Exemplo n.º 1
0
def plot_channel(ax, c, clusters, cluster_p_values, plot_type, full=False):
    for i_c, (start, stop) in enumerate(clusters):
        if start / n_times == c:
            start -= c * n_times
            stop -= c * n_times
            if cluster_p_values[i_c] <= 0.05:
                h = ax.axvspan(times[start],
                               times[stop - 1],
                               color='r',
                               alpha=0.3)
            else:
                ax.axvspan(times[start],
                           times[stop - 1],
                           color=(0.3, 0.3, 0.3),
                           alpha=0.3)
    pl.axhline(y=0, linewidth=1, color="black")
    if plot_type == "data":
        hf = ax.plot(times, -1 * means0[c], "r", times, -1 * means1[c], "g")
        if not full:
            pl.text(-0.035, ydata_scale * .9, ydata_scale_txt)
            pl.legend(hf, (cond_names[0], cond_names[1]), loc="upper right")
    elif plot_type == "f":
        hf = ax.plot(times, T_obs[c], 'g')
    pl.vlines(x=xt, ymin=ymarks * -1, ymax=ymarks)
    pl.vlines(x=xt2, ymin=np.array([0]), ymax=ymarks2, linewidth=1)
    pl.hlines(ydata_scale, xmark * -1, xmark)
    pl.xlim([0, times[lent - 1]])
    return hf
def plot_matrices(cov, prec, title, subject_n=0):
    """Plot covariance and precision matrices, for a given processing. """

    # Put zeros on the diagonal, for graph clarity.
    size = prec.shape[0]
    prec[range(size), range(size)] = 0

    span = max(abs(prec.min()), abs(prec.max()))
    title = "{0:d} {1}".format(subject_n, title)

    # Display covariance matrix
    pl.figure()
    pl.imshow(cov, interpolation="nearest",
              vmin=-1, vmax=1, cmap=pl.cm.get_cmap("bwr"))
    pl.hlines([(pl.ylim()[0] + pl.ylim()[1]) / 2],
              pl.xlim()[0], pl.xlim()[1])
    pl.vlines([(pl.xlim()[0] + pl.xlim()[1]) / 2],
              pl.ylim()[0], pl.ylim()[1])
    pl.colorbar()
    pl.title(title + " / covariance")

    # Display precision matrix
    pl.figure()
    pl.imshow(prec, interpolation="nearest",
              vmin=-span, vmax=span,
              cmap=pl.cm.get_cmap("bwr"))
    pl.hlines([(pl.ylim()[0] + pl.ylim()[1]) / 2],
              pl.xlim()[0], pl.xlim()[1])
    pl.vlines([(pl.xlim()[0] + pl.xlim()[1]) / 2],
              pl.ylim()[0], pl.ylim()[1])
    pl.colorbar()
    pl.title(title + " / precision")
def PlotTemp2(md_list, th=2):
    """ Second function (and main) to analyze the results of the activation threshold"""
    hold = {}  #empty dictionary
    for md in md_list:
        hold[md.experiment] = [[0], [0]] + color[md.experiment]
    for md in md_list:
        p = md.CalcProb(th=th)
        hold[md.experiment][0] += [md.data_other['Time']]
        hold[md.experiment][1] += [p]

    ### This 'plot' is only to get the label right for room temp.
    plot(0, 0, '-', marker='.', markersize=1, color='blue', linewidth=2)
    for experiment in hold:
        plot( hold[experiment][0], hold[experiment][1], '-',\
             marker=hold[experiment][3], markersize=5,\
                color=hold[experiment][2], linewidth=2, label=hold[experiment][4])

    ylabel(r"$P( E <= %d | Y)$" % (th))
    xlabel(r"$min$")
    hlines(0, -1, 91)
    vlines(0, -0.1, 1.1)

    xlim((-1, 91))
    ylim((-0.1, 1.1))
    axis([-1, 20, -0.1, 1.1])
    legend()
    return hold
Exemplo n.º 4
0
def test_cl():
    bins_l = np.int64(np.linspace(10.,3000,100))
    bins_u = bins_l[1:] -1
    bins_l = bins_l[0:len(bins_l)-1]
    binner = jc_utils.binner(bins_l,bins_u)
    del bins_l,bins_u
    import pylab as pl
    pl.ioff()
    from matplotlib.backends.backend_pdf import PdfPages
    stats_len = jc_utils.stats(binner.Nbins())
    for i,idx in enumerate_progress(xrange(nsims),label = 'test_cl::collecting cls'):
        sim_cl_len = lib_cmb_unl.map2cl(lib_cmb_len.get_sim(idx))
        stats_len.add(binner.bin_that(np.arange(len(sim_cl_len)),sim_cl_len))
    camb_binned = binner.bin_that(np.arange(len(cl_len)),cl_len)
    camb_unl_binned = binner.bin_that(np.arange(len(cl_unl)),cl_unl)

    pp = PdfPages(path_to_figs+'/lenclvscamb.pdf')
    pl.figure()
    pl.title('len Cl vs CAMB, ' +str(nsims) + ' sims.')
    pl.plot(binner.bin_centers(),stats_len.mean()/camb_binned -1.,label = 'sim/camb -1.,100 bins, res ' + str(HD_res))
    pl.xlabel('$\ell$')
    pl.ylim(-0.05,0.05)
    pl.hlines([-0.001,0.001],np.min(binner.bins_l),np.max(binner.bins_r),linestyles='--',color = 'grey')
    pl.legend(frameon = False)
    pp.savefig()
    pl.figure()
    pl.title('cl_len / cl_unlCAMB, ' +str(nsims) + ' sims.')
    pl.plot(binner.bin_centers(),stats_len.mean()/camb_unl_binned -1.,label = 'sim/camb_unl -1.,binned, res ' + str(HD_res))
    pl.plot(binner.bin_centers(),camb_binned/camb_unl_binned -1.,label = 'camb_len/camb_unl -1.,binned.')
    pl.xlabel('$\ell$')
    pl.legend(frameon = False)
    pp.savefig()
    pp.close()
    pl.close()
Exemplo n.º 5
0
def centroidSuband(filter=None):
    """
    This code calcualte the centroid change in each subband. 
    """
    xceng1,yceng1 = centroidChangeFP(filter=filter,suband = 1)
    xceng2,yceng2 = centroidChangeFP(filter=filter,suband = 2)
    xceng3,yceng3 = centroidChangeFP(filter=filter,suband = 3)
    xceng4,yceng4 = centroidChangeFP(filter=filter,suband = 4)
    xceng5,yceng5 = centroidChangeFP(filter=filter,suband = 5)
    r = np.sqrt(xceng1**2 + yceng1**2)
    pl.figure(figsize=(10,7))
    pl.subplot(2,1,1)
    pl.plot(r,(xceng2-xceng1)*1000./15.,'b.',label='sub2 - sub1')
    pl.plot(r,(xceng3-xceng1)*1000./15.,'r.',label='sub3 - sub1')
    pl.plot(r,(xceng4-xceng1)*1000./15.,'g.',label='sub4 - sub1')
    pl.plot(r,(xceng5-xceng1)*1000./15.,'c.',label='sub5 - sub1')
    pl.legend(loc='lower left')
    pl.hlines(0,0,300,color='k',linestyle='dashed')
    pl.xlim(0,300)
    pl.xlabel('distance to the FP center (mm)')
    pl.ylabel('x centroid difference (pixel)')
    pl.title('Centroid Change for subands of filter: '+filter)
    pl.subplot(2,1,2)
    pl.plot(r,(yceng2-yceng1)*1000./15.,'b.',label='sub2 - sub1')
    pl.plot(r,(yceng3-yceng1)*1000./15.,'r.',label='sub3 - sub1')
    pl.plot(r,(yceng4-yceng1)*1000./15.,'g.',label='sub4 - sub1')
    pl.plot(r,(yceng5-yceng1)*1000./15.,'c.',label='sub5 - sub1')
    pl.legend(loc='lower left')
    pl.hlines(0,0,300,color='k',linestyle='dashed')
    pl.xlim(0,300)
    pl.xlabel('distance to the FP center (mm)')
    pl.ylabel('y centroid difference (pixel)')
    return xceng1, yceng1, xceng2, yceng2,xceng3,yceng3,xceng4,yceng4,xceng5,yceng5
Exemplo n.º 6
0
def plotT(x, y, plt):
    plt.scatter(x, y)
    plt.vlines(x, [0], y)
    plt.ylim((min(y)-abs(min(y)*0.1)),max(y)+max(y)*0.1)
    plt.hlines(0, x[0]-1, x[x.shape[0]-1]+1)
    plt.xlim(x[0]-1,x[x.shape[0]-1]+1)
    plt.grid()
def plot_matrices(cov, prec, title, subject_n=0):
    """Plot covariance and precision matrices, for a given processing. """

