt.plot_date(t[idx] + _adj_dates,
                  y[idx],
                  'o',
                  mec='red',
                  mew=1,
                  mfc='blue')
    plt.plot_date(t[idx] + _adj_dates,
                  yres[idx],
                  'o',
                  mec='red',
                  mew=1,
                  mfc='green')

    for jump in read_jumps(fn):
        plt.axvline(jump + _adj_dates, color='red', ls='--')

    plt.grid('on')
    site = basename(fn).split('.')[0]
    cmpt = basename(fn).split('.')[1]
    plt.title('%s - %s' % (site, cmpt))
Exemplo n.º 33
0
    def test_code_3(self):
        from gdesk import gui
        from pylab import plt

        plt.plot(gui.vs.mean(1))
        plt.grid(True)
        plt.title('Column Means')
        plt.show()
        plt.figure()
        plt.plot(gui.vs.mean(0))
        plt.grid(True)
        plt.title('Row Means')
        plt.show()

        answer = gui.question('Looks everything OK?')

        plt.close('all')
        gui.menu_trigger('image', GammaDeskSuite.panid,
                         ['Edit', 'Show Prior Image'])
Exemplo n.º 34
0
def _plot_base(dep, val, deplim_small, xlim_small, xlabel):
    plt.subplot(1, 2, 1)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylabel('depth/km')
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)

    plt.subplot(1, 2, 2)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylim(deplim_small)
    plt.xlim(xlim_small)
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)
Exemplo n.º 35
0
def _plot_base(dep, val, deplim_small, xlim_small, xlabel):
    plt.subplot(1,2,1)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylabel('depth/km')
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)

    plt.subplot(1,2,2)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylim(deplim_small)
    plt.xlim(xlim_small)
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)
Exemplo n.º 36
0
def freqz(sosmat, nsamples=44100, sample_rate=44100, plot=True):
    """Plots Frequency response of sosmat."""
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(nsamples)
    x[int(nsamples/2)] = 0.999
    y, states = sosfilter_double_c(x, sosmat)
    Y = fft(y)
    f = fftfreq(len(x), 1.0/sample_rate)
    if plot:
        plt.grid(True)
        plt.axis([0, sample_rate / 2, -100, 5])
        L = 20*np.log10(np.abs(Y[:int(len(x)/2)]) + 1e-17)
        plt.semilogx(f[:int(len(x)/2)], L, lw=0.5)
        plt.hold(True)
        plt.title(u'freqz sos filter')
        plt.xlabel('Frequency / Hz')
        plt.ylabel(u'Damping /dB(FS)')
        plt.xlim((10, sample_rate/2))
        plt.hold(False)
    return x, y, f, Y
Exemplo n.º 37
0
def animate(S0, u, d, p, T, N, P=10):
    '''
    S: data
    NumSims: simulation size
    numPaths: no. of simulated paths shown
    '''
    S = simulate(S0, u, d, p, T, N)
    fig, mainplot = plt.subplots(figsize=(10, 5))
    mainplot.plot(S[:, :P])
    plt.grid(True)
    plt.xlabel('time step')
    plt.ylabel('price')
    divider = make_axes_locatable(mainplot)
    axHist = divider.append_axes("right", 2.5, pad=0.1, sharey=mainplot)
    axHist.hist(S[-1, :N], bins=15, orientation='horizontal', normed=True)
    axHist.yaxis.set_ticks_position("right")
    axHist.xaxis.set_major_formatter(FuncFormatter('{0:.1%}'.format))
    plt.grid(True)
    plt.xlabel('probability')
    plt.show()
    def plot_vel_decomposition(self, site, cmpt, loc=0, leg_fs=7,
                       if_ylim=False
                       ):
        y = self.plot_pred_vel_added(site, cmpt, label='total')
        y += self.plot_vel_R_co(site, cmpt,
                            style='-^', label='Rco', color='orange')
        y += self.plot_vel_E_cumu_slip(site, cmpt, color='green')
        y += self.plot_vel_R_aslip(site, cmpt, color='black')
        
        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        plt.ylabel(r'mm/yr')
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site = get_site_true_name(site_id=site),
            cmpt = cmpt
            ))
Exemplo n.º 39
0
def freqz(sosmat, nsamples=44100, sample_rate=44100, plot=True):
    """Plots Frequency response of sosmat."""
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(nsamples)
    x[nsamples/2] = 0.999
    y, states = sosfilter_double_c(x, sosmat)
    Y = fft(y)
    f = fftfreq(len(x), 1.0/sample_rate)
    if plot:
        plt.grid(True)
        plt.axis([0, sample_rate / 2, -100, 5])
        L = 20*np.log10(np.abs(Y[:len(x)/2]) + 1e-17)
        plt.semilogx(f[:len(x)/2], L, lw=0.5)
        plt.hold(True)
        plt.title('freqz sos filter')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')
        plt.xlim((10, sample_rate/2))
        plt.hold(False)
    return x, y, f, Y
    def do_plot():
        if solver.iter % display == 0:

            loss[solver.iter] = solver.net.blobs['loss3/loss3'].data.copy()
            loss_disp = 'loss=' + str(loss[solver.iter])

            print '%3d) %s' % (solver.iter, loss_disp)

            train_loss[solver.iter / display] = loss[solver.iter]
            ax1.plot(it_axes[0:solver.iter / display],
                     train_loss[0:solver.iter / display], 'r')
            # if it > test_interval:
            #     ax1.plot(it_val_axes[0:it/test_interval], val_loss[0:it/test_interval], 'g') #Val always on top
            ax1.set_ylim([5, 7])
            plt.title(training_id)
            plt.ion()
            plt.grid(True)
            plt.show()
            plt.pause(0.001)

