def convert_all_to_png(vis_path, out_dir="maps_png", size=None): units = { 'gas_density': 'Gas Density [g/cm$^3$]', 'Tm': 'Temperature [K]', 'Tew': 'Temperature [K]', 'S': 'Entropy []', 'dm': 'DM Density [g/cm$^3$]', 'v': 'Velocity [km/s]' } log_list = ['gas_density'] for vis_file in os.listdir(vis_path): if ".dat" not in vis_file: continue print "converting %s" % vis_file map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1) (image, pixel_size, axis_values) = read_visualization_data(vis_path + "/" + vis_file, size) print "image width in Mpc/h: ", axis_values[-1] * 2.0 x, y = np.meshgrid(axis_values, axis_values) cmap_max = image.max() cmap_min = image.min() ''' plotting ''' plt.figure(figsize=(5, 4)) if map_type in log_list: plt.pcolor(x, y, image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min)) else: plt.pcolor(x, y, image, vmax=cmap_max, vmin=cmap_min) cbar = plt.colorbar() if map_type in units.keys(): cbar.ax.set_ylabel(units[map_type]) plt.axis( [axis_values[0], axis_values[-1], axis_values[0], axis_values[-1]]) del image plt.xlabel(r"$Mpc/h$", fontsize=18) plt.ylabel(r"$Mpc/h$", fontsize=18) out_file = vis_file.replace("dat", "png") plt.savefig(out_dir + "/" + out_file, dpi=150) plt.close() plt.clf()
def convert_all_to_png(vis_path, out_dir = "maps_png", size = None) : units = { 'gas_density' : 'Gas Density [g/cm$^3$]', 'Tm' : 'Temperature [K]', 'Tew' : 'Temperature [K]', 'S' : 'Entropy []', 'dm' : 'DM Density [g/cm$^3$]', 'v' : 'Velocity [km/s]' } log_list = ['gas_density'] for vis_file in os.listdir(vis_path) : if ".dat" not in vis_file : continue print "converting %s" % vis_file map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1) (image, pixel_size, axis_values) = read_visualization_data(vis_path+"/"+vis_file, size) print "image width in Mpc/h: ", axis_values[-1]*2.0 x, y = np.meshgrid( axis_values, axis_values ) cmap_max = image.max() cmap_min = image.min() ''' plotting ''' plt.figure(figsize=(5,4)) if map_type in log_list: plt.pcolor(x,y,image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min)) else : plt.pcolor(x,y,image, vmax=cmap_max, vmin=cmap_min) cbar = plt.colorbar() if map_type in units.keys() : cbar.ax.set_ylabel(units[map_type]) plt.axis([axis_values[0], axis_values[-1],axis_values[0], axis_values[-1]]) del image plt.xlabel(r"$Mpc/h$", fontsize=18) plt.ylabel(r"$Mpc/h$", fontsize=18) out_file = vis_file.replace("dat", "png") plt.savefig(out_dir+"/"+out_file, dpi=150 ) plt.close() plt.clf()
def _plot(self): p = plt.pcolor(self.matrix, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) plt.colorbar(p) plt.xlim((0, self.matrix.shape[0])) plt.ylim((0, self.matrix.shape[1])) if self.labels is not None: plt.xticks(numpy.arange(0.5, len(self.labels) + 0.5), self.labels, fontsize=self.fontsize, rotation=90) plt.yticks(numpy.arange(0.5, len(self.labels) + 0.5), self.labels, fontsize=self.fontsize)
def _plot(self): colormap = plt.pcolor(self.x, self.y, self.z, cmap=self.cmap) cb = plt.colorbar(colormap) cb.set_label('value')
# initially the k-loop was here, and it didn't work for any plot except the first one # for k in range(1,29): # so, this didn't work print 'now function ', k for i in range(h): yc = ylim[1] - i * dy for j in range(m): xc = xlim[0] + j * dx dat[j * n] = xc dat[j * n + 1] = yc #print "first DNA: ",dat[0],dat[1]; #print "2nd DNA: ",dat[2],dat[3]; #print "last DNA: ",dat[2*m-2],dat[2*m-1]; r1 = tf.test_func(dat, f, ct.c_int(n), ct.c_int(m), ct.c_int(k)) rarr[i, :] = [f[j] for j in range(m)] plt.pcolor(x, y, flipud(rarr), vmin=np.min(rarr), vmax=np.max(rarr)) plt.colorbar() plt.xlim(xlim) plt.ylim(ylim) plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') plt.title('CEC-2013 test function suite:\nno. {0}: {1}'.format(k, fnames[k])) plt.suptitle('evaluated using ctypes', x=0.02, y=0.02, ha='left', va='bottom', fontsize=9) #plt.show() plt.savefig('./pics/test_func_' + str(k).zfill(2) + '_using_ctypes_zoomlevel_2.png')
# initially the k-loop was here, and it didn't work for any plot except the first one # for k in range(1,29): # so, this didn't work print 'now function ',k for i in range(h): yc=ylim[1]-i*dy for j in range(m): xc=xlim[0]+j*dx; dat[j*n]=xc; dat[j*n+1]=yc; #print "first DNA: ",dat[0],dat[1]; #print "2nd DNA: ",dat[2],dat[3]; #print "last DNA: ",dat[2*m-2],dat[2*m-1]; r1=tf.test_func(dat,f,ct.c_int(n),ct.c_int(m),ct.c_int(k)) rarr[i,:]=[f[j] for j in range(m)] plt.pcolor(x,y,flipud(rarr),vmin=np.min(rarr),vmax=np.max(rarr)) plt.colorbar() plt.xlim(xlim) plt.ylim(ylim) plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') plt.title('CEC-2013 test function suite:\nno. {0}: {1}'.format(k,fnames[k])) plt.suptitle('evaluated using ctypes',x=0.02,y=0.02,ha='left',va='bottom',fontsize=9) #plt.show() plt.savefig('./pics/test_func_'+str(k).zfill(2)+'_using_ctypes_zoomlevel_2.png') plt.clf() plt.close('all')