    # Put zeros on the diagonal, for graph clarity.
    size = prec.shape[0]
    prec[range(size), range(size)] = 0

    span = max(abs(prec.min()), abs(prec.max()))
    title = "{0:d} {1}".format(subject_n, title)

    # Display covariance matrix
    pl.figure()
    pl.imshow(cov,
              interpolation="nearest",
              vmin=-1,
              vmax=1,
              cmap=pl.cm.get_cmap("bwr"))
    pl.hlines([(pl.ylim()[0] + pl.ylim()[1]) / 2], pl.xlim()[0], pl.xlim()[1])
    pl.vlines([(pl.xlim()[0] + pl.xlim()[1]) / 2], pl.ylim()[0], pl.ylim()[1])
    pl.colorbar()
    pl.title(title + " / covariance")

    # Display precision matrix
    pl.figure()
    pl.imshow(prec,
              interpolation="nearest",
              vmin=-span,
              vmax=span,
              cmap=pl.cm.get_cmap("bwr"))
    pl.hlines([(pl.ylim()[0] + pl.ylim()[1]) / 2], pl.xlim()[0], pl.xlim()[1])
    pl.vlines([(pl.xlim()[0] + pl.xlim()[1]) / 2], pl.ylim()[0], pl.ylim()[1])
    pl.colorbar()
    pl.title(title + " / precision")
Exemplo n.º 8
0
def simulation(recipe, curvNo, noIndicators):
    worker = recipe.getWorker("ThicknessModeller")
    simulation = worker.plugCalcAbsorption.getResult()
    worker = recipe.getWorker("AddColumn")
    table = worker.plugCompute.getResult(
        subscriber=TextSubscriber("Add Column"))
    thickness = table[u"thickness"]
    index = curvNo2Index(table[u"pixel"], curvNo)
    worker = recipe.getWorker("MRA Exp")
    minimaPos = worker.plugMra.getResult()[r'\lambda_{min}'].inUnitsOf(
        simulation.dimensions[1])
    maximaPos = worker.plugMra.getResult()[r'\lambda_{max}'].inUnitsOf(
        simulation.dimensions[1])
    visualizer = ImageVisualizer(simulation, False)
    ordinate = simulation.dimensions[1].data
    if not noIndicators:
        pylab.hlines(thickness.data[index],
                     ordinate.min(),
                     ordinate.max(),
                     label="$%s$" % minimaPos.shortname)
        abscissae = simulation.dimensions[0].data
        pylab.vlines(minimaPos.data[:, index],
                     abscissae.min(),
                     abscissae.max(),
                     label="$%s$" % minimaPos.shortname)
        pylab.vlines(maximaPos.data[:, index],
                     abscissae.min(),
                     abscissae.max(),
                     label="$%s$" % maximaPos.shortname)
Exemplo n.º 9
0
def Orion_PVDiagrams(
    filename="OMC1_TSPEC_H2S1_cube.fits",
    restwavelength=2.1218313 * u.um,
    cm=pl.cm.hot,
    start_fignum=0,
    min_valid=1e-16,
    displaymax=None,
    hlcolor="k",
    linename="H2 S(1) 1-0",
    dosave=True,
):
    cube = fits.getdata(filename)
    header = fits.getheader(filename)

    wavelength = ((-header["CRPIX3"] + np.arange(header["NAXIS3"]) + 1) * header["CD3_3"] + header["CRVAL3"]) * u.AA
    velocity = wavelength.to("km/s", u.doppler_optical(restwavelength))

    nvel = len(velocity)

    def make_pv(startx=196, starty=130, endx=267, endy=388, npts=250):
        pvd = np.empty([nvel, npts])
        for ii, (x, y) in enumerate(zip(np.linspace(startx, endx, npts), np.linspace(starty, endy, npts))):
            pvd[:, ii] = cube[:, y, x]
        return pvd

    for ii, (ex, ey) in enumerate(outflow_endpoints):
        dx = ex - sourceI[0]
        dy = ey - sourceI[1]
        angle = np.arctan2(dy, dx)
        cdelt = np.abs(header["CDELT1"] / np.cos(angle)) * 3600
        npts = (dx ** 2 + dy ** 2) ** 0.5
        # pixels are in FITS units
        pv = make_pv(endx=ex - 1, endy=ey - 1, startx=sourceI[0] - 1, starty=sourceI[1] - 1, npts=npts)
        fignum = start_fignum + ii / 3
        pl.figure(fignum)
        if ii % 3 == 0:
            pl.clf()
        ax = pl.subplot(3, 1, ii % 3 + 1)
        vmin, vmax = velocity.min().value, velocity.max().value
        pv[pv < 0] = np.nanmin(pv)
        pv[pv < min_valid] = min_valid
        pl.imshow(
            np.log10(pv),
            extent=[0, npts * cdelt, vmin, vmax],
            aspect=np.abs(cdelt) / 20 * (npts / 100),
            cmap=cm,
            vmax=displaymax,
            origin="lower",
        )
        pl.hlines(0, 0, npts * cdelt, color=hlcolor, linestyle="--")
        ax.set_xlabel('Offset (")')
        ax.set_ylabel("Velocity (km s$^{-1}$)")
        ax.set_title(linename + " Outflow Trace %i" % ii)
        ax.set_ylim(-200, 200)

        if dosave and ii % 3 == 2 or ii == len(outflow_endpoints) - 1:
            name = linename.replace(" ", "_").replace("(", "_").replace(")", "_")
            name = "".join([l for l in name if l in (string.ascii_letters + string.digits + "_-")])
            figname = name + "_%i.png" % fignum
            pl.savefig(figname.replace("__", "_"))
Exemplo n.º 10
0
def plot_T1_Hct(par_dict, Hct_sol, sO2=0.5, T1=1.5):

    R1ery0 = par_dict['R1ery0']
    R1plas = par_dict['R1plas']
    r1dHb = par_dict['r1_prime_dHb']

    Hct_axis = np.arange(0, 1.001, 0.001)
    xtemp = np.zeros([2, len(Hct_axis)])
    xtemp[0, :] = Hct_axis
    xtemp[1, :] = sO2

    T1s = 1000 / calc_R1(xtemp, R1plas, R1ery0, r1dHb)

    plt.xlabel('hematocrit (Hct)', fontsize=16)
    plt.ylabel('$T_1$ relaxation time (ms)', fontsize=16)

    plt.plot(Hct_axis, T1s, lw=2)

    plt.ylim([0.95 * np.min(T1s), 1.05 * np.max(T1s)])
    plt.xlim([0, 1])

    plt.hlines(1000 * T1, 0, 1, linestyle='dashed')
    plt.vlines(Hct_sol,
               0.95 * np.min(T1s),
               1.05 * np.max(T1s),
               linestyle='dashed')

    return
Exemplo n.º 11
0
def plot_ge( name_plot ):

	# distance between axes and ticks
	pl.rcParams['xtick.major.pad']='8'
	pl.rcParams['ytick.major.pad']='8'

	# set latex font
	pl.rc('text', usetex=True)
	pl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size': 20})


	pl.close('all')
	fig = pl.figure(figsize=(10.0, 5.0))
	ax = fig.add_subplot(111)
	fig.suptitle('GE, Janaury-February 2007', fontsize=20, fontweight='bold')

	den = 0.008
	N_max_day = 50
	
	sel_side = (df_ge.side==1) & (df_ge.day_trade_n < N_max_day)
	df_ge_buy = df_ge[sel_side]
	pl.hlines(df_ge_buy.day_trade_n, df_ge_buy.mm_s, df_ge_buy.mm_e, linestyles='solid', lw= pl.array(df_ge_buy.eta/den), color='blue', alpha=0.3)

	sel_side = (df_ge.side==-1) & (df_ge.day_trade_n < N_max_day)
	df_ge_sell = df_ge[sel_side]
	pl.hlines(df_ge_sell.day_trade_n, df_ge_sell.mm_s, df_ge_sell.mm_e, linestyles='solid', lw= pl.array(df_ge_sell.eta/den), color='red', alpha=0.3)


	ax.set_xlim([0,390])
	ax.set_ylim([N_max_day,-1])
	ax.set_aspect('auto')
	ax.set_xlabel('Trading minute')
	ax.set_ylabel('Trading day')
	pl.subplots_adjust(bottom=0.15)
	pl.savefig("../plot/" + name_plot + ".pdf")
Exemplo n.º 12
0
def plot_samples(S, axis_list=None):
    pl.scatter(S[:, 0], S[:, 1], s=2, marker='o', linewidths=0, zorder=10)
    if axis_list is not None:
        colors = [(0, 0.6, 0), (0.6, 0, 0)]
        for color, axis in zip(colors, axis_list):
            axis /= axis.std()
            x_axis, y_axis = axis
            # Trick to get legend to work
            pl.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
            # pl.quiver(x_axis, y_axis, x_axis, y_axis, zorder=11, width=0.01,
            pl.quiver(0,
                      0,
                      x_axis,
                      y_axis,
                      zorder=11,
                      width=0.01,
                      scale=6,
                      color=color)

    pl.hlines(0, -3, 3)
    pl.vlines(0, -3, 3)
    pl.xlim(-3, 3)
    pl.ylim(-3, 3)
    pl.xlabel('x')
    pl.ylabel('y')
Exemplo n.º 13
0
def plot_one_ppc(model, t):
    """ plot data and posterior predictive check
    