            # VALIDATE Validation done this way only uses 1 GPU
        if solver.iter % test_interval == 0 and solver.iter > 0:
            loss_val = 0
            for i in range(test_iters):
                solver.test_nets[0].forward()
                loss_val += solver.test_nets[0].blobs['loss3/loss3'].data
            loss_val /= test_iters
            print("Val loss: {:.3f}".format(loss_val))

            val_loss[solver.iter / test_interval - 1] = loss_val
            ax1.plot(it_val_axes[0:solver.iter / test_interval],
                     val_loss[0:solver.iter / test_interval], 'g')
            ax1.set_ylim([5, 7])
            plt.title(training_id)
            plt.ion()
            plt.grid(True)
            plt.show()
            plt.pause(0.001)
            title = '../../../datasets/SocialMedia/models/training/' + training_id + str(
                solver.iter) + '.png'  # Save graph to disk
            savefig(title, bbox_inches='tight')
    def plot_post_disp_decomposition(self, site, cmpt, loc=2, leg_fs=7,
                       added_label = None,
                       marker_for_obs = 'x',
                       ):
        y = self.plot_post_obs_linres(site,cmpt, label='obs.', marker=marker_for_obs)
        y += self.plot_post_disp_pred_from_result_file(site,cmpt, label='pred.')
        y += self.plot_R_co(site, cmpt,
                            style = '-^', label='Rco', color='orange')
        y += self.plot_E_aslip(site, cmpt, color='green')

        plt.grid('on')

        self.plot_post_disp_pred_added(site, cmpt, label=added_label)
        
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.ylabel(r'm')
        plt.gcf().autofmt_xdate()
        plt.title('Postseismic Disp. : {site} - {cmpt}'.format(
            site = get_site_true_name(site_id = site),
            cmpt = cmpt
            ))
Exemplo n.º 42
0
Arquivo: map.py Projeto: mengboy1/nnet
 def plot(self, good, bad, dataset0, dataset1, fname=None):
     fig, ax = plt.subplots()
     ax.plot([self.o1[0], self.a[0], self.o2[0]],
             [self.o1[1], self.a[1], self.o2[1]],
             'r',
             label='Trajectory 0')
     ax.plot([self.o1[0], self.b[0], self.o2[0]],
             [self.o1[1], self.b[1], self.o2[1]],
             'b--',
             label='Trajectory 1')
     if dataset0.any():
         ax.plot(dataset0[:, 0],
                 dataset0[:, 1],
                 'ro',
                 label='Train Dataset 0')
     if dataset1.any():
         ax.plot(dataset1[:, 0],
                 dataset1[:, 1],
                 'b*',
                 label='Train Dataset 1')
     if good.any():
         ax.plot(good[:, 0],
                 good[:, 1],
                 'go',
                 markersize=10,
                 label='Correct prediction')
     if bad.any():
         ax.plot(bad[:, 0],
                 bad[:, 1],
                 'black',
                 linestyle='none',
                 marker='D',
                 markersize=10,
                 label='Incorrect prediction')
     legend = ax.legend(loc='best', framealpha=0.5)
     plt.title("Map")
     plt.grid(True)
     if fname:
         plt.savefig(fname)
     plt.show()
    def plot_cumu_disp_decomposition(self, site, cmpt, loc=2, leg_fs=7,
                       if_ylim=False,
                       added_label = None,
                       ):        
        self.plot_cumu_obs_linres(site, cmpt)
        y = self.plot_cumu_disp_pred_from_result_file(site, cmpt, label='pred.')
        y += self.plot_R_co(site, cmpt,
                            style='-^', label='Rco', color='orange')
        y += self.plot_E_cumu_slip(site, cmpt, color='green')

        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        self.plot_cumu_disp_pred_added(site, cmpt, label=added_label)
        plt.ylabel(r'm')
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site = get_site_true_name(site_id=site),
            cmpt = cmpt
            ))
Exemplo n.º 44
0
def get_axis():
    fig, axes = plt.subplots(ncols=1,
                             nrows=1,
                             sharex=True,
                             figsize=(7, 4.7),
                             dpi=80,
                             facecolor='w',
                             edgecolor='k')  # 1 inch = 2.5cm
    fig.subplots_adjust(right=0.90,
                        bottom=0.15,
                        top=0.85,
                        hspace=0.2,
                        wspace=0.1)

    # gcf() means get the current fig, so  plt.gcf().axes() means create axes in current fig
    # grid on
    # plt.grid(color='r', linestyle='--', linewidth=1,alpha=0.3)
    plt.grid(color='lightgray', linestyle='-', linewidth=0.5, alpha=0.3)

    #figure ax size setting

    return axes
Exemplo n.º 45
0
def plot_L_curve(
    files,
    nlin_pars=['log10_He_', 'log10_visM_', 'rake'],
    nlin_pars_ylabels=[r'$log_{10}(He)$', r'$log_{10}(visM)$', 'rake'],
):
    nreses = collect_from_result_files(files, 'residual_norm_weighted')
    nroughs = collect_from_result_files(files, 'roughening_norm')
    num_subplots = 1 + len(nlin_pars)

    x1 = amin(nreses)
    x2 = amax(nreses)
    dx = x2 - x1
    xlim = (x1 - dx * 0.02, x2 + dx * 0.2)
    xticks = range(int(x1), int(x2), 5)

    plt.subplot(num_subplots, 1, 1)
    plt.loglog(nreses, nroughs, 'o-')
    plt.xlim(xlim)
    plt.gca().set_xticks(xticks)
    plt.gca().get_xaxis().set_major_formatter(
        matplotlib.ticker.ScalarFormatter())
    plt.ylabel('roughening')
    plt.xlabel('Residual Norm')
    plt.grid('on')

    nth = 2
    for par, par_label in zip(nlin_pars, nlin_pars_ylabels):
        y = collect_from_result_files(files, par)
        plt.subplot(num_subplots, 1, nth)
        plt.semilogx(nreses, y, 'o-')
        plt.xlim(xlim)
        plt.gca().set_xticks(xticks)
        plt.gca().get_xaxis().set_major_formatter(
            matplotlib.ticker.ScalarFormatter())
        plt.ylabel(par_label)
        plt.xlabel('Residual Norm')
        plt.grid('on')
        nth += 1
def plotLive(combine_Type, combine_Name, lat_Name, long_Name, massFlow_Name, filename):
    data = pd.read_csv(filename)

