Exemplo n.º 1
0
def plot_mat(data):
    # Three subplots sharing both x/y axes
    f, axarray = plt.subplots(16, sharex=True, sharey=True)
    for i, row in enumerate(data):
        axarray[i].plot(range(len(row)), row, 'g')
    # Fine-tune figure; make subplots close to each other and hide x ticks for
    # all but bottom plot.
    f.subplots_adjust(hspace=0)
    plt.setp([a.get_xticklabels() for a in f.axes], visible=False)
    plt.setp([a.get_yticklabels() for a in f.axes], visible=False)
    axarray[0].set_title('10 minute EEG Reading for Patient')
    axarray[int(len(axarray) / 2)].set_ylabel('Magnitude')
    axarray[-1].set_xlabel('Time')
    font = {'family': 'normal', 'weight': 'bold', 'size': 48}
    plt.rc('font', **font)
    plt.show()
Exemplo n.º 2
0
def runAnalysis( saveDir, mdTrajectory , timePerFrame ):

    # Pure radius of gyration
    print "Calculating radius of gyration for trajectory"
    tmp = []
    for ts in mdTrajectory.trajectory:
        time = ts.frame*timePerFrame / 1000
        tmp.append([time,rgyr(mdTrajectory)])
    rg = numpy.array(tmp)

    # Run the block analysis    
    results = []
    for nblocks in xrange(5,20):
        print "Running for "+str(nblocks)+" blocks"
        results.append(blocked(mdTrajectory, nblocks, rgyr))
        r = numpy.array(results)

    # Print block analysis 'family' : 'Arial',
    font = {
    'weight' : 'normal',
    'size'   : 10}
    plt.rc('font', **font)
    
    subplot(221)
    errorbar(r[:,0], r[:,2], yerr=r[:,3], rasterized=True)
    xlabel("number of blocks")
    ylabel(r"$\langle R_{\rm{gyr}} \rangle$ ($\AA$)")
    
    subplot(222)
    errorbar(r[:,1], r[:,2], yerr=r[:,3], rasterized=True)
    xlabel("block size")
    ylabel(r"$\langle R_{\rm{gyr}} \rangle$ ($\AA$)")

    subplot(223)
    plot(rg[:,0], rg[:,1], rasterized=True)
    xlabel("Time (ns)")
    ylabel(r"$R_{\rm{gyr}}$ ($\AA$)")
    
    subplot(224)
    plot(r[:,1]*timePerFrame/1000., numpy.divide(r[:,3] , numpy.sqrt(r[:,0]) ) , rasterized=True)
    xlabel("block length (ns)")
    ylabel("Blocked Standard Error")
    
    savefig(saveDir+"/analysis/plots/blocks.pdf")
    
    print "Wrote ./figures/blocks.{pdf,png}" % vars()
Exemplo n.º 3
0
def plot_mat(data):
    # Three subplots sharing both x/y axes
    f, axarray = plt.subplots(16, sharex=True, sharey=True)
    for i, row in enumerate(data):
        axarray[i].plot(range(len(row)), row, 'g')
    # Fine-tune figure; make subplots close to each other and hide x ticks for
    # all but bottom plot.
    f.subplots_adjust(hspace=0)
    plt.setp([a.get_xticklabels() for a in f.axes], visible=False)
    plt.setp([a.get_yticklabels() for a in f.axes], visible=False)
    axarray[0].set_title('10 minute EEG Reading for Patient')
    axarray[int(len(axarray) / 2)].set_ylabel('Magnitude')
    axarray[-1].set_xlabel('Time')
    font = {'family': 'normal',
            'weight': 'bold',
            'size': 48}
    plt.rc('font', **font)
    plt.show()
Exemplo n.º 4
0
import sys
import subprocess
import numpy as np
import fluidfoam
from pylab import matplotlib, plt, show

plt.rcParams.update({'font.size': 16})
plt.rc('font', family='serif')
plt.rc('text', usetex=True)
font = {'family': 'serif', 'size': 16, 'serif': ['computer modern roman']}
plt.rc('font', **font)
plt.rc('legend', **{'fontsize': 16})
matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}']
matplotlib.rcParams["legend.framealpha"] = None

##################################################################
#Parameters to retreive dimensionless variables
##################################################################

d = 160e-6  # particle diameter in m
gravity = 9.81  # gravity in m/s2
rhoFluid = 1041  # fluid density in kg/m3
h = 0.0049  # initial granular height in m

timeAdim = (d / gravity)**0.5
velAdim = 1000. * (gravity * d)**0.5
pressureAdim = rhoFluid * h * gravity

##################################################################
# Experimental data extracted from Pailha et al. (2008)
##################################################################
Exemplo n.º 5
0
import pygmo as pg
from pylab import plt, np
plt.rc('text',
       usetex=True)  # https://github.com/matplotlib/matplotlib/issues/4495/
plt.rc('pgf', texsystem='pdflatex')


def my_plot_non_dominated_fronts(points,
                                 marker='o',
                                 comp=[0, 1],
                                 up_to_rank_no=None):
    # We plot
    fronts, _, _, _ = pg.fast_non_dominated_sorting(points)