    :Parameters:
      - `model` : data.ModelData
      - `t` : str, data type of 'i', 'r', 'f', 'p', 'rr', 'm', 'X', 'pf', 'csmr'
    
    """
    stats = model.vars[t]['p_pred'].stats()
    if stats == None:
        return

    pl.figure()
    pl.title(t)

    x = model.vars[t]['p_obs'].value.__array__()
    y = x - stats['quantiles'][50]
    yerr = [stats['quantiles'][50] - pl.atleast_2d(stats['95% HPD interval'])[:,0],
            pl.atleast_2d(stats['95% HPD interval'])[:,1] - stats['quantiles'][50]]
    pl.errorbar(x, y, yerr=yerr, fmt='ko', mec='w', capsize=0,
                label='Obs vs Residual (Obs - Pred)')

    pl.xlabel('Observation')
    pl.ylabel('Residual (observation-prediction)')

    pl.grid()
    l,r,b,t = pl.axis()
    pl.hlines([0], l, r)
    pl.axis([l, r, y.min()*1.1 - y.max()*.1, -y.min()*.1 + y.max()*1.1])
Exemplo n.º 14
0
def fwhm_whisker_des_plot(stampImgList=None,
                          bkgList=None,
                          whkSex=None,
                          fwhmSex=None,
                          sigma=1.1 / scale,
                          dimmfwhm=None):
    whk, fwhm = get_fwhm_whisker_list(stampImgList, bkgList, sigma=sigma)
    whk = list(whk.T)
    fwh = list(fwhm.T)
    fwh.append(fwhmSex)
    whk.append(whkSex)
    pl.figure(figsize=(15, 10))
    pl.subplot(2, 1, 1)
    pl.boxplot(whk)
    pl.hlines(0.2, 0, 4, linestyle='solid', color='g')
    pl.ylim(np.median(whk[2]) - 0.3, np.median(whk[2]) + 0.6)
    pl.grid()
    pl.xticks(np.arange(1, 4),
              ['whisker_Wmoments', 'whisker_Amoments', 'whisker_sx'])
    if dimmfwhm != None:
        pl.title('DIMM Seeing FWHM: ' + str(round(dimmfwhm, 3)) +
                 '(arcsec)    sqrt(DIMM fwhm^2 + 0.55^2): ' +
                 str(round(np.sqrt(dimmfwhm**2 + 0.55**2), 3)))
    pl.subplot(2, 1, 2)
    pl.boxplot(fwh)
    pl.ylim(0, np.median(fwh[5]) + 2)
    pl.grid()
    pl.hlines(0.9, 0, 7, linestyle='solid', color='g')
    pl.xticks(np.arange(1, 7), [
        'fwhm_weighted', 'fwhm_Amoments', 'fwhm_moffat', 'fwhm_gauss',
        'fwhm_sech2', 'fwhm_sx'
    ])
    return '-----done !----'
def chunked_timing(X, Y, axis=1, metric="euclidean", **kwargs):
    sizes = [20, 50, 100,
             200, 500, 1000,
             2000, 5000, 10000,
             20000, 50000, 100000,
             200000]

    t0 = time.time()
    original(X, Y, axis=axis, metric=metric, **kwargs)
    t1 = time.time()
    original_timing = t1 - t0

    chunked_timings = []

    for batch_size in sizes:
        print("batch_size: %d" % batch_size)
        t0 = time.time()
        chunked(X, Y, axis=axis, metric=metric, batch_size=batch_size,
                **kwargs)
        t1 = time.time()
        chunked_timings.append(t1 - t0)

    import pylab as pl
    pl.semilogx(sizes, chunked_timings, '-+', label="chunked")
    pl.hlines(original_timing, sizes[0], sizes[-1],
              color='k', label="original")
    pl.grid()
    pl.xlabel("batch size")
    pl.ylabel("execution time (wall clock)")
    pl.title("%s %d / %d (axis %d)" % (
        str(metric), X.shape[0], Y.shape[0], axis))
    pl.legend()
    pl.savefig("%s_%d_%d_%d" % (str(metric), X.shape[0], Y.shape[0], axis))
    pl.show()
Exemplo n.º 16
0
def scatter_force_error(configs,
                        ref_configs,
                        force_name='force',
                        force_ref_name='force',
                        *plot_args,
                        **plot_kwargs):
    """
    Make a scatter plot of force errors between Atoms sequences `config` and `ref_configs`
    """

    ref_force = np.hstack(getattr(ref_configs, force_ref_name))
    ref_force = ref_force.reshape(ref_force.size, order='F')

    force = np.hstack(getattr(configs, force_name))
    force = force.reshape(force.size, order='F')

    s = scatter(abs(ref_force), abs(ref_force - force), *plot_args,
                **plot_kwargs)
    xlim(0, abs(ref_force).max())
    ylim(0, abs(ref_force - force).max())
    xlabel('Reference forces / eV/A')
    ylabel('Force error / eV/A')

    rms_error = (((force - ref_force)**2).mean())**0.5
    hlines(rms_error, 0, abs(ref_force).max(), lw=2, color='r')

    return s
 def generate_preprocessing_mito_fig(self, mito_filtered_cell_dict, key):
     # mito threshold boundaries
     mito_col = np.where(
         mito_filtered_cell_dict[key].obs['percent_mito'] <
         self.output_summary[key]['thrsh_mito'], 'grey', 'r')
     # Scatter plot
     mito_scatter = plt.scatter(mito_filtered_cell_dict[key].obs['n_counts'], mito_filtered_cell_dict[key].obs['percent_mito'],\
     s=1, c=mito_col)
     # Red lines
     plt.hlines(y=self.output_summary[key]['thrsh_mito'],
                xmin=-1,
                xmax=50000,
                color='red')
     # plt.text(50000,self.output_summary[key]['thrsh_mito']+1, s='Mito Threshold: ' + str(self.output_summary[key]['thrsh_mito']))
     legend_elements = [
         Line2D([0], [0],
                color='r',
                lw=1,
                label='Mito Threshold: {0:.2f}'.format(
                    round(self.output_summary[key]['thrsh_mito'], 2)))
     ]
     plt.legend(handles=legend_elements, loc='upper right')
     plt.xlabel('n_counts', fontsize=18)
     plt.ylabel('percent_mito', fontsize=16)
     if self.output_dir:
         plt.savefig(self.output_dir[0] + "/" + key +
                     "/preprocessing_figures/" + key +
                     "_percent_mito_vs_n_counts")
         plt.close()
     else:
         plt.savefig(key + "/preprocessing_figures/" + key +
                     "_percent_mito_vs_n_counts")
         plt.close()
     plt.close()
Exemplo n.º 18
0
def depth_graph():
			
	#filenames
	filename_png = os.getcwd() + '/' + str(args.output_folder) + '/depth_insertion.png'
	filename_svg = os.getcwd() + '/' + str(args.output_folder) + '/depth_insertion.svg'

	#create figure
	fig = plt.figure(figsize=(8, 6.2))

	#plot data
	ax = fig.add_subplot(111)
	ax.spines['top'].set_visible(False)
	ax.spines['right'].set_visible(False)
	ax.xaxis.set_ticks_position('bottom')
	ax.yaxis.set_ticks_position('left')
	ax.set_xlim(0, nb_atom_per_protein)
	for t in ["basic","polar","hydrophobic","backbone"]:
		tmp_z = np.zeros(nb_atom_per_protein)
		tmp_z[type_pos[t]] = z_part[type_pos[t]]
		plt.bar(np.arange(0,nb_atom_per_protein), tmp_z, color = res_colour[t], label = t)
	fontP.set_size("small")
	ax.legend(prop=fontP)
	plt.hlines(0, 0, nb_atom_per_protein,)
	plt.xlabel('sequence')
	plt.ylabel('z distance to leaflet')
	