    if combine_Type != 0:

        comb_df = data[data[combine_Name] == combine_Type]
        lat_df = comb_df[lat_Name]
        lon_df = comb_df[long_Name]
        y = comb_df[massFlow_Name]

    else:

        lat_df = data[lat_Name]
        lon_df = data[long_Name]
        y = data[massFlow_Name]

    e,n = convertToUTM(lat_df, lon_df)

    def makeFig():
        plt.plot(x,y)


    plt.ylabel('Easting')
    plt.xlabel('Northing')


    plt.ion() # enable interactivity
    plt.grid()
    fig = plt.figure() # make a figure

    x=list()
    y=list()

    for i in arange(len(n)):
        x.append(n[i])
        y.append(e[i])
        i+=1
        drawnow(makeFig)
Exemplo n.º 47
0
def plot_L_curve(files,
                 nlin_pars = ['log10_He_','log10_visM_','rake'],
                 nlin_pars_ylabels = [r'$log_{10}(He)$',
                                      r'$log_{10}(visM)$',
                                      'rake'],
                 ):
    nreses = collect_from_result_files(files, 'residual_norm_weighted')
    nroughs = collect_from_result_files(files, 'roughening_norm')
    num_subplots = 1 + len(nlin_pars)

    x1 = amin(nreses)
    x2 = amax(nreses)
    dx = x2 - x1
    xlim = (x1-dx*0.02, x2+dx*0.2)
    xticks = range(int(x1), int(x2),5)

    plt.subplot(num_subplots,1,1)
    plt.loglog(nreses, nroughs,'o-')
    plt.xlim(xlim)
    plt.gca().set_xticks(xticks)
    plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
    plt.ylabel('roughening')
    plt.xlabel('Residual Norm')
    plt.grid('on')

    nth = 2
    for par, par_label in zip(nlin_pars, nlin_pars_ylabels):
        y = collect_from_result_files(files, par)
        plt.subplot(num_subplots,1,nth)
        plt.semilogx(nreses, y,'o-')
        plt.xlim(xlim)
        plt.gca().set_xticks(xticks)
        plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
        plt.ylabel(par_label)
        plt.xlabel('Residual Norm')
        plt.grid('on')
        nth += 1
Exemplo n.º 48
0
def get_linear_model_histogram(code, ptype="f", dtype="d", start=None, end=None):
    # 399001','cyb':'zs399006','zxb':'zs399005
    # code = '999999'
    # code = '601608'
    # code = '000002'
    # asset = ts.get_hist_data(code)['close'].sort_index(ascending=True)
    # df = tdd.get_tdx_Exp_day_to_df(code, 'f').sort_index(ascending=True)
    df = tdd.get_tdx_append_now_df(code, ptype, start, end).sort_index(ascending=True)
    if not dtype == "d":
        df = tdd.get_tdx_stock_period_to_type(df, dtype).sort_index(ascending=True)
    asset = df["close"]
    log.info("df:%s" % asset[:1])
    asset = asset.dropna()
    dates = asset.index

    if not code.startswith("999") or not code.startswith("399"):
        if code[:1] in ["5", "6", "9"]:
            code2 = "999999"
        elif code[:1] in ["3"]:
            code2 = "399006"
        else:
            code2 = "399001"
        df1 = tdd.get_tdx_append_now_df(code2, ptype, start, end).sort_index(ascending=True)
        if not dtype == "d":
            df1 = tdd.get_tdx_stock_period_to_type(df1, dtype).sort_index(ascending=True)
        asset1 = df1.loc[asset.index, "close"]
        startv = asset1[:1]
        # asset_v=asset[:1]
        # print startv,asset_v
        asset1 = asset1.apply(lambda x: round(x / asset1[:1], 2))
        # print asset1[:4]

    # 画出价格随时间变化的图像
    # _, ax = plt.subplots()
    # fig = plt.figure()
    fig = plt.figure(figsize=(16, 10))
    # fig = plt.figure(figsize=(16, 10), dpi=72)

    # plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    plt.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25)
    # set (gca,'Position',[0,0,512,512])
    # fig.set_size_inches(18.5, 10.5)
    # fig=plt.fig(figsize=(14,8))
    ax1 = fig.add_subplot(321)
    # asset=asset.apply(lambda x:round( x/asset[:1],2))
    ax1.plot(asset)
    # ax1.plot(asset1,'-r', linewidth=2)
    ticks = ax1.get_xticks()
    ax1.set_xticklabels([dates[i] for i in ticks[:-1]])  # Label x-axis with dates

    # 拟合
    X = np.arange(len(asset))
    x = sm.add_constant(X)
    model = regression.linear_model.OLS(asset, x).fit()
    a = model.params[0]
    b = model.params[1]
    # log.info("a:%s b:%s" % (a, b))
    log.info("X:%s a:%s b:%s" % (len(asset), a, b))
    Y_hat = X * b + a

    # 真实值-拟合值,差值最大最小作为价值波动区间
    # 向下平移
    i = (asset.values.T - Y_hat).argmin()
    c_low = X[i] * b + a - asset.values[i]
    Y_hatlow = X * b + a - c_low

    # 向上平移
    i = (asset.values.T - Y_hat).argmax()
    c_high = X[i] * b + a - asset.values[i]
    Y_hathigh = X * b + a - c_high
    plt.plot(X, Y_hat, "k", alpha=0.9)
    plt.plot(X, Y_hatlow, "r", alpha=0.9)
    plt.plot(X, Y_hathigh, "r", alpha=0.9)
    plt.xlabel("Date", fontsize=14)
    plt.ylabel("Price", fontsize=14)
    plt.title(code, fontsize=14)
    plt.grid(True)