    # We define the colors of the fronts (grayscale from black to white)
    if up_to_rank_no is None:
        cl = list(
            zip(np.linspace(0.1, 0.9, len(fronts)),
                np.linspace(0.1, 0.9, len(fronts)),
                np.linspace(0.1, 0.9, len(fronts))))
    else:
        cl = list(
            zip(np.linspace(0.1, 0.9, up_to_rank_no),
                np.linspace(0.1, 0.9, up_to_rank_no),
                np.linspace(0.1, 0.9, up_to_rank_no)))

    fig, ax = plt.subplots()

    count = 0
    for ndr, front in enumerate(fronts):
        count += 1
Exemplo n.º 6
0
all_data['185'] = numpy.loadtxt('dash185.dat',delimiter=',',skiprows=1)
all_data['230'] = numpy.loadtxt('dash230.dat',delimiter=',',skiprows=1)

with open('dash185.dat','r') as f:
    header      = f.next().split(',')

ncols           = len(header)-1

xlbl            = 'Time on station (hours)'

#=========================================================================
# create plots
#=========================================================================

plt.rc('text', usetex=True)

font = {'family' : 'Times',
      'weight' : 'bold',
      'size'   : 17}
matplotlib.rc('font', **font)

#=========================================================================
# teeter angle
#=========================================================================

for i in xrange(1,len(header)-1):
    plt.figure(i)
    for k,v in all_data.iteritems():    
        plt.plot(v[:,0],v[:,i],linewidth=2.4,marker='o')
Exemplo n.º 7
0
def bars(scheme, verbose=None, norm='load'):
    """
    Figure to compare link proportional and usage proportional for a single
    scheme and put them in ./sensitivity/figures/scheme/
    """
    # Load data and results
    F = abs(np.load('./results/' + scheme + '-flows.npy'))
    quantiles = np.load('./results/quantiles_' + scheme + '_' + str(lapse) + '.npy')
    nNodes = 30

    names = node_namer(N)  # array of node labels
    links = range(len(F))
    nodes = np.linspace(0.5, 2 * nNodes - 1.5, nNodes)
    nodes_shift = nodes + .5

    for direction in directions:
        N_usages = np.load('./results/Node_contrib_' + scheme + '_' + direction + '_' + str(lapse) + '.npy')

        # Compare node transmission to mean load
        if verbose:
            print('Plotting node comparison - ' + scheme + ' - ' + direction)
        # sort node names for x-axis
        Total_usage = np.sum(N_usages, 1)
        node_ids = np.array(range(len(N))).reshape((len(N), 1))
        node_mean_load = [n.mean for n in N]

        # Vector for normalisation
        if norm == 'cap':
            normVec = np.ones(nNodes) * sum(quantiles)
        else:
            normVec = node_mean_load

        # Calculate node proportional
        EU_load = np.sum(node_mean_load)
        Total_caps = sum(quantiles)
        Node_proportional = node_mean_load / EU_load * Total_caps / normVec
        Node_proportional = np.reshape(Node_proportional, (len(Node_proportional), 1))

        # Calculate link proportional
        link_proportional = linkProportional(N, link_dic, quantiles)
        link_proportional = [link_proportional[i] / normVec[i] for i in range(nNodes)]

        # Calculate old usage proportional
        if direction == 'combined':
            old_usages = np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_import_all_alpha=same.npy')
            old_usages += np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_export_all_alpha=same.npy')
        else:
            old_usages = np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_' + direction + '_all_alpha=same.npy')
        avg_node_usage = np.sum(np.sum(old_usages, axis=2), axis=0) / 70128.
        avg_EU_usage = np.sum(np.sum(np.sum(old_usages, axis=2), axis=0)) / 70128.
        avg_node_usage /= avg_EU_usage
        avg_node_usage /= normVec
        avg_node_usage *= 500000

        # Calculate usage and sort countries by mean load
        normed_usage = Total_usage / normVec
        normed_usage = np.reshape(normed_usage, (len(normed_usage), 1))
        node_mean_load = np.reshape(node_mean_load, (len(node_mean_load), 1))
        data = np.hstack([normed_usage, node_ids, node_mean_load, link_proportional, Node_proportional])
        data_sort = data[data[:, 2].argsort()]
        names_sort = [names[int(i)] for i in data_sort[:, 1]]
        # flip order so largest is first
        names_sort = names_sort[::-1]
        link_proportional = data_sort[:, 3][::-1]
        Node_proportional = data_sort[:, 4][::-1]
        data_sort = data_sort[:, 0][::-1]

        plt.figure(figsize=(10, 4), facecolor='w', edgecolor='k')
        ax = plt.subplot(111)
        green = '#009900'
        blue = '#000099'