	#save figure
	fig.savefig(filename_png)
	fig.savefig(filename_svg)
	plt.close()
				
	return
Exemplo n.º 19
0
    def plot_var(filename, color):
        nc = netCDF4.Dataset(filename)

        try:
            v = nc.variables[name]
        except:
            print "Cannot find '%s' in '%s'. Exiting..." % (name, filename)
            import sys
            sys.exit(1)

        unit_system = udunits2.System()

        time_units_input = udunits2.Unit(unit_system, nc.variables['time'].units)
        time_units_years = udunits2.Unit(unit_system, "years since 2012-1-1")
        c = udunits2.Converter((time_units_input, time_units_years))
        print "Converting time from '%s' to '%s'" % (time_units_input, time_units_years)

        time_bounds = c(nc.variables['time_bounds'][:])
        time_min = time_bounds[:,0]
        time_max = time_bounds[:,1]

        hlines(numpy.squeeze(v[:]), time_min, time_max, color=color, label=filename)

        xlabel("time (years)")
        ylabel(v.units)
        title(v.long_name)

        return time_bounds.min(), time_bounds.max(), v[:].min(), v[:].max()
Exemplo n.º 20
0
def showEnergies(em, alphabet="ACGT", nSeqs=inf, fig=None):
    #according to logo standard
    seqLen, nBases = em.shape
    if nBases != len(alphabet):
        raise Exception("Need %d alphabet" % len(alphabet))

    if nBases == 4:
        colors = ["#00cc00", "#0000cc", "#ffb300", "#cc0000"]
    else:
        colors = matplotlib.cm.jet(
            arange(1, nBases + 1, dtype=float) / (nBases + 1))

    fontprop = FontProperties(family="monospace",
                              stretch="condensed",
                              weight="bold",
                              size="medium")
    em = em - mean(em, 1)[:, newaxis]
    print em
    sem = argsort(em, 0)

    if fig == None:
        fig = pylab.figure(figsize=(8, 3))

    def addletter(let, x, y, height, color, alpha=1):
        text = TextPath((0, 0), let, size=1, prop=fontprop)
        bbox = text.get_extents()
        tx0, ty0 = bbox.min
        tw, th = bbox.width, bbox.height
        trans = Affine2D.identity() \
            .translate(-tx0,-ty0) \
            .scale(0.9/tw,height/th) \
            .translate(x,y)
        t = trans.transform_path(text)
        pylab.gca().add_patch(PathPatch(t, fc=color, ec='none', alpha=alpha))

    for n, row in enumerate(em):
        pos = arange(nBases)[row > 0][argsort(row[row > 0])]
        neg = arange(nBases)[row < 0][argsort(row[row < 0])[::-1]]

        hpos = 0
        for i in pos:
            addletter(alphabet[i], n + 0.5, hpos, row[i], colors[i])
            hpos += row[i]
        hpos = 0
        for i in neg:
            addletter(alphabet[i],
                      n + 0.5,
                      hpos + row[i],
                      -row[i],
                      colors[i],
                      alpha=0.5)
            hpos += row[i]

    pylab.hlines(0, 0, seqLen + 0.5, colors='k')
    pylab.xticks(arange(seqLen) + 1)
    #pylab.ylabel('Bits')
    pylab.xlim(0.5, seqLen + 0.5)
    #pylab.ylim(0,max(sum(heights,1)))
    #pylab.ylim(0,log2(nBases))
    return fig
Exemplo n.º 21
0
def draw_fit(rl, pct):
    """Draw sigmoid for psychometric

    rl: x values
    pct: y values

    Fxn draws the curve
    """
    def sig(x, A, x0, k, y0):
        return A / (1 + np.exp(-k*(x-x0))) + y0
    def sig2(x, x0, k):
        return 1. / (1+np.exp(-k*(x-x0)))

    pl.xlabel('R-L stimuli')
    pl.ylabel('p(choose R)')
    pl.xlim([rl.min()-1, rl.max()+1])
    pl.ylim([-0.05, 1.05])

    popt,pcov = curve_fit(sig, rl, pct) # stretch and yshift are free params
    popt2,pcov2 = curve_fit(sig2, rl, pct) # stretch and yshift are fixed
    x = np.linspace(rl.min(), rl.max(), 200)
    y = sig(x, *popt)
    y2 = sig2(x, *popt2)
    pl.vlines(0,0,1,linestyles='--')
    pl.hlines(0.5,rl.min(),rl.max(),linestyles='--')
    pl.plot(x,y)
    #pl.plot(x,y2)
    return popt
Exemplo n.º 22
0
def statistics(df, keys=None, plot=False):
    data = {}
    for key in keys:
        try:
            df_meas = new_sample(df[key])
            dt = find_meas_period(df_meas)
            stddev = pl.sqrt(df_meas.var())
            mean = df_meas.mean()
            variance = stddev**2
            noise_power = variance * dt
        except Exception:
            df_meas = 0
            dt = 0
            stddev = 0
            var = 0
            mean = 0
            noise_power = 0
            variance = 0
        data[key + '_stddev'] = stddev
        data[key + '_variance'] = variance
        data[key + '_mean'] = mean
        data[key + '_dt'] = dt
        data[key + '_noise_power'] = noise_power
        if plot:
            pl.figure()
            pl.title(key + ' statistics')
            df[key].plot(alpha=0.5)
            pl.hlines(mean, df.index[0], df.index[-1], 'k')
            pl.hlines([mean + stddev, mean - stddev], df.index[0],
                      df.index[-1], 'r')
    return data
    def plot(self):
        import pylab as pl
        ax = pl.gca()

        pl.hlines(self.tops,
                  self.left,
                  self.right,
                  linestyles='dashed',
                  colors='blue')
        pl.hlines(self.tops + self.heights,
                  self.left,
                  self.right,
                  linestyles='dashed',
                  colors='green')
        pl.vlines(self.lefts,
                  self.top,
                  self.bottom,
                  linestyles='dashed',
                  colors='blue')
        pl.vlines(self.lefts + self.widths,
                  self.top,
                  self.bottom,
                  linestyles='dashed',
                  colors='green')

        for box in self.rectangles:
            t, l, b, r = box
            patch = pl.Rectangle((l, t),
                                 r - l,
                                 b - t,
                                 color='blue',
                                 fill=True,
                                 alpha=0.5)
            ax.add_patch(patch)
        pass
Exemplo n.º 24
0
    def __init__(self, n, handicap=0):

        self.welcome()

        self.n = n
        self.handicap = handicap
        self.board = [np.zeros((self.n, self.n))]

        self.f, self.ax = pylab.subplots(figsize=(8, 9))
        self.ax._label = 'main'
        pylab.subplots_adjust(bottom=0.2)
        self.f.set_facecolor('tan')
        pylab.axes(axisbg='tan')

        #pylab.grid(ls='-', zorder=0)
        pylab.vlines(np.arange(self.n - 1), 0, self.n - 1, zorder=-1)
        pylab.hlines(np.arange(self.n - 1), 0, self.n - 1, zorder=-1)
        pylab.xticks(np.arange(self.n))
        pylab.yticks(np.arange(self.n))
        pylab.xlim(-0.5, self.n - 0.5)
        pylab.ylim(-0.5, self.n - 0.5)

        self.turn = 0
        self.marker = 1  # 1 = black, -1 = white
        self.score = [[0, 0]]  # Captured stones (negative is bad)
        self.territory = [0, 0]  # Enclosed territory (positive is good)
Exemplo n.º 25
0
def figOne(N,mus = [.2,.5,.8],variances=np.square([.1,.1,.1])):
	D = sampleData(mus,variances,N)
	ff.niceGraph()
	pl.xlim(0,1.5)
	c005Inference = makeInferenceForPlotting(N,0.01,D=D)
	c05Inference = makeInferenceForPlotting(N,1.,D=D)
	c5Inference = makeInferenceForPlotting(N,5.,D=D)
	c50Inference = makeInferenceForPlotting(N,10.,D=D)

	plotTrain(D,mus,variances,xBottom=.048)
	for d in range(len(D)):
		pl.text(D[d], .044, '*',fontsize=14)
	pl.hlines(0.045,0,1.5,lw=1.,linestyle=":")

	plotInference(D,c005Inference[1],c005Inference[2],xBottom=0,colour="#0000FF",alpha=.75)
	plotInference(D,c05Inference[1],c05Inference[2],xBottom=.01,colour="#EAAF0F",alpha=.75)
	plotInference(D,c5Inference[1],c5Inference[2],xBottom=.02,colour="#66CD00",alpha=.7)
	plotInference(D,c50Inference[1],c50Inference[2],xBottom=.03,colour="#FF1493",alpha=.65)
	pl.text(-.17,0+.00005,r'$\alpha=.01$',size=11)
	pl.text(-.15,0.01+.00005,r'$\alpha=1$',size=11)
	pl.text(-.15,0.02+.00005,r'$\alpha=5$',size=11)
	pl.text(-.1605,0.03+.00005,r'$\alpha=10$',size=11)
	pl.text(0.3,.04,'Inferred Categories',size=11)
	pl.text(0.2,.056,'True Underlying Categories',size=11)
	pl.text(-.12,.045,r'$x_i$',size=11)
	pl.xlabel(r'$f$',size=11)

	return D
Exemplo n.º 26
0
def lum_incl_plot():
    global ell, modes, colors, bfile, base, par, mag, freqs, incl, static_i, fixed_observer, observer_i, mass, vel
    for i in range(len(modes)):
        #plt.plot([freqs[i],0],[freqs[i],mag[i][0,2]/base])
        #plt.plot([[freqs[i],0],[freqs[i],1]])
        tmp = []
        for j in range(len(incl)):