    # plt.legend([code]);
    # plt.legend([code, 'Value center line', 'Value interval line']);
    # fig=plt.fig()
    # fig.figsize = [14,8]
    scale = 1.1
    zp = zoompan.ZoomPan()
    figZoom = zp.zoom_factory(ax1, base_scale=scale)
    figPan = zp.pan_factory(ax1)

    ax2 = fig.add_subplot(323)
    ticks = ax2.get_xticks()
    ax2.set_xticklabels([dates[i] for i in ticks[:-1]])
    # plt.plot(X, Y_hat, 'k', alpha=0.9)
    n = 5
    d = (-c_high + c_low) / n
    c = c_high
    while c <= c_low:
        Y = X * b + a - c
        plt.plot(X, Y, "r", alpha=0.9)
        c = c + d
    # asset=asset.apply(lambda x:round(x/asset[:1],2))
    ax2.plot(asset)
    # ax2.plot(asset1,'-r', linewidth=2)
    plt.xlabel("Date", fontsize=14)
    plt.ylabel("Price", fontsize=14)
    plt.grid(True)

    # plt.title(code, fontsize=14)
    # plt.legend([code])

    # 将Y-Y_hat股价偏离中枢线的距离单画出一张图显示,对其边界线之间的区域进行均分,大于0的区间为高估,小于0的区间为低估,0为价值中枢线。
    ax3 = fig.add_subplot(322)
    # distance = (asset.values.T - Y_hat)
    distance = (asset.values.T - Y_hat)[0]
    if code.startswith("999") or code.startswith("399"):
        ax3.plot(asset)
        plt.plot(distance)
        ticks = ax3.get_xticks()
        ax3.set_xticklabels([dates[i] for i in ticks[:-1]])
        n = 5
        d = (-c_high + c_low) / n
        c = c_high
        while c <= c_low:
            Y = X * b + a - c
            plt.plot(X, Y - Y_hat, "r", alpha=0.9)
            c = c + d
        ax3.plot(asset)
        plt.xlabel("Date", fontsize=14)
        plt.ylabel("Price-center price", fontsize=14)
        plt.grid(True)
    else:
        as3 = asset.apply(lambda x: round(x / asset[:1], 2))
        ax3.plot(as3)
        ax3.plot(asset1, "-r", linewidth=2)
        plt.grid(True)
        zp3 = zoompan.ZoomPan()
        figZoom = zp3.zoom_factory(ax3, base_scale=scale)
        figPan = zp3.pan_factory(ax3)
    # plt.title(code, fontsize=14)
    # plt.legend([code])

    # 统计出每个区域内各股价的频数,得到直方图,为了更精细的显示各个区域的频数,这里将整个边界区间分成100份。

    ax4 = fig.add_subplot(325)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    # now_distanse=int((asset.iat[-1]-Y_hat[-1])/Y_hat[-1]*100)
    # log.debug("dis:%s now:%s"%(distance[:2],now_distanse))
    # log.debug("now_distanse:%s"%now_distanse)
    distance = asset.values.T - Y_hat
    now_distanse = asset.iat[-1] - Y_hat[-1]
    # distance = (asset.values.T-Y_hat)[0]
    pd.Series(distance).plot(kind="hist", stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color="red")
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel("Undervalue ------------------------------------------> Overvalue", fontsize=14)
    plt.ylabel("Frequency", fontsize=14)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1]])
    plt.grid(True)

    # plt.show()
    # import os
    # print(os.path.abspath(os.path.curdir))

    ax5 = fig.add_subplot(326)
    # fig.figsize=(5, 10)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    distance = (asset.values.T - Y_hat) / Y_hat * 100
    now_distanse = (asset.iat[-1] - Y_hat[-1]) / Y_hat[-1] * 100
    log.debug("dis:%s now:%s" % (distance[:2], now_distanse))
    log.debug("now_distanse:%s" % now_distanse)
    # n, bins = np.histogram(distance, 50)
    # print n, bins[:2]
    pd.Series(distance).plot(kind="hist", stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color="red")
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel("Undervalue ------------------------------------------> Overvalue", fontsize=14)
    plt.ylabel("Frequency", fontsize=14)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1]])
    plt.grid(True)

    ax6 = fig.add_subplot(324)
    h = df.loc[:, ["open", "close", "high", "low"]]
    highp = h["high"].values
    lowp = h["low"].values
    openp = h["open"].values
    closep = h["close"].values
    lr = LinearRegression()
    x = np.atleast_2d(np.linspace(0, len(closep), len(closep))).T
    lr.fit(x, closep)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    xt = np.atleast_2d(np.linspace(0, len(closep) + 200, len(closep) + 200)).T
    yt = lr.predict(xt)
    bV = []
    bP = []
    for i in range(1, len(highp) - 1):
        if highp[i] <= highp[i - 1] and highp[i] < highp[i + 1] and lowp[i] <= lowp[i - 1] and lowp[i] < lowp[i + 1]:
            bV.append(lowp[i])
            bP.append(i)

    d, p = LIS(bV)

    idx = []
    for i in range(len(p)):
        idx.append(bP[p[i]])
    lr = LinearRegression()
    X = np.atleast_2d(np.array(idx)).T
    Y = np.array(d)
    lr.fit(X, Y)
    estV = lr.predict(xt)
    ax6.plot(closep, linewidth=2)
    ax6.plot(idx, d, "ko")
    ax6.plot(xt, estV, "-r", linewidth=3)
    ax6.plot(xt, yt, "-g", linewidth=3)
    plt.grid(True)