        # Plot node proportional
        plt.rc('lines', lw=2)
        plt.rc('lines', dash_capstyle='round')
        plt.plot(np.linspace(0, len(N) * 2 + 2, len(N)), Node_proportional, '--k')
        # Plot link proportional
        #plt.bar(nodes, link_proportional, width=1, color=green, edgecolor='none')
        # Plot old usage proportional
        plt.bar(nodes, avg_node_usage[loadOrder], width=1, color=green, edgecolor='none')
        # Plot usage proportional
        plt.bar(nodes_shift, data_sort, width=1, color=blue, edgecolor='none')

        # Magic with ticks and labels
        ax.set_xticks(np.linspace(2, len(N) * 2 + 2, len(N) + 1))
        ax.set_xticklabels(names_sort, rotation=60, ha="right", va="top", fontsize=10.5)

        ax.xaxis.grid(False)
        ax.xaxis.set_tick_params(width=0)
        if norm == 'cap':
            ax.set_ylabel(r'$M_n/ \mathcal{K}^T$')
        else:
            # ax.set_ylabel(r'Network usage [MW$_T$/MW$_L$]')
            ax.set_ylabel(r'$M_n/\left\langle L_n \right\rangle$')
        maxes = [max(avg_node_usage), max(data_sort)]
        plt.axis([0, nNodes * 2 + .5, 0, 1.15 * max(maxes)])

        # Legend
        artists = [plt.Line2D([0, 0], [0, 0], ls='dashed', lw=2.0, c='k'), plt.Rectangle((0, 0), 0, 0, ec=green, fc=green), plt.Rectangle((0, 0), 0, 0, ec=blue, fc=blue)]
        LABS = ['$M^1$', '$M^{3}_{old}$', '$M^{3}_{new}$']
        leg = plt.legend(artists, LABS, loc='upper left', ncol=len(artists), columnspacing=0.6, borderpad=0.4, borderaxespad=0.0, handletextpad=0.2, handleheight=1.2)
        leg.get_frame().set_alpha(0)
        leg.get_frame().set_edgecolor('white')
        ltext = leg.get_texts()
        plt.setp(ltext, fontsize=12)    # the legend text fontsize

        plt.savefig(figPath + scheme + '/network-usage-' + direction + '-' + norm + '.png', bbox_inches='tight')
        if verbose:
            print('Saved figures to ./figures/compareUsage/' + scheme + '/network-usage-' + direction + '-' + norm + '.png')
Exemplo n.º 8
0
def runAnalysis( caseDirs , resultsDir , noReweight = False):
    
    # Do a reference for each one
    for refDir in caseDirs:

        # ID of reference case
        refID = refDir.split("/")[-1]
        
        # User info
        print "Doing PCA analysis with "+refDir+" as reference"
        
        # Get the PCA limits of component 1-2 plot
        limit = 10
        with open(refDir+"/analysis/data/pca_limits_1", "r") as fi:
            limit = int(float(fi.read()))
            limit += 0.01
        
        # Go through the case dirs to plot
        for caseDir in caseDirs:
            
            print "Using "+caseDir+" as case"
            
            # ID of case
            caseID = caseDir.split("/")[-1]
            
            ## PCA PLOTTING ON REF DIR PCA COMPONENTS
            #########################################
            
            # Create & run cpptraj for plotting all cases on the axes of the first eigenvector
            # Good URLs for PCA in CPPTRAJ:
            # http://archive.ambermd.org/201404/0243.html
                        
            # PCA plotter
            pcaHandler = pcaFuncs.PCA( 
                resultsDir+"/plots/pcaComparison/PCA_"+caseID+"_on_"+refID+".pdf"
            )    
            
            # Create new submission file
            TEMPLATE = open( caseDir+"/ccptraj_analysis_pca.ptraj", 'r')
            TEMP = TEMPLATE.read().replace("[PCAREFERENCE]", refDir  )
            TEMPLATE.close()
                                  
            # Write the submission file
            FILE = open(caseDir+"/ccptraj_analysis_pca.ptraj","w");        
            FILE.write( TEMP );
            FILE.close();
            
            # Run the cpptraj utility
            os.system( "$AMBERHOME/bin/cpptraj -p "+caseDir+"/md-files/peptide_nowat.prmtop -i "+caseDir+"/ccptraj_analysis_pca.ptraj" )
        
            # Do the plots of energy landscapes & distributions
            pcaHandler.plotPCA( 
                "Case: "+caseID+". Ref case: "+refID,   # Plot Title
                caseDir+"/analysis/data/" ,        # Data Dir
                "global_pca",                      # Eigenvector file
                eigenVectorCount = 2,              # Only plot two
                plotDistibution = False,           # Do not plot the distribution
                limits = limit
            )
            