            if fixed_observer == True:
                tmp.append((m_mag[i][j][4] - base[static_i[observer_i]]) /
                           base[static_i[observer_i]])
            else:
                tmp.append((m_mag[i][j][4] - base[j]) / base[j])

        plt.plot(incl, (np.array(tmp)))
        plt.text(incl[0] + 2,
                 np.abs(np.array(tmp))[0],
                 r"$\ell$=" + str(c_modes[i].split()[0]))

    plt.hlines(0, 0, 90)
    plt.xlabel(r"Inclination (deg)")
    plt.ylabel(r"$\Delta L/L$")
    if (fixed_observer == True):
        plt.title(r"M=" + mass + ", V=" + vel + " - $L$ fixed at $i$=" +
                  str(static_i[observer_i]))
    else:
        plt.title(r"M=" + mass + ", V=" + vel + " - $L$ observer")
    plt.grid()
Exemplo n.º 27
0
def plot_force_error(configs,
                     ref_configs,
                     force_name='force',
                     force_ref_name='force',
                     *plot_args,
                     **plot_kwargs):
    """
    Plot force error between Atoms sequences `configs` and `ref_configs`
    """
    ref_force = np.hstack(getattr(ref_configs, force_ref_name))
    ref_force = ref_force.reshape(ref_force.size, order='F')

    force = np.hstack(getattr(configs, force_name))
    force = force.reshape(force.size, order='F')

    plot(abs(force - ref_force), *plot_args, **plot_kwargs)
    xlim(0, len(force))

    if hasattr(ref_configs, 'config_type'):
        ct = list(
            np.hstack([[at.config_type] * 3 * at.n for at in ref_configs]))
        label_axes_with_config_types(ct)

        names = sorted(set(ct))
        for name in names:
            start = ct.index(name)
            stop = len(ct) - ct[::-1].index(name)

            this_force = force[start:stop]
            this_ref_force = ref_force[start:stop]

            rms_error = ((this_force - this_ref_force)**2).mean()**0.5
            hlines(rms_error, start, stop, lw=3, color='r')
Exemplo n.º 28
0
def plot_one_ppc(model, t):
    """ plot data and posterior predictive check
    
    :Parameters:
      - `model` : data.ModelData
      - `t` : str, data type of 'i', 'r', 'f', 'p', 'rr', 'm', 'X', 'pf', 'csmr'
    
    """
    stats = model.vars[t]['p_pred'].stats()
    if stats == None:
        return

    pl.figure()
    pl.title(t)

    x = model.vars[t]['p_obs'].value.__array__()
    y = x - stats['quantiles'][50]
    yerr = [stats['quantiles'][50] - pl.atleast_2d(stats['95% HPD interval'])[:,0],
            pl.atleast_2d(stats['95% HPD interval'])[:,1] - stats['quantiles'][50]]
    pl.errorbar(x, y, yerr=yerr, fmt='ko', mec='w', capsize=0,
                label='Obs vs Residual (Obs - Pred)')

    pl.xlabel('Observation')
    pl.ylabel('Residual (observation-prediction)')

    pl.grid()
    l,r,b,t = pl.axis()
    pl.hlines([0], l, r)
    pl.axis([l, r, y.min()*1.1 - y.max()*.1, -y.min()*.1 + y.max()*1.1])
def diffplot_t_of_c(density=4.5, columns=np.linspace(12,15), temperatures=[25,50,75,100,125,150]):
    grid_exp = np.empty([len(columns), len(temperatures)])
    grid_ML = np.empty([len(columns), len(temperatures)])
    for icol, column in enumerate(ProgressBar(columns)):
        for item, temperature in enumerate(temperatures):
            constraints,mf,density,column,temperature = make_model(density=density, temperature=temperature, column=column)
            grid_exp[icol,item] = constraints['expected_temperature']
            grid_ML[icol,item] = constraints['temperature_chi2']

    pl.figure(1).clf()

    for ii,(tem,color) in enumerate(zip(temperatures,('r','g','b','c','m','orange'))):
        pl.plot(columns, grid_exp[:,ii], color=color)
        pl.plot(columns, grid_ML[:,ii], '--', color=color)
        pl.hlines(tem, columns.min(), columns.max(), label='T={0}K'.format(tem), color=color)
    pl.plot([], 'k', label='Expectation Value')
    pl.plot([], 'k--', label='Maximum Likelihood')
    pl.xlabel("log N(H$_2$CO) [cm$^{-2}$]")
    pl.ylabel("Temperature (K)")
    pl.legend(loc='best', fontsize=14)

    pl.figure(2).clf()

    for ii,(tem,color) in enumerate(zip(temperatures,('r','g','b','c','m','orange'))):
        pl.plot(columns, (grid_exp[:,ii]-tem)/tem, color=color, label='T={0}K'.format(tem))
        pl.plot(columns, (grid_ML[:,ii]-tem)/tem, '--', color=color)
    pl.plot([], 'k', label='Expectation Value')
    pl.plot([], 'k--', label='Maximum Likelihood')
    pl.xlabel("log N(H$_2$CO) [cm$^{-2}$]")
    pl.ylabel("Fractional Difference\n(recovered-input)/input")
    pl.legend(loc='best', fontsize=14)
    pl.ylim(-0.5,0.5)
    pl.grid()

    return columns, grid_exp, grid_ML
Exemplo n.º 30
0
def centroidChangeband(side=None):
    """
    This code calculate the centroid change of stars at different positions of the FP as the band filter changes
    """
    Nccd = len(side)
    xmmg = np.zeros(Nccd)
    ymmg = np.zeros(Nccd)
    xceng = np.zeros(Nccd)
    yceng = np.zeros(Nccd)
    xmmr = np.zeros(Nccd)
    ymmr = np.zeros(Nccd)
    xcenr = np.zeros(Nccd)
    ycenr = np.zeros(Nccd)
    xmmi = np.zeros(Nccd)
    ymmi = np.zeros(Nccd)
    xceni = np.zeros(Nccd)
    yceni = np.zeros(Nccd)
    xmmz = np.zeros(Nccd)
    ymmz = np.zeros(Nccd)
    xcenz = np.zeros(Nccd)
    ycenz = np.zeros(Nccd)
    ccdname = []
    for i in range(Nccd):
        print i
        xmmg[i],ymmg[i],xceng[i],yceng[i] = centroidChange(ccd=side[i], filter='g')
        xmmr[i],ymmr[i],xcenr[i],ycenr[i] = centroidChange(ccd=side[i], filter='r')
        xmmi[i],ymmi[i],xceni[i],yceni[i] = centroidChange(ccd=side[i], filter='i')
        xmmz[i],ymmz[i],xcenz[i],ycenz[i] = centroidChange(ccd=side[i], filter='z')
        ccdname.append(side[i][0])
    xrg = xcenr - xceng
    xig = xceni - xceng
    xzg = xcenz - xceng
    yrg = ycenr - yceng
    yig = yceni - yceng
    yzg = ycenz - yceng
    pl.subplot(2,1,1)
    pl.plot(xrg*1000./15.,'b.',label='r-band vs. g-band')
    pl.plot(xig*1000./15.,'r.',label='i-band vs. g-band')
    pl.plot(xzg*1000./15.,'g.',label='z-band vs. g-band')
    pl.xticks(np.arange(Nccd),ccdname)
    pl.xlabel('CCD position')
    pl.ylabel('x centroid difference (Pixels)')
    pl.legend(loc='best')
    pl.hlines(0,-1,31,linestyle='dashed',colors='k')
    pl.xlim(-1,31)
    pl.ylim(-1.5,1.5)
    pl.subplot(2,1,2)
    pl.plot(yrg*1000./15.,'b.',label='r-band vs. g-band')
    pl.plot(yig*1000./15.,'r.',label='i-band vs. g-band')
    pl.plot(yzg*1000./15.,'g.',label='z-band vs. g-band')
    pl.xticks(np.arange(Nccd),ccdname)
    pl.xlabel('CCD position')
    pl.ylabel('y centroid difference (Pixels)')
    pl.legend(loc='best')
    pl.hlines(0,-1,31,linestyle='dashed',colors='k')
    pl.xlim(-1,31)
    pl.ylim(-1.5,1.5)
    return '--- done!---'
def plot_benchmark1():
    """Plot various quantities obtained for varying values of alpha."""
    parameters = dict(n_var=200,
                      n_tasks=5,
                      density=0.15,

                      tol=1e-2,
#                      max_iter=50,
                      min_samples=100,
                      max_samples=150)

    cache_dir = get_cache_dir(parameters, output_dir=output_dir)
    gt = get_ground_truth(cache_dir)
    gt['precisions'] = np.dstack(gt['precisions'])

    emp_covs, n_samples = empirical_covariances(gt['signals'])
    n_samples /= n_samples.sum()