    # plt.tight_layout()
    zp2 = zoompan.ZoomPan()
    figZoom = zp2.zoom_factory(ax6, base_scale=scale)
    figPan = zp2.pan_factory(ax6)
    show()
Exemplo n.º 49
0
import h5py
from pylab import plt

def collect_results(outs_files, key):
    outs = []
    for file in outs_files:
        with h5py.File(file, 'r') as fid:
            out = fid[key][...]
            outs.append(out)
    return outs

files = sorted(glob.glob('../outs/ano_??.h5'))
nrough1 = collect_results(files, 'regularization/roughening/norm')
nres1 = collect_results(files, 'misfit/norm_weighted')


files = sorted(glob.glob('../../run0/outs/ano_??.h5'))
nrough0 = collect_results(files, 'regularization/roughening/norm')
nres0 = collect_results(files, 'misfit/norm_weighted')

plt.loglog(nres0, nrough0, '.', label='Result0')
plt.loglog(nres1, nrough1, '.', label='Result1')
plt.grid('on')
plt.xlabel('norm of weighted residual')
plt.ylabel('norm of solution roughness')
plt.xlim([.7,5])
plt.legend()

plt.savefig('compare_misfit.png')
plt.show()
Exemplo n.º 50
0
def plot_slip_overview(slip,
                    output_file,
                    if_x_log=False,
                    xlim=[0, 1344],
                    ylim = [0,100],
                    yticks = [20, 40, 60],
                    xticks = [1, 10, 100, 1000],
                    xticklabels = [r'$10^0$', r'$10^1$', r'$10^2$', r'$10^3$'],
                    rotation = 45,
                    fontsize = 10,
                    ):
    num_subflts_strike = slip.num_subflt_along_strike
    num_subflts_dip = slip.num_subflt_along_dip

    epochs = slip.get_epochs()

    fig, axes = plt.subplots(num_subflts_dip,
                             num_subflts_strike,
                             sharex=True, sharey=True)
    for ii in range(num_subflts_dip):
        for jj in range(num_subflts_strike):
            ax = axes[ii][jj]
            slip_subflt = slip.get_cumu_slip_at_subfault(ii,jj)
            plt.sca(ax)
            plt.fill_between(x=epochs, y1=slip_subflt, y2=0, color='r')
            if if_x_log:
                ax.set_xscale('log')
            plt.xlim(xlim)
            plt.ylim(ylim)
            plt.grid('on')
            plt.box('on')

            plt.tick_params(axis='both',which='both',
                            bottom='off', top='off', left='off', right='off',
                            labelbottom='off', labeltop='off', labelleft='off', labelright='off')

    fig.subplots_adjust(hspace=0, wspace=0)

    for ax in axes[-1,::2]:
        plt.sca(ax)
        plt.tick_params(axis='x',which='major',
                            bottom='on', top='off', left='off', right='off',
                            labelbottom='on', labeltop='off', labelleft='off', labelright='off')
        ax.set_xticks(xticks)
        ax.set_xticklabels(xticklabels, rotation=rotation, fontsize=fontsize)
        plt.xlabel('day')

    for ax in axes[0,1::2]:
        plt.sca(ax)
        plt.tick_params(axis='x',which='major',
                            bottom='off', top='on', left='off', right='off',
                            labelbottom='off', labeltop='on', labelleft='off', labelright='off')
        ax.set_xticks(xticks)
        ax.set_xticklabels(xticklabels, rotation=rotation, fontsize=fontsize)
        plt.xlabel('day')

    for ax in axes[::2,0]:
        plt.sca(ax)
        plt.tick_params(axis='y',which='major',
                            bottom='off', top='off', left='on', right='off',
                            labelbottom='off', labeltop='off', labelleft='on', labelright='off')
        ax.set_yticks(yticks)
        #ax.set_yticklabels(range(0,100,20))
        for tick in ax.yaxis.get_major_ticks():
            tick.label.set_fontsize(10)
            tick.label.set_rotation('horizontal')
        plt.ylabel('slip/m')

    for ax in axes[::2,-1]:
        plt.sca(ax)
        plt.tick_params(axis='y',which='major',
                            bottom='off', top='off', left='off', right='on',
                            labelbottom='off', labeltop='off', labelleft='off', labelright='on')
        ax.set_yticks(yticks)
        #ax.set_yticklabels(range(0,100,20))
        for tick in ax.yaxis.get_major_ticks():
            tick.label.set_fontsize(10)
            tick.label.set_rotation('horizontal')
        plt.ylabel('slip/m')
        ax.yaxis.set_label_position("right")

    fig.set_size_inches(33,10)
    plt.savefig(output_file)
    plt.close()
Exemplo n.º 51
0
def freqz(ofb, length_sec=6, ffilt=False, plot=True):
    """Computes the IR and FRF of a digital filter.

    Parameters
    ----------
    ofb : FractionalOctaveFilterbank object
    length_sec : scalar
        Length of the impulse response test signal.
    ffilt : bool
        Backard forward filtering. Effectiv order is doubled then.
    plot : bool
        Create Plots or not.

    Returns
    -------
    x : ndarray
        Impulse test signal.
    y : ndarray
        Impules responses signal of the filters.
    f : ndarray
        Frequency vector for the FRF.
    Y : Frequency response (FRF) of the summed filters.

    """
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(length_sec*ofb.sample_rate)
    x[length_sec*ofb.sample_rate/2] = 0.9999
    if not ffilt:
        y, states = ofb.filter_mimo_c(x)
        y = y[:, :, 0]
    else:
        y, states = ofb.filter(x, ffilt=ffilt)
    s = np.zeros(len(x))
    for i in range(y.shape[1]):
        s += y[:, i]
        X = fft(y[:, i])  # sampled frequency response
        f = fftfreq(len(x), 1.0/ofb.sample_rate)
        if plot:
            fig = plt.figure('freqz filter bank')
            plt.grid(True)
            plt.axis([0, ofb.sample_rate / 2, -100, 5])
            L = 20*np.log10(np.abs(X[:len(x)/2]) + 1e-17)
            plt.semilogx(f[:len(x)/2], L, lw=0.5)
            plt.hold(True)

    Y = fft(s)
    if plot:
        plt.title('freqz() Filter Bank')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')
        plt.xlim((10, ofb.sample_rate/2))
        plt.hold(False)


        plt.figure('sum')
        L = 20*np.log10(np.abs(Y[:len(x)/2]) + 1e-17)
        plt.semilogx(f[:len(x)/2], L, lw=0.5)
        level_input = 10*np.log10(np.sum(x**2))
        level_output = 10*np.log10(np.sum(s**2))
        plt.axis([5, ofb.sample_rate/1.8, -50, 5])
        plt.grid(True)
        plt.title('Sum of filter bands')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')

        print('sum level', level_output, level_input)

    return x, y, f, Y
Exemplo n.º 52
0
def heel_strikes(data, sample_rate, threshold=0.2, order=4, cutoff=5,
                 plot_test=False, t=None):
    """
    Estimate heel strike times between sign changes in accelerometer data.