            # Save the plot
            pcaHandler.savePlot()
            
            ## REWEIGHTING OF PCA PLOTS ON RED DIR PCA COMPONENTS
            #####################################################

            # Check if we should do a reweighted version
            if noReweight == False:
                if os.path.isfile( caseDir+"/md-logs/weights.dat" ):
                    
                    # User info
                    print "aMD weights found. Now attempting 2D reweighting"   
                    
                    # Prepare input file
                    numLines = 0
                    with open(caseDir+"/analysis/data/global_pca", "r") as fi:
                        with open(caseDir+"/analysis/data/global_pca_singleColumn", "w") as fo:
                            next(fi)
                            for line in fi:
                                numLines += 1
                                fo.write( line.split()[1]+"\t"+line.split()[2]+"\n" )

                    # Set the discretization
                    reqBins = 100         
                    discretization = (2*limit) / reqBins    
                    
                    # Get the max value of normal plot
                    maxValue = math.ceil(pcaHandler.getLatestMax())
                    
                    # Run the reweighting procedure
                    command = "python $PLMDHOME/src/PyReweighting/PyReweighting-2D.py \
                                -input "+caseDir+"/analysis/data/global_pca_singleColumn \
                                -name "+caseDir+"/analysis/data/global_pca_singleColumn_reweighted \
                                -Xdim -"+str(limit)+" "+str(limit)+" \
                                -Ydim -"+str(limit)+" "+str(limit)+" \
                                -discX "+str(discretization)+" \
                                -discY "+str(discretization)+" \
                                -cutoff 10 \
                                -Emax "+str(maxValue)+" \
                                -job amdweight_CE \
                                -weight "+refDir+"/md-logs/weights.dat | tee -a reweight_variable.log"
                    print "Running command:", command
                    os.system( command )
                    
                    # Create long file for PCA module
                    with open(caseDir+"/analysis/data/global_pca_reweightedDone", "w") as fo:
                        with open(caseDir+"/analysis/data/global_pca_singleColumn_reweighted-pmf-c2.dat", "r") as fi:
                            frame = 0
                            for line in fi:
                                temp = line.split()
                                entries = int(float(temp[2])*10)
                                for i in range(0,entries):
                                    fo.write( str(frame) + "\t" + temp[0] + "\t" + temp[1] +"\n" )
                                    frame += 1

                    # Print block analysis 'family' : 'Arial',
                    fig, ax = plt.subplots(figsize=(8, 8), nrows=1, ncols=1 )
                    font = {'weight' : 'normal','size' : 10}
                    plt.rc('font', **font)
                    
                    # Now plot the 2d histogram
                    hist = np.load(caseDir+"/analysis/data/global_pca_singleColumn_reweighted_c2EnergyHist.npy")   
                    xedges = np.load(caseDir+"/analysis/data/global_pca_singleColumn_reweighted_c2edgesX.npy")   
                    yedges = np.load(caseDir+"/analysis/data/global_pca_singleColumn_reweighted_c2edgesY.npy")   
                    
                    # Remove points above limit
                    for jy in range(len(hist[0,:])):
                        for jx in range(len(hist[:,0])):
                            if hist[jx,jy] >= maxValue:
                                hist[jx,jy] = float("inf")
                    
                    # Do plot
                    img = plt.imshow(hist.transpose(),  interpolation='nearest', origin='lower',extent=[yedges[0], yedges[-1],xedges[0], xedges[-1]] , rasterized=True )
                    
                    # create an axes on the right side of ax. The width of cax will be 5%
                    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
                    divider = make_axes_locatable(ax)
                    cax = divider.append_axes("right", size="5%", pad=0.05)   
                    
                    # Create colorbar
                    colorbar = plt.colorbar(img, ax=ax, cax = cax)
                    colorbar.set_label("Kcal / mol")
                    
                    # Set title, labels etc
                    plt.legend()
                    ax.set_xlabel("PC1", fontsize=12)
                    ax.set_ylabel("PC2", fontsize=12)
                    
                    ax.set_title( "PCA. Case: "+caseID+" Reweighted. Ref case: "+refID )
                    plt.rc('font', **font) 
                    
                    # Save figure
                    fig.savefig(resultsDir+"/plots/pcaComparison/PCA_"+caseID+"_on_"+refID+"_reweighted.pdf")
                    

            ## CLUSTER PLOTS ON PCA COMPONENTS
            ##################################

            # Do both hier and dbscan
            for clusterType in ["dbscan","hier"]:            
                
                # Instantiate the class
                if os.path.isfile(caseDir+"/analysis/data/cluster_"+clusterType+"_out"):   
                    
                    print "Doing the "+clusterType+" cluster equivalent of the PCA plot"
                
                    # Start the cluster handler. Load the file declaring cluster for each frame
                    clusterHandler = cluster.clusterBase( caseDir+"/analysis/data/cluster_"+clusterType+"_out" )
                    