    alpha = []
    objective = []
    log_likelihood = []
    ll_penalized = []
    sparsity = []
    kl = []

    true_covs = np.empty(gt['precisions'].shape)
    for k in range(gt['precisions'].shape[-1]):
        true_covs[..., k] = np.linalg.inv(gt['precisions'][..., k])

    for out in iter_outputs(cache_dir):
        alpha.append(out['alpha'])
        objective.append(- out['objective'][-1])
        ll, llpen = group_sparse_scores(out['precisions'],
                                       n_samples, true_covs, out['alpha'])
        log_likelihood.append(ll)
        ll_penalized.append(llpen)
        sparsity.append(1. * (out['precisions'][..., 0] != 0).sum()
                        / out['precisions'].shape[0] ** 2)
        kl.append(distance(out['precisions'], gt['precisions']))

    gt["true_sparsity"] = (1. * (gt['precisions'][..., 0] != 0).sum()
                           / gt['precisions'].shape[0] ** 2)
    title = (("n_var: {n_var}, n_tasks: {n_tasks}, "
             + "true sparsity: {true_sparsity:.2f} "
             + "\ntol: {tol:.2e} samples: {min_samples}-{max_samples}").format(
                 true_sparsity=gt["true_sparsity"],
                 **parameters))

    plot(alpha, objective, label="objective", title=title)
    plot(alpha, log_likelihood, label="log-likelihood", new_figure=False)
    plot(alpha, ll_penalized, label="penalized L-L", new_figure=False)

    plot(alpha, sparsity, label="sparsity", title=title)
    pl.hlines(gt["true_sparsity"], min(alpha), max(alpha))

    plot(alpha, kl, label="distance", title=title)
    pl.show()
Exemplo n.º 32
0
def myPlot(X,fun,X0,funp,c1,c2):
    p.figure(figsize=(10,6))
    F=do(f,X)
    p.plot(X0,funp,c1+'o-',lw=2,)
    p.vlines(X0,0,funp,linestyle='dotted')
    p.hlines(0,0,1)
    p.xticks(X0,['$x_{%s}$'%i for i in range(len(X0))],fontsize='large')
    p.yticks([])
    p.ylabel('$f(x)$',fontsize='large')
    p.axis([X0[0],X0[-1],0,F.max()+0.1])
Exemplo n.º 33
0
 def plot_peak(self, x, peaks, properties):
     plt.plot(x)
     plt.plot(peaks, x[peaks], "x")
     plt.vlines(x=peaks,
                ymin=x[peaks] - properties["prominences"],
                ymax=x[peaks],
                color="C1")
     plt.hlines(y=properties["width_heights"],
                xmin=properties["left_ips"],
                xmax=properties["right_ips"],
                color="C1")
     plt.show()
Exemplo n.º 34
0
def density_graph_charges():

    #filenames
    filename_svg = os.getcwd() + '/' + str(
        args.output_folder) + '/density_profile_charges.svg'
    filename_png = os.getcwd() + '/' + str(
        args.output_folder) + '/density_profile_charges.png'

    #create figure
    fig = plt.figure(figsize=(8, 6.2))
    fig.suptitle("Charge density profile along z")

    #plot data
    ax = fig.add_subplot(111)
    plt.plot(bins_labels,
             charge_density_stats["avg"] / float(np.average(vols)),
             color='k',
             linewidth=2)
    plt.vlines(lower_avg,
               min(charge_density_stats["avg"] / float(np.average(vols))),
               max(charge_density_stats["avg"] / float(np.average(vols))),
               linestyles='dashed')
    plt.vlines(upper_avg,
               min(charge_density_stats["avg"] / float(np.average(vols))),
               max(charge_density_stats["avg"] / float(np.average(vols))),
               linestyles='dashed')
    plt.vlines(0,
               min(charge_density_stats["avg"] / float(np.average(vols))),
               max(charge_density_stats["avg"] / float(np.average(vols))),
               linestyles='dashdot')
    plt.hlines(0, min(bins_labels), max(bins_labels))
    plt.xlabel('z distance to bilayer center [$\AA$]')
    plt.ylabel('average charge density [$e.\AA^{-3}$]')

    #save figure
    ax.set_xlim(min(bins_labels), max(bins_labels))
    #ax.set_ylim(min_density_charges, max_density_charges)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    ax.xaxis.set_major_locator(MaxNLocator(nbins=10))
    ax.yaxis.set_major_locator(MaxNLocator(nbins=7))
    ax.xaxis.labelpad = 20
    ax.yaxis.labelpad = 20
    plt.setp(ax.xaxis.get_majorticklabels(), fontsize="small")
    plt.setp(ax.yaxis.get_majorticklabels(), fontsize="small")
    plt.subplots_adjust(top=0.9, bottom=0.15, left=0.15, right=0.85)
    fig.savefig(filename_png)
    fig.savefig(filename_svg)
    plt.close()

    return
Exemplo n.º 35
0
  def plot_comparison(self, target_rate, kwargs):
    """Call plot_curves for various cutoff methods."""
    xlim = kwargs.get('xlim')
    ylim = kwargs.get('ylim')
    s = kwargs.get('s',1)
    pylab.clf()
    # tar = str(target_rate)
    # print (tar)
    # result_set.writelines(target_rate)
    result_set.write(str('WOO'))
    result_set.write(str(target_rate)+"\n")
    print('WOO', target_rate)
    opt_point = self.data.two_sided_optimum(target_rate)
    pylab.subplot(121)

    demog_label = ('cutoffs', self.data.demographic_cutoffs(target_rate, True),
                       dict(marker='v',label='Demography', color='orange', s=70))
    self.plot_curves([
#      demog_label,
    ])
    pylab.legend(loc='lower right')
    pylab.title("Per-group ROC curve\nclassifying %(success_people)s using %(score)s" % self.labels, **titlekws)
    if xlim and ylim:
      pylab.hlines(ylim[0], xlim[0], xlim[1], linestyle='-', linewidth=1)
      pylab.vlines(xlim[1], ylim[0], ylim[1], linestyle='-', linewidth=1)
      pylab.hlines(ylim[1], xlim[0], xlim[1], linestyle='-', linewidth=1)
      pylab.vlines(xlim[0], ylim[0], ylim[1], linestyle='-', linewidth=1)
    pylab.plot([0,1],[0,1], lw=1,color='k', linestyle='-')
    pylab.subplot(122)
    # a = 10
    print('Demog:', self.data.demographic_cutoffs(target_rate, True))
    result_set.write(str(('Demog:', self.data.demographic_cutoffs(target_rate, True)))+"\n")
    print('Opportunity:', self.data.opportunity_cutoffs(target_rate, True))
    result_set.write(str(('Opportunity:', self.data.opportunity_cutoffs(target_rate, True)))+"\n")
    self.plot_curves([('cutoffs', self.data.profit_cutoffs(target_rate),
                        dict(marker='^',label='Max profit', s=70*s)),
                       ('cutoffs', self.data.fixed_cutoffs(target_rate, True),
                        dict(label='Single threshold', marker='o', color='g',s=100)),
#                      demog_label,
                      ('y', self.data.get_best_opportunity(target_rate),
                        dict(marker='x',label='Opportunity', s=130*s, color='purple')),
                      ('xy', ([opt_point[1]], [opt_point[0]]),
                       dict(marker='+', label='Equal odds', s=180*s, color='brown', zorder=4, linewidth=3)),
                     ], regular_labels=False)
    pylab.legend(loc='lower right', scatterpoints=1, fontsize='small')
    pylab.title("Zoomed in view", **titlekws)
    pylab.tight_layout()
    pylab.plot([0,1],[0,1], lw=1,color='k', linestyle='-')
    pylab.xlim(xlim)
    pylab.ylim(ylim)
    result_set.flush();
    def plot_facade_cuts(self):

        facade_sig = self.facade_edge_scores.sum(0)
        facade_cuts = find_facade_cuts(
            facade_sig, dilation_amount=self.facade_merge_amount)
        mu = np.mean(facade_sig)
        sigma = np.std(facade_sig)

        w = self.rectified.shape[1]
        pad = 10

        gs1 = pl.GridSpec(5, 5)
        gs1.update(wspace=0.5, hspace=0.0)  # set the spacing between axes.

        pl.subplot(gs1[:3, :])
        pl.imshow(self.rectified)
        pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
        pl.axis('off')
        pl.xlim(-pad, w + pad)

        pl.subplot(gs1[3:, :], sharex=pl.gca())
        pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
        pl.fill_between(np.arange(w),
                        0,
                        np.clip(facade_sig, 0, mu + sigma),
                        color='blue')
        pl.plot(np.arange(w), facade_sig, color='blue')

        pl.vlines(facade_cuts,
                  facade_sig[facade_cuts],
                  pl.xlim()[1],
                  lw=2,
                  color='black')
        pl.scatter(facade_cuts, facade_sig[facade_cuts])

        pl.axis('off')

        pl.hlines(mu, 0, w, linestyle='dashed', color='black')
        pl.text(0, mu, '$\mu$ ', ha='right')

        pl.hlines(
            mu + sigma,
            0,
            w,
            linestyle='dashed',
            color='gray',
        )
        pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
        pl.xlim(-pad, w + pad)
Exemplo n.º 37
0
def fwhm_whisker_plot(stampImgList=None,bkgList=None,sigma=1.1/scale):
    whk,fwhm = get_fwhm_whisker_list(stampImgList,bkgList,sigma=sigma)
    whk=list(whk.T)
    fwh=list(fwhm.T)
    pl.figure(figsize=(7,5))
    pl.boxplot(whk)
    pl.hlines(0.2,0,3,linestyle='solid',color='g')
    pl.ylim(0.,.4)
    pl.xticks(np.arange(1,3),['whisker_Wmoments','whisker_Amoments'])
    pl.figure(figsize=(12,5))
    pl.boxplot(fwh)
    pl.ylim(0.4,1.5)
    pl.hlines(0.9,0,6,linestyle='solid',color='g')
    pl.xticks(np.arange(1,6),['fwhm_weighted', 'fwhm_Amoments','fwhm_moffat', 'fwhm_gauss','fwhm_sech2'])
    return '-----done !----'
Exemplo n.º 38
0
def plot_encoded(t, u, s, fig_title='', file_name=''):
    """
    Plot a time-encoded signal.

    Parameters
    ----------
    t : ndarray of floats
        Times (in s) at which the original signal was sampled.
    u : ndarray of floats
        Signal samples.
    s : ndarray of floats
        Intervals between encoded signal spikes.
    fig_title : string
        Plot title.
    file_name : string
        File in which to save the plot.

    Notes
    -----
    The spike times (i.e., the cumulative sum of the interspike
    intervals) must all occur within the interval `t-min(t)`.

    """

    dt = t[1] - t[0]
    cs = np.cumsum(s)
    if cs[-1] >= max(t) - min(t):
        raise ValueError('some spike times occur outside of signal'
                         's support')

    p.clf()
    p.gcf().canvas.set_window_title(fig_title)
    p.axes([0.125, 0.3, 0.775, 0.6])
    p.vlines(cs + min(t), np.zeros(len(cs)), u[np.asarray(cs / dt, int)], 'b')
    p.hlines(0, 0, max(t), 'r')
    p.plot(t, u, hold=True)
    p.xlabel('t (s)')
    p.ylabel('u(t)')
    p.title(fig_title)
    p.gca().set_xlim(min(t), max(t))
    a = p.axes([0.125, 0.1, 0.775, 0.1])
    p.plot(cs + min(t), np.zeros(len(s)), 'ro')
    a.set_yticklabels([])
    p.xlabel('%d spikes' % len(s))
    p.gca().set_xlim(min(t), max(t))
    p.draw_if_interactive()
    if file_name:
        p.savefig(file_name)
Exemplo n.º 39
0
def replot(d, w=2, column=0, color='b'):
    global tvec
    axi = axit[column]
    if len(tvec) != len(d[0][1]): tvec = h.Vector(len(d[0][1])).indgen(h.dt)
    for ax in axi:
        ax.clear()
    for ax in axi:
        ax.set_ylim(-120, 50)
    for ax, d1 in zip(axi, d):
        ax.plot(tvec, d1[1], linewidth=w, color=color)
        ax.set_axis_off()
        # https://matplotlib.org/users/text_props.html
        if column == 0:
            ax.text(0, 0, '%d%%' % d1[0], fontsize=14, ha='right', va='top')
    plt.vlines(600, 0, 50)
    plt.hlines(0, 550, 600)
Exemplo n.º 40
0
def plot(mode):
    """ plot range """
    xmin, xmax, ymin, ymax = (-2, 2, -1, 3)
    fig = pl.figure()
    fig.subplots_adjust(left=0.15)
    ax = pl.subplot(1,1,1)

    interval = 0.5
    offset = 0.05

    """ move ticks"""
    pl.xticks(offset + np.arange(xmin, xmax+1, interval), np.arange(xmin, xmax+interval+1, interval))
    pl.yticks(offset + np.arange(ymin, ymax+1, interval), np.arange(ymin, ymax+interval+1, interval))

    pl.ylim([ymin,ymax])

    """ axis """
    pl.hlines([0], xmin, xmax, linestyles="dashed")
    pl.vlines([0], ymin, ymax, linestyles="dashed")

    """ label """
    pl.xlabel("x", style='italic', fontsize=25)
    pl.ylabel("l'(x)", style='italic', fontsize=25)

    """ title """
    pl.title(mode, fontdict={'size':28})

    X = np.linspace(xmin, xmax, 256, endpoint=True)

    """ plot funcitons """
    if mode == "(b)":
        pl.plot(X, exp(X), "--r", linewidth=5)
        pl.plot(X, hinge(X), "-b", linewidth=5)
    #pl.plot(X, logistic(X), linewidth=3, color="y")
    elif mode == "(a)":
        pl.plot(X, sigmoid(X), "-b", linewidth=5)
        pl.plot(X, ramp(X), "--r", linewidth=5)


    for i,item in enumerate(ax.get_xticklabels()):
        fontsize = 20
        item.set_fontsize(fontsize)

    for i,item in enumerate(ax.get_yticklabels()):
        fontsize = 20
        item.set_fontsize(fontsize)
    pl.show()
Exemplo n.º 41
0
def plot_encoded(t, u, s, fig_title='', file_name=''):
    """
    Plot a time-encoded signal.

    Parameters
    ----------
    t : ndarray of floats
        Times (in s) at which the original signal was sampled.
    u : ndarray of floats
        Signal samples.
    s : ndarray of floats
        Intervals between encoded signal spikes.
    fig_title : string
        Plot title.
    file_name : string
        File in which to save the plot.

    Notes
    -----
    The spike times (i.e., the cumulative sum of the interspike
    intervals) must all occur within the interval `t-min(t)`.

    """

    dt = t[1]-t[0]
    cs = np.cumsum(s)
    if cs[-1] >= max(t)-min(t):
        raise ValueError('some spike times occur outside of signal''s support')

    p.clf()
    p.gcf().canvas.set_window_title(fig_title)
    p.axes([0.125, 0.3, 0.775, 0.6])
    p.vlines(cs+min(t), np.zeros(len(cs)), u[np.asarray(cs/dt, int)], 'b')
    p.hlines(0, 0, max(t), 'r')
    p.plot(t, u, hold=True)
    p.xlabel('t (s)')
    p.ylabel('u(t)')
    p.title(fig_title)
    p.gca().set_xlim(min(t), max(t))
    a = p.axes([0.125, 0.1, 0.775, 0.1])
    p.plot(cs+min(t), np.zeros(len(s)), 'ro')
    a.set_yticklabels([])
    p.xlabel('%d spikes' % len(s))
    p.gca().set_xlim(min(t), max(t))
    p.draw_if_interactive()
    if file_name:
        p.savefig(file_name)
Exemplo n.º 42
0
 def plot_pair(self, target):
     """Plots performance with raw=True and raw=False in two subplots."""
     pylab.clf()
     pylab.figure(figsize=(10, 5))
     pylab.subplot(121)
     self.plot_performance(raw=True)
     pylab.hlines(target * 100,
                  self.data.cdfs.index.min(),
                  self.data.cdfs.index.max(),
                  linewidth=1,
                  colors='k')
     pylab.subplot(122)
     self.plot_performance()
     pylab.hlines(target * 100, 0, 100, linewidth=1, colors='k')
     pylab.tight_layout()
     pylab.savefig(FIGURE_DIR + 'credit_performance.svg')
     pylab.show()
Exemplo n.º 43
0
    def plot_lightcurve(self, show=False, save=False):
        """
        plot the lightcurve for a given star
        """

        mean = np.mean(self.m)
        std = np.std(self.m)

        plt.hlines(mean, min(self.t), max(self.t), linestyle='--')
        plt.ylim(mean + std * 3, mean - std * 3)
        plt.xlim(min(self.t), max(self.t))
        plt.grid()
        plt.title(self.starid + ' = star #' + str(self['tab']))
        plt.xlabel('days')
        plt.ylabel('mag')
        plt.scatter(self.t, self.m, edgecolor='none')
        plt.plot(self.t, self.m, 'gray')
        plt.minorticks_on()
Exemplo n.º 44
0
def ex1_2_2():
    oldX = changeLen([1, -2, 4, 6, -5, 8, 10], -20, 20)
    a = xl(oldX, -20)
    aPre = [2*np.exp(0.5*i) for i in xrange(-20, 21)]
    a.mul(aPre)
    b = xl(oldX, -20)
    
    bPre = [np.cos(0.1*np.pi*i) for i in xrange(-20, 21)]
    b.shitf(2)
    b.mul(bPre)
    c = a + b
    x,y = np.array([i for i in xrange(c.indexOfStart, c.indexOfEnd+1)]), np.array(c.date)
    plt.scatter(x, y)
    plt.vlines(x, [0], y)
    plt.hlines(0, x[0]-1, x[x.shape[0]-1]+1)
    plt.ylim(-20, 60)
    plt.xlim(-20, 20)
    plt.show()
Exemplo n.º 45
0
 def plot_lightcurve(self):
     """
     plot the lightcurve for a given star
     """
     mean = np.mean(self.m)
     std = np.std(self.m)
     
     plt.hlines(mean,min(self.t),max(self.t),linestyle='--')
     plt.ylim(mean+std*3,mean-std*3)
     plt.xlim(min(self.t),max(self.t))
     plt.grid()
     plt.title(self.starid)
     plt.xlabel('days')
     plt.ylabel('mag')
     plt.scatter(self.t, self.m, edgecolor='none')
     #plt.show()
     plt.savefig('/work1/jwe/Dropbox/Documents/Talks/AIP2014a/lightcurve.pdf')
     plt.close()
Exemplo n.º 46
0
def fwhm_whisker_plot(stampImgList=None, bkgList=None, sigma=1.1 / scale):
    whk, fwhm = get_fwhm_whisker_list(stampImgList, bkgList, sigma=sigma)
    whk = list(whk.T)
    fwh = list(fwhm.T)
    pl.figure(figsize=(7, 5))
    pl.boxplot(whk)
    pl.hlines(0.2, 0, 3, linestyle='solid', color='g')
    pl.ylim(0., .4)
    pl.xticks(np.arange(1, 3), ['whisker_Wmoments', 'whisker_Amoments'])
    pl.figure(figsize=(12, 5))
    pl.boxplot(fwh)
    pl.ylim(0.4, 1.5)
    pl.hlines(0.9, 0, 6, linestyle='solid', color='g')
    pl.xticks(np.arange(1, 6), [
        'fwhm_weighted', 'fwhm_Amoments', 'fwhm_moffat', 'fwhm_gauss',
        'fwhm_sech2'
    ])
    return '-----done !----'
Exemplo n.º 47
0
def plot_samples(S, axis_list=None):
    pl.scatter(S[:, 0], S[:, 1], s=2, marker="o", linewidths=0, zorder=10)
    if axis_list is not None:
        colors = [(0, 0.6, 0), (0.6, 0, 0)]
        for color, axis in zip(colors, axis_list):
            axis /= axis.std()
            x_axis, y_axis = axis
            # Trick to get legend to work
            pl.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
            # pl.quiver(x_axis, y_axis, x_axis, y_axis, zorder=11, width=0.01,
            pl.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color)

    pl.hlines(0, -3, 3)
    pl.vlines(0, -3, 3)
    pl.xlim(-3, 3)
    pl.ylim(-3, 3)
    pl.xlabel("x")
    pl.ylabel("y")
Exemplo n.º 48
0
 def plot_pair(self, cutoffs, target, titles=[None,None], show_loss=False):
   """Plots performance with raw=True and raw=False in two subplots."""
   kws = {}
   if show_loss:
     pc = self.data.profit_cutoffs(target)
     kws.update(dict(othercutoffs=pc, otherthreshold=target))
   if isinstance(titles, str):
     titles = [titles + ' (raw score)', titles + ' (per-group)']
   pylab.clf()
   pylab.subplot(121)
   self.plot_performance(cutoffs=cutoffs, raw=True, **kws)
   pylab.hlines(target*100, self.data.cdfs.index.min(), self.data.cdfs.index.max(), linewidth=1, colors='k')
   pylab.title(titles[0], **titlekws)
   pylab.subplot(122)
   self.plot_performance(cutoffs=cutoffs, **kws)
   pylab.hlines(target*100, 0, 100, linewidth=1, colors='k')
   pylab.title(titles[1], **titlekws)
   pylab.tight_layout()
Exemplo n.º 49
0
def plot_samples(S, axis_list=None):
    pl.scatter(S[:, 0], S[:, 1], s=2, marker='o', linewidths=0, zorder=10,
               color='steelblue', alpha=0.5)
    if axis_list is not None:
        colors = ['orange', 'red']
        for color, axis in zip(colors, axis_list):
            axis /= axis.std()
            x_axis, y_axis = axis
            # Trick to get legend to work
            pl.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
            pl.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6,
                      color=color)

    pl.hlines(0, -3, 3)
    pl.vlines(0, -3, 3)
    pl.xlim(-3, 3)
    pl.ylim(-3, 3)
    pl.xlabel('x')
    pl.ylabel('y')
Exemplo n.º 50
0
def calc_apcorr(file):

	'''  MEASURE APPERTURE CORRECTION GIVEN TWO MAGNITUDES'''
	'''    file -- daophot filename (expects only 2 circular aperture magnitude estimates in file)'''

	# Save a trimmed daophot catalog with columns relevant to this study (xc,yc,mag1,mag2)
        trimfile = file+'.trimmed'
        file_query = os.access(trimfile, os.R_OK)
        if file_query == True: os.remove(trimfile)      # remove previous trimmed files
        iraf.txdump(file,'xcenter,ycenter,mag', 'yes', Stdout=trimfile)

        # Measure the aperture correction assuming a pt source
        xc, yc, mag1,mag2 = np.loadtxt(trimfile, unpack=True)
        deltamag=mag1-mag2

	# Use somewhat hacky method to extract box in mag.vs.deltamag plot where we will estimate median deltamag
	xgd=[21.8,25.0]		# fixed--works well for both filters
	#estimate y-range from a rough median estimate
	tmp_median = np.median(deltamag[(mag1 >= xgd[0])&(mag1 <= xgd[1])&(np.abs(deltamag) < 1)])
	ygd=[tmp_median-0.1, tmp_median+0.1]
        f_deltamag=deltamag[(mag1 >= xgd[0])&(mag1 <= xgd[1])&(deltamag > ygd[0])&(deltamag <ygd[1])]     # avoid saturated and faint sources
	ac05 = np.median(f_deltamag)


	# Plot the aperture correction on delta_mag vs. mag scatter diagram
        pylab.scatter(mag1, deltamag,s=1.0,c='r',marker='o')
        pylab.ylim(-0.5,1.0)
        pylab.xlim(19.0,29.0)
        pylab.xlabel('m3')
        pylab.ylabel('m3 - m16')
        pylab.axhline(0.0, c='k', ls='--', linewidth=3)
        pylab.axhline(ac05)
	pylab.vlines(xgd,ygd[0],ygd[1], colors='red',linestyles='dotted')
	pylab.hlines(ygd,xgd[0],xgd[1], colors='red',linestyles='dotted')
        pylab.annotate('ac05='+str(ac05),[19.3,ac05-0.07])
        pylab.annotate('m_corr = m1 - ac05 - AC05',[19.3,-0.4])
        fsplit=file.split('_')
        pylab.annotate(fsplit[0], [20.0,-0.2],color='r')
        pylab.savefig('deltamag_vs_mag_'+fsplit[0]+'.pdf')
        pylab.clf()

	return ac05
    def plot(self, bgimage=None):
        import pylab as pl

        self._plot_background(bgimage)
        ax = pl.gca()
        y0, y1 = pl.ylim()
        # r is the width of the thick line we use to show the facade colors
        r = 5
        patch = pl.Rectangle((self.facade_left + r, self.sky_line + r),
                             self.width - 2 * r,
                             self.door_line - self.sky_line - 2 * r,
                             color=self.color,
                             fill=False,
                             lw=2 * r)
        ax.add_patch(patch)

        pl.text((self.facade_right + self.facade_left) / 2.,
                (self.door_line + self.sky_line) / 2.,
                '$\sigma^2={:0.2f}$'.format(self.uncertainty_for_windows()))

        patch = pl.Rectangle((self.facade_left + r, self.door_line + r),
                             self.width - 2 * r,
                             y0 - self.door_line - 2 * r,
                             color=self.mezzanine_color,
                             fill=False,
                             lw=2 * r)
        ax.add_patch(patch)

        # Plot the left and right edges in yellow
        pl.vlines([self.facade_left, self.facade_right],
                  self.sky_line,
                  y0,
                  colors='yellow')

        # Plot the door line and the roof line
        pl.hlines([self.door_line, self.sky_line],
                  self.facade_left,
                  self.facade_right,
                  linestyles='dashed',
                  colors='yellow')

        self.window_grid.plot()
def PlotTemp(md_list):
    """ First function to analyze the results of the activation threshold"""
    close(3)
    figure(3)
    xlim((-1, 62))
    hlines(0, -1, 62)
    ylim((-0.3, 10.2))
    vlines(0, -0.2, 10.2)
    for md in md_list:
        md.PlotvPar( par=1, position=md.data_other['Time'], alpha=