    The iGAIT software assumes that the y-axis is anterior-posterior,
    and restricts some feature extraction to this orientation.
    In this program, we compute heel strikes for an arbitrary axis.

    Re: heel strikes (from Yang, et al., 2012):
    "The heel contacts are detected by peaks preceding the sign change of
    AP acceleration [3]. In order to automatically detect a heel contact
    event, firstly, the AP acceleration is low pass filtered by the 4th
    order zero lag Butterworth filter whose cut frequency is set to 5 Hz.
    After that, transitional positions where AP acceleration changes from
    positive to negative can be identified. Finally the peaks of AP
    acceleration preceding the transitional positions, and greater than
    the product of a threshold and the maximum value of the AP acceleration
    are denoted as heel contact events...
    This threshold is defined as the ratio to the maximum value
    of the AP acceleration, for example 0.5 indicates the threshold is set
    at 50% of the maximum AP acceleration. Its default value is set to 0.4
    as determined experimentally in this paper, where this value allowed
    correct detection of all gait events in control subjects. However,
    when a more irregular pattern is analysed, the threshold should be
    less than 0.4. The user can test different threshold values and find
    the best one according to the gait event detection results."

    Parameters
    ----------
    data : list or numpy array
        accelerometer data along one axis (preferably forward direction)
    sample_rate : float
        sample rate of accelerometer reading (Hz)
    threshold : float
        ratio to the maximum value of the anterior-posterior acceleration
    order : integer
        order of the Butterworth filter
    cutoff : integer
        cutoff frequency of the Butterworth filter (Hz)
    plot_test : Boolean
        plot heel strikes?
    t : list or numpy array
        accelerometer time points

    Returns
    -------
    strikes : numpy array of floats
        heel strike timings
    strike_indices : list of integers
        heel strike timing indices

    Examples
    --------
    >>> from mhealthx.xio import read_accel_json
    >>> from mhealthx.signals import compute_sample_rate
    >>> input_file = '/Users/arno/DriveWork/mhealthx/mpower_sample_data/deviceMotion_walking_outbound.json.items-a2ab9333-6d63-4676-977a-08591a5d837f5221783798792869048.tmp'
    >>> device_motion = True
    >>> start = 150
    >>> t, axyz, gxyz, uxyz, rxyz, sample_rate, duration = read_accel_json(input_file, start, device_motion)
    >>> ax, ay, az = axyz
    >>> from mhealthx.extractors.pyGait import heel_strikes
    >>> threshold = 0.4
    >>> order = 4
    >>> cutoff = max([1, sample_rate/10])
    >>> plot_test = True
    >>> data = np.abs(ax) + np.abs(ay) + np.abs(az)
    >>> strikes, strike_indices = heel_strikes(data, sample_rate, threshold, order, cutoff, plot_test, t)

    """
    import numpy as np

    from mhealthx.signals import compute_interpeak
    from mhealthx.signals import butter_lowpass_filter, \
                                 crossings_nonzero_pos2neg

    # Demean data (not in iGAIT):
    data -= np.mean(data)

    # Low-pass filter the AP accelerometer data by the 4th order zero lag
    # Butterworth filter whose cut frequency is set to 5 Hz:
    filtered = butter_lowpass_filter(data, sample_rate, cutoff, order)

    # Find transitional positions where AP accelerometer changes from
    # positive to negative.
    transitions = crossings_nonzero_pos2neg(filtered)

    # Find the peaks of AP acceleration preceding the transitional positions,
    # and greater than the product of a threshold and the maximum value of
    # the AP acceleration:
    strike_indices_smooth = []
    filter_threshold = np.abs(threshold * np.max(filtered))
    for i in range(1, np.size(transitions)):
        segment = range(transitions[i-1], transitions[i])
        imax = np.argmax(filtered[segment])
        if filtered[segment[imax]] > filter_threshold:
            strike_indices_smooth.append(segment[imax])

    # Compute number of samples between peaks using the real part of the FFT:
    interpeak = compute_interpeak(data, sample_rate)
    decel = np.int(interpeak / 2)

    # Find maximum peaks close to maximum peaks of smoothed data:
    strike_indices = []
    for ismooth in strike_indices_smooth:
        istrike = np.argmax(data[ismooth - decel:ismooth + decel])
        istrike = istrike + ismooth - decel
        strike_indices.append(istrike)

    if plot_test:
        from pylab import plt
        if t:
            tplot = np.asarray(t)
            tplot -= tplot[0]
        else:
            tplot = np.linspace(0, np.size(data), np.size(data))
        plt.plot(tplot, data, 'k-', linewidth=2, label='data')
        plt.plot(tplot, filtered, 'b-', linewidth=1, label='filtered data')
        plt.plot(tplot[transitions], filtered[transitions],
                 'ko', linewidth=1, label='transition points')
        plt.plot(tplot[strike_indices_smooth],
                 filtered[strike_indices_smooth],
                 'bs', linewidth=1, label='heel strikes')
        plt.plot(tplot[strike_indices], data[strike_indices],
                 'rs', linewidth=1, label='heel strikes')
        plt.xlabel('Time (s)')
        plt.grid()
        plt.legend(loc='lower left', shadow=True)
        plt.show()