                    # Separate the dataset.
                    # global_pca is the projection file for this case on the ref modes
                    numPCAdataSets = clusterHandler.separateDataSet( 
                        caseDir+"/analysis/data/global_pca",            # Input file
                        caseDir+"/analysis/data/cluster_"+clusterType+"_pca_",   # Output files
                        xColumn = 1
                    ) 
                    
                    # Create lists of labels and files for plotting
                    clusterLabels = []
                    clusterFiles = []
                    offset = 1 if clusterType == "hier" else 0
                    for i in range( 0+offset, numPCAdataSets+offset):
                        clusterLabels.append( "Cluster "+str(i) )
                        clusterFiles.append( caseDir+"/analysis/data/cluster_"+clusterType+"_pca_d2_c"+str(i) )
                    
                    # First one is noise
                    if offset == 0:
                        clusterLabels[0] = "Noise"                 
                    
                    myPlot.plotData( 
                        resultsDir+"/plots/pcaComparison/" , 
                        clusterType+"_"+caseID+"_on_"+refID, 
                        clusterLabels, 
                        clusterFiles , 
                        "PC2",
                        xUnit = "PC1",
                        scatter = True,
                        legendLoc = 4,
                        figWidth = 8,
                        figHeight = 8,
                        tightXlimits = False,
                        legendFrame = 1,
                        legendAlpha = 1,
                        xLimits = [-limit,limit],
                        yLimits = [-limit,limit]
                    )
Exemplo n.º 9
0
def runAnalysis( caseDir, timeFactor ):

    # User information
    print "Now Doing hier Cluster"
    
    # Instantiate the class
    handler = cluster.clusterBase( caseDir+"/analysis/data/cluster_hier_out" )    
      
    # RMSd PLOT
    numRmsdDataSets = handler.separateDataSet( 
        caseDir+"/analysis/data/backbone.rmsd",
        caseDir+"/analysis/data/cluster_hier_rmsd_"
    )
    
    # User info
    print "Number of datasets for RMSd: "+str(numRmsdDataSets) 
    
    # Create lists of labels and files for plotting
    clusterLabels = []
    clusterFiles = []
    for i in range( 1, numRmsdDataSets+1):
        clusterLabels.append( "Cluster "+str(i) )
        clusterFiles.append( caseDir+"/analysis/data/cluster_hier_rmsd_d1_c"+str(i) )
    
    # Do the plottin
    myPlot.plotData( 
        caseDir+"/analysis/plots" , 
        "RMSd Hier Cluster Plot", 
        clusterLabels, 
        clusterFiles , 
        "RMSd ($\AA$)",
        xFactor = timeFactor,
        scatter = True,
        legendLoc = 4
    )
    
    ## OCCUPANCY PLOT
    #################
    
    # Get the data to plot
    names, fractions = [],[]
    with open(caseDir+"/analysis/data/cluster_hier_summary.dat","r") as fi:
        next(fi)
        for aline in fi:
            if aline:
                values = aline.split()
                names.append( "Cluster "+values[0] )                      
                fractions.append( float(values[2]) )
                
    # Create an array for the interactions
    y_pos = np.arange(len(names))
    
    # Do a bar plot of fractions #'family' : 'Arial',
    pp = PdfPages( caseDir+"/analysis/plots/ClusterHierOccupancy.pdf" )
    font = {
            'weight' : 'normal',
            'size'   : 10}    
    fig = plt.figure(figsize=(16,5))
    plt.barh( y_pos, fractions, align = 'center', color = plt.rcParams['axes.color_cycle'][0]  )   
    plt.yticks(y_pos, names)
    ax = fig.gca()
    ax.set_xlabel("Occupied Fraction", fontsize=12)
    ax.set_ylabel("", fontsize=12)
    plt.title( "Cluster Hier Occupancy Fraction" )
    plt.rc('font', **font)        
    plt.savefig(pp, format="pdf",dpi=100)
    pp.close()
    
    ## PCA PLOT
    ###########
    
    # Separate the dataset
    numPCAdataSets = handler.separateDataSet( 
        caseDir+"/analysis/data/pca12-ca", 
        caseDir+"/analysis/data/cluster_hier_pca_",
        xColumn = 1
    )       
    
    # User info
    print "Number of datasets for PCA: "+str(numPCAdataSets)    
    
    # Go through each PCA component
    for n in range(2,4):    
    
        # Create lists of labels and files for plotting
        clusterLabels = []
        clusterFiles = []
        for i in range( 1, numPCAdataSets+1):
            clusterLabels.append( "Cluster "+str(i) )
            clusterFiles.append( caseDir+"/analysis/data/cluster_hier_pca_d"+str(n)+"_c"+str(i) )
        
        print "Calling plot"
        print "labels", clusterLabels  
        print "files", clusterFiles  
        
        myPlot.plotData( 
            caseDir+"/analysis/plots" , 
            "PCA Hier Cluster, 1vs"+str(n), 
            clusterLabels, 
            clusterFiles , 
            "PC"+str(n),
            xUnit = "PC1",
            scatter = True,
            legendLoc = 4,
            figWidth = 8,
            figHeight = 8,
            tightXlimits = False,
            legendFrame = 1,
            legendAlpha = 1
        )
Exemplo n.º 10
0
def runAnalysis( caseDir , eps, minPoints, timeFactor ):

    # User information
    print "Now Doing dbscan Cluster"
    titlePostpend = "eps: "+str(eps)+", minPoints: "+str(minPoints)
    
    ## KDIST PLOT
    #############

    if os.path.isfile( caseDir+"/analysis/data/Kdist.1.dat" ):
        myPlot.plotData( 
            caseDir+"/analysis/plots" , 
            "Kdist Plots", 
            ["1-dist","2-dist","3-dist","4-dist","5-dist","6-dist"], 
            [caseDir+"/analysis/data/Kdist.1.dat", 
             caseDir+"/analysis/data/Kdist.2.dat", 
             caseDir+"/analysis/data/Kdist.3.dat", 
             caseDir+"/analysis/data/Kdist.4.dat", 
             caseDir+"/analysis/data/Kdist.5.dat", 
             caseDir+"/analysis/data/Kdist.6.dat"] , 
            "k-dist",
            xUnit = "points",
            skipLines = 1,
            xLimits=[0,100])    
    
    # Instantiate the class
    if os.path.isfile(caseDir+"/analysis/data/cluster_dbscan_out"):
        
        # Start the handler
        handler = cluster.clusterBase( caseDir+"/analysis/data/cluster_dbscan_out" )
        
        ## RMSd PLOT
        ############
        numRmsdDataSets = handler.separateDataSet( 
            caseDir+"/analysis/data/backbone.rmsd",
            caseDir+"/analysis/data/cluster_dbscan_rmsd_"
        )
        
        # User info
        print "Number of datasets for RMSd: "+str(numRmsdDataSets) 
        
        # Create lists of labels and files for plotting
        clusterLabels = []
        clusterFiles = []
        for i in range( 0, numRmsdDataSets):
            clusterLabels.append( "Cluster "+str(i) )
            clusterFiles.append( caseDir+"/analysis/data/cluster_dbscan_rmsd_d1_c"+str(i) )
        
        # First one is noise
        clusterLabels[0] = "Noise"   
        
        # Do the plottin
        myPlot.plotData( 
            caseDir+"/analysis/plots" , 
            "RMSd DBscan Cluster Plot", 
            clusterLabels, 
            clusterFiles , 
            "RMSd ($\AA$)",
            xFactor = timeFactor,
            scatter = True,
            legendLoc = 4
        )
        
        ## OCCUPANCY PLOT
        #################
        
        # Get the data to plot
        names, fractions = [],[]
        with open(caseDir+"/analysis/data/cluster_dbscan_summary.dat","r") as fi:
            next(fi)
            for aline in fi:
                if aline:
                    values = aline.split()
                    names.append( "Cluster "+values[0] )                      
                    fractions.append( float(values[2]) )
                    
        # Create an array for the interactions
        y_pos = np.arange(len(names))
        
        # Do a bar plot of fractions 'family' : 'Arial',
        pp = PdfPages( caseDir+"/analysis/plots/ClusterDBscanOccupancy.pdf" )
        font = {
                'weight' : 'normal',
                'size'   : 10}    
        fig = plt.figure(figsize=(16,5))
        plt.barh( y_pos, fractions, align = 'center', color = plt.rcParams['axes.color_cycle'][0]  )   
        plt.yticks(y_pos, names)
        ax = fig.gca()
        ax.set_xlabel("Occupied Fraction", fontsize=12)
        ax.set_ylabel("", fontsize=12)
        plt.title( "Cluster DBscan Occupancy Fraction, "+titlePostpend )
        plt.rc('font', **font)        
        plt.savefig(pp, format="pdf",dpi=100)
        pp.close()    
        
        ## PCA PLOT
        ###########
        
        # Separate the dataset
        numPCAdataSets = handler.separateDataSet( 
            caseDir+"/analysis/data/pca12-ca", 
            caseDir+"/analysis/data/cluster_dbscan_pca_",
            xColumn = 1
        )    
        
        # User info
        print "Number of datasets for PCA: "+str(numPCAdataSets)    
        
        # Go through each PCA component
        for n in range(2,4):    
        
            # Create lists of labels and files for plotting
            clusterLabels = []
            clusterFiles = []
            for i in range( 0, numPCAdataSets):
                clusterLabels.append( "Cluster "+str(i) )
                clusterFiles.append( caseDir+"/analysis/data/cluster_dbscan_pca_d"+str(n)+"_c"+str(i) )
            