    strikes = np.asarray(strike_indices)
    strikes -= strikes[0]
    strikes = strikes / sample_rate

    return strikes, strike_indices
    ts += [t1,t2]

ys1 = []
for yi in mean_percentage_Easlip:
    ys1 += [yi,yi]

plt.fill_between(ts, ys1, np.zeros_like(ys1), color='blue')

ys2 = []
for yi in mean_percentage_Rco:
    ys2 += [1-yi, 1-yi]
plt.fill_between(ts, ys2, np.ones_like(ys2), color='green')

obj = plt.fill_between(ts, ys1, ys2, color='red')

plt.grid('off')

label_patch1 = mpatches.Patch(color='green')
label_patch2 = mpatches.Patch(color='red')
label_patch3 = mpatches.Patch(color='blue')
plt.legend([label_patch1, label_patch2, label_patch3],
           [r'$R^{\bf{co}}$', r'$R^{\bf{aslip}}$',r'$E^{\bf{aslip}}$'],
           bbox_to_anchor=(1.13,1.01))

#plt.gca().set_xscale('log')

for epoch in epochs:
    plt.axvline(epoch,ls='--',color='gray')

plt.xlabel('days after the mainshock')
plt.ylabel('percentage')
Exemplo n.º 54
0
def get_linear_model_histogramDouble(code, ptype='f', dtype='d', start=None, end=None, vtype='close', filter='n',
                                     df=None):
    # 399001','cyb':'zs399006','zxb':'zs399005
    # code = '999999'
    # code = '601608'
    # code = '000002'
    # asset = ts.get_hist_data(code)['close'].sort_index(ascending=True)
    # df = tdd.get_tdx_Exp_day_to_df(code, 'f').sort_index(ascending=True)
    # vtype='close'
    # if vtype == 'close' or vtype==''
    # ptype=
    if start is not None and filter == 'y':
        if code not in ['999999', '399006', '399001']:
            index_d, dl = tdd.get_duration_Index_date(dt=start)
            log.debug("index_d:%s dl:%s" % (str(index_d), dl))
        else:
            index_d = cct.day8_to_day10(start)
            log.debug("index_d:%s" % (index_d))
        start = tdd.get_duration_price_date(code, ptype='low', dt=index_d)
        log.debug("start:%s" % (start))
    if df is None:
        # df = tdd.get_tdx_append_now_df(code, ptype, start, end).sort_index(ascending=True)
        df = tdd.get_tdx_append_now_df_api(code, ptype, start, end).sort_index(ascending=True)
    if not dtype == 'd':
        df = tdd.get_tdx_stock_period_to_type(df, dtype).sort_index(ascending=True)
    asset = df[vtype]
    log.info("df:%s" % asset[:1])
    asset = asset.dropna()
    dates = asset.index

    if not code.startswith('999') or not code.startswith('399'):
        if code[:1] in ['5', '6', '9']:
            code2 = '999999'
        elif code[:1] in ['3']:
            code2 = '399006'
        else:
            code2 = '399001'
        df1 = tdd.get_tdx_append_now_df_api(code2, ptype, start, end).sort_index(ascending=True)
        # df1 = tdd.get_tdx_append_now_df(code2, ptype, start, end).sort_index(ascending=True)
        if not dtype == 'd':
            df1 = tdd.get_tdx_stock_period_to_type(df1, dtype).sort_index(ascending=True)
        asset1 = df1.loc[asset.index, vtype]
        startv = asset1[:1]
        # asset_v=asset[:1]
        # print startv,asset_v
        asset1 = asset1.apply(lambda x: round(x / asset1[:1], 2))
        # print asset1[:4]

    # 画出价格随时间变化的图像
    # _, ax = plt.subplots()
    # fig = plt.figure()
    fig = plt.figure(figsize=(16, 10))
    # fig = plt.figure(figsize=(16, 10), dpi=72)
    # fig.autofmt_xdate() #(no fact)

    # plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    plt.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25)
    # set (gca,'Position',[0,0,512,512])
    # fig.set_size_inches(18.5, 10.5)
    # fig=plt.fig(figsize=(14,8))
    ax1 = fig.add_subplot(321)
    # asset=asset.apply(lambda x:round( x/asset[:1],2))
    ax1.plot(asset)
    # ax1.plot(asset1,'-r', linewidth=2)
    ticks = ax1.get_xticks()
    # start, end = ax1.get_xlim()
    # print start, end, len(asset)
    # print ticks, ticks[:-1]
    # (ticks[:-1] if len(asset) > end else np.append(ticks[:-1], len(asset) - 1))
    ax1.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))],
                        rotation=15)  # Label x-axis with dates
    # 拟合
    X = np.arange(len(asset))
    x = sm.add_constant(X)
    model = regression.linear_model.OLS(asset, x).fit()
    a = model.params[0]
    b = model.params[1]
    # log.info("a:%s b:%s" % (a, b))
    log.info("X:%s a:%s b:%s" % (len(asset), a, b))
    Y_hat = X * b + a

    # 真实值-拟合值,差值最大最小作为价值波动区间
    # 向下平移
    i = (asset.values.T - Y_hat).argmin()
    c_low = X[i] * b + a - asset.values[i]
    Y_hatlow = X * b + a - c_low

    # 向上平移
    i = (asset.values.T - Y_hat).argmax()
    c_high = X[i] * b + a - asset.values[i]
    Y_hathigh = X * b + a - c_high
    plt.plot(X, Y_hat, 'k', alpha=0.9);
    plt.plot(X, Y_hatlow, 'r', alpha=0.9);
    plt.plot(X, Y_hathigh, 'r', alpha=0.9);
    # plt.xlabel('Date', fontsize=12)
    plt.ylabel('Price', fontsize=12)
    plt.title(code + " | " + str(dates[-1])[:11], fontsize=14)
    plt.legend([asset.iat[-1]], fontsize=12, loc=4)
    plt.grid(True)