            # First one is noise
            clusterLabels[0] = "Noise"        
            
            myPlot.plotData( 
                caseDir+"/analysis/plots" , 
                "PCA DBscan Cluster, 1vs"+str(n), 
                clusterLabels, 
                clusterFiles , 
                "PC"+str(n),
                xUnit = "PC1",
                scatter = True,
                legendLoc = 4,
                figWidth = 8,
                figHeight = 8,
                tightXlimits = False,
                legendFrame = 1,
                legendAlpha = 1
            )
Exemplo n.º 11
0
def runAnalysis( caseDir ):

    # User info 
    print "Plotting hydrogren bonds"

    # Output file name and location
    dataDir = caseDir+"/analysis/data/"
    plotDir = caseDir+"/analysis/plots/"

    # Do a histogram plot of Hbond information
    pp = PdfPages( plotDir+"hbonds.pdf" )
    
    # Get the data to plot
    names, fractions, avgDists, avgAngles = [],[],[],[]
    qbfile = open(dataDir+"hbond.avg","r")
    n = 0
    for aline in qbfile:
        if n > 1 and n < 17:
            if aline:
                values = aline.split()
                names.append( values[0]+" - "+values[1] )                      
                fractions.append( float(values[4]) )
                avgDists.append( float(values[5]) )
                avgAngles.append( float(values[6]) )
        n = n + 1

    # Create an array for the interactions
    y_pos = np.arange(len(names))
    
    # Set the plotting font and default size 'family' : 'Arial',
    font = {
            'weight' : 'normal',
            'size'   : 10}
        
    # Color of the bars
    color = plt.rcParams['axes.color_cycle'][0]        
        
    # Do a bar plot of fractions
    fig = plt.figure(figsize=(16,5))
    plt.barh(y_pos, fractions, align='center', color=color)   
    plt.yticks(y_pos, names)
    ax = fig.gca()
    ax.set_xlabel("Occupied Fraction", fontsize=12)
    ax.set_ylabel("H-bond Interaction", fontsize=12)
    plt.title( "Hydrogen Bonds: Occupancy" )
    plt.rc('font', **font)        
    plt.savefig(pp, format="pdf",dpi=300)

    # Do a bar plot of avg dists
    fig = plt.figure(figsize=(16,5))
    plt.barh(y_pos, avgDists, align='center', color=color)   
    plt.yticks(y_pos, names)
    ax = fig.gca()
    ax.set_xlabel("Average Distance", fontsize=12)
    ax.set_ylabel("H-bond Interaction", fontsize=12)
    plt.title( "Hydrogen Bonds: Average Distance" )
    plt.rc('font', **font)        
    plt.savefig(pp, format="pdf",dpi=300)
    
    # Do a bar plot of avg angles
    fig = plt.figure(figsize=(16,5))
    plt.barh(y_pos, avgAngles, align='center', color=color)   
    plt.yticks(y_pos, names)
    ax = fig.gca()
    ax.set_xlabel("Average Angle", fontsize=12)
    ax.set_ylabel("H-bond Interaction", fontsize=12)
    plt.title( "Hydrogen Bonds: Average Angle" )
    plt.rc('font', **font)        
    plt.savefig(pp, format="pdf",dpi=300)
    
    # Close the figure
    pp.close()
Exemplo n.º 12
0
    def plotPCA( 
        self, 
        plotTitleIdentifier, 
        dataDir, 
        eigenVectorFile , 
        eigenValueFile = False , 
        eigenVectorCount = 4, 
        plotDistibution = True, 
        limits = False 
    ):
    
        # If this is the first plot, create grid
        if self.subPlots == 0:
            self.createPdfPage()
    
        # User info
        print "Doing principal component analysis"
    
        # Do the four principal vectors
        frames = []

        # Principal components
        pcs = []
        for i in range( 0, eigenVectorCount ):
            pcs.append([])
    
        # Go through analysis file and get eigenvalues
        if eigenValueFile != False:
            eigenValues = []
            eigenValueTotal = 0
            with open(dataDir+eigenValueFile,"r") as f:
                for line in f:
                    temp = line.split()
                    eigenValueTotal += float(temp[1])
                    eigenValues.append(float(temp[1]))
            eigenValues = (np.array(eigenValues) / eigenValueTotal) * 100               
    
        # Get the file with all the projection data
        pcaFile = open(dataDir+eigenVectorFile,"r")
        n = 0
        for aline in pcaFile:
            if n > 1 and aline:
                values = aline.split()
                
                # Add frames                
                frames.append( int(values[0]) )
                
                # If requesting more vectors than present
                if eigenVectorCount > len(values):
                    raise Exception("CPPTRAJ has not projected "+str(eigenVectorCount)+" vectors")
                
                # Add to vectors
                for i in range( 0, eigenVectorCount ):
                    pcs[i].append( float(values[i+1]) )
            n = n + 1
    
        # Create numpy arrays
        frames = np.array( frames )
        self.np_arrays = [ np.array( pc ) for pc in pcs ]
        
        # Set the plotting font and default size 'family' : 'Arial',
        font = {
                'weight' : 'normal',
                'size'   : 10}
                
        # Do a plot for each PCA
        for component in range( 1, len(self.np_arrays) ):
            
            # User Info        
            print "Plotting component 1 vs. "+str(component)
        
            # Normalize the data DeltaG = -kb T * [ ln( P(v1,v2) ) - ln Pmax ]
            boltzman = 0.0019872041
            temperature = 300
            
            # Plot both distribution & Energy Landscape
            for plotType in [ "energy", "distribution" ] if plotDistibution else [ "energy" ]:        
            
                # New subplot
                ax = self.getActiveAx()
                
                # Increase subplot counter
                self.subPlots += 1
    
                # Do the plotting
                if plotType == "energy":
                    
                    # Create the histogram without plotting, so we can set the units properly        
                    H, xedges, yedges = np.histogram2d(self.np_arrays[component], self.np_arrays[0], bins=100 )
                    H_normalized = H/len(self.np_arrays[0])
                    H = -1 * boltzman * temperature * (np.log( H_normalized )-np.log(np.max(H_normalized)))
                    
                    # Set max energy
                    for vec in H:
                        for val in vec:
                            if not np.isinf(val) and val > self.latestMax:
                                self.latestMax = val                   
                    
                    # Now plot the 2d histogram
                    img = ax.imshow(H,  interpolation='nearest', origin='lower',extent=[yedges[0], yedges[-1],xedges[0], xedges[-1]] , rasterized=True )
                    
                    # create an axes on the right side of ax. The width of cax will be 5%
                    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
                    divider = make_axes_locatable(ax)
                    cax = divider.append_axes("right", size="5%", pad=0.05)                    
                    
                    # Create colorbar
                    colorbar = plt.colorbar(img, ax=ax, cax = cax)
                    colorbar.set_label("Kcal / mol")
                    self.colorBars.append(colorbar)
                    
                elif plotType == "distribution":
            
                    # Directly do the 2d histogram of matplotlib        
                    _, _, _, img = ax.hist2d(self.np_arrays[0], self.np_arrays[component], bins=100 , rasterized=True, norm=LogNorm() )
                    colorbar = plt.colorbar(img, ax=ax)
                    colorbar.set_label("Occurances")
                    self.colorBars.append(colorbar)
            
                # Set limits if they are not specified
                if limits == False:
                    print "Calculating plot limits based on data"
                    mini = np.abs(np.min( [np.min(self.np_arrays[0]), np.min(self.np_arrays[component])] ))  
                    maxi = np.abs(np.max( [np.max(self.np_arrays[0]), np.max(self.np_arrays[component])] ))
                    limits = int(math.ceil(np.max( [mini,maxi] )))
                   
                print "Setting plot limits to: ",limits
                ax.set_ylim([-limits,limits])
                ax.set_xlim([-limits,limits]) 
                
                # Save the limits for the component
                with open(dataDir+"pca_limits_"+str(component), "w") as fo:
                    fo.write( str(limits) )
            
                # Set title, labels etc
                plt.legend()
                if eigenValueFile != False:
                    ax.set_xlabel("PC1 ({0:.2f}%)".format(eigenValues[0]), fontsize=12)
                    ax.set_ylabel("PC"+str(component+1)+" ({0:.2f}%)".format(eigenValues[component]), fontsize=12)
                else:
                    ax.set_xlabel("PC1", fontsize=12)
                    ax.set_ylabel("PC"+str(component+1), fontsize=12)
                
                ax.set_title( "PCA. "+plotTitleIdentifier )
                plt.rc('font', **font)   
        
                # Save pdf page if it's filled
                if self.subPlots >= (self.rows*self.columns):
                    print "Now saving to PDF. Number of plots: ",self.subPlots
                    self.savePdfPage()
                    self.subPlots = 0
Exemplo n.º 13
0
import subprocess
import sys
import numpy as np
import fluidfoam
from pylab import plt, matplotlib, show

plt.rc('text', usetex=True)
font = {'family': 'serif', 'size': 16, 'serif': ['computer modern roman']}
plt.rc('font', **font)
plt.rc('legend', **{'fontsize': 16})
matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}']

##################################################################
#Parameters to retreive dimensionless variables
##################################################################

d = 160e-6  # particle diameter in m
gravity = 9.81  # gravity in m/s2
rhoFluid = 1041  # fluid density in kg/m3
h = 0.0049  # initial granular height in m

timeAdim = (d / gravity)**0.5
velAdim = 1000. * (gravity * d)**0.5
pressureAdim = rhoFluid * h * gravity

##################################################################
# Experimental data extracted from Pailha et al. (2008)
##################################################################

data1 = np.genfromtxt('DATA/ExperimentalDataPailha2008/v_t_exp_562.txt',
                      delimiter='\t',