    # plt.legend([code]);
    # plt.legend([code, 'Value center line', 'Value interval line']);
    # fig=plt.fig()
    # fig.figsize = [14,8]
    scale = 1.1
    zp = zoompan.ZoomPan()
    figZoom = zp.zoom_factory(ax1, base_scale=scale)
    figPan = zp.pan_factory(ax1)

    ax2 = fig.add_subplot(323)
    # ax2.plot(asset)
    # ticks = ax2.get_xticks()
    ax2.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))], rotation=15)
    # plt.plot(X, Y_hat, 'k', alpha=0.9)
    n = 5
    d = (-c_high + c_low) / n
    c = c_high
    while c <= c_low:
        Y = X * b + a - c
        plt.plot(X, Y, 'r', alpha=0.9);
        c = c + d
    # asset=asset.apply(lambda x:round(x/asset[:1],2))
    ax2.plot(asset)
    # ax2.plot(asset1,'-r', linewidth=2)
    # plt.xlabel('Date', fontsize=12)
    plt.ylabel('Price', fontsize=12)
    plt.grid(True)

    # plt.title(code, fontsize=14)
    # plt.legend([code])

    # 将Y-Y_hat股价偏离中枢线的距离单画出一张图显示,对其边界线之间的区域进行均分,大于0的区间为高估,小于0的区间为低估,0为价值中枢线。
    ax3 = fig.add_subplot(322)
    # distance = (asset.values.T - Y_hat)
    distance = (asset.values.T - Y_hat)[0]
    if code.startswith('999') or code.startswith('399'):
        ax3.plot(asset)
        plt.plot(distance)
        ticks = ax3.get_xticks()
        ax3.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))], rotation=15)
        n = 5
        d = (-c_high + c_low) / n
        c = c_high
        while c <= c_low:
            Y = X * b + a - c
            plt.plot(X, Y - Y_hat, 'r', alpha=0.9);
            c = c + d
        ax3.plot(asset)
        # plt.xlabel('Date', fontsize=12)
        plt.ylabel('Price-center price', fontsize=14)
        plt.grid(True)
    else:
        as3 = asset.apply(lambda x: round(x / asset[:1], 2))
        ax3.plot(as3)
        ax3.plot(asset1, '-r', linewidth=2)
        plt.grid(True)
        zp3 = zoompan.ZoomPan()
        figZoom = zp3.zoom_factory(ax3, base_scale=scale)
        figPan = zp3.pan_factory(ax3)
    # plt.title(code, fontsize=14)
    # plt.legend([code])



    # 统计出每个区域内各股价的频数,得到直方图,为了更精细的显示各个区域的频数,这里将整个边界区间分成100份。

    ax4 = fig.add_subplot(325)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    # now_distanse=int((asset.iat[-1]-Y_hat[-1])/Y_hat[-1]*100)
    # log.debug("dis:%s now:%s"%(distance[:2],now_distanse))
    # log.debug("now_distanse:%s"%now_distanse)
    distance = (asset.values.T - Y_hat)
    now_distanse = asset.iat[-1] - Y_hat[-1]
    # distance = (asset.values.T-Y_hat)[0]
    pd.Series(distance).plot(kind='hist', stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color='red')
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel('Undervalue ------------------------------------------> Overvalue', fontsize=12)
    plt.ylabel('Frequency', fontsize=14)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1], str(dates[-1])[5:11]], fontsize=12)
    plt.grid(True)

    # plt.show()
    # import os
    # print(os.path.abspath(os.path.curdir))


    ax5 = fig.add_subplot(326)
    # fig.figsize=(5, 10)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    distance = (asset.values.T - Y_hat) / Y_hat * 100
    now_distanse = ((asset.iat[-1] - Y_hat[-1]) / Y_hat[-1] * 100)
    log.debug("dis:%s now:%s" % (distance[:2], now_distanse))
    log.debug("now_distanse:%s" % now_distanse)
    # n, bins = np.histogram(distance, 50)
    # print n, bins[:2]
    pd.Series(distance).plot(kind='hist', stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color='red')
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel('Undervalue ------------------------------------------> Overvalue', fontsize=14)
    plt.ylabel('Frequency', fontsize=12)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1]], fontsize=12)
    plt.grid(True)

    ax6 = fig.add_subplot(324)
    h = df.loc[:, ['open', 'close', 'high', 'low']]
    highp = h['high'].values
    lowp = h['low'].values
    openp = h['open'].values
    closep = h['close'].values
    lr = LinearRegression()
    x = np.atleast_2d(np.linspace(0, len(closep), len(closep))).T
    lr.fit(x, closep)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    xt = np.atleast_2d(np.linspace(0, len(closep) + 200, len(closep) + 200)).T
    yt = lr.predict(xt)
    bV = []
    bP = []
    for i in range(1, len(highp) - 1):
        if highp[i] <= highp[i - 1] and highp[i] < highp[i + 1] and lowp[i] <= lowp[i - 1] and lowp[i] < lowp[i + 1]:
            bV.append(lowp[i])
            bP.append(i)

    d, p = LIS(bV)

    idx = []
    for i in range(len(p)):
        idx.append(bP[p[i]])
    lr = LinearRegression()
    X = np.atleast_2d(np.array(idx)).T
    Y = np.array(d)
    lr.fit(X, Y)
    estV = lr.predict(xt)
    ax6.plot(closep, linewidth=2)
    ax6.plot(idx, d, 'ko')
    ax6.plot(xt, estV, '-r', linewidth=3)
    ax6.plot(xt, yt, '-g', linewidth=3)
    plt.grid(True)

    # plt.tight_layout()
    zp2 = zoompan.ZoomPan()
    figZoom = zp2.zoom_factory(ax6, base_scale=scale)
    figPan = zp2.pan_factory(ax6)
    # plt.ion()
    plt.show(block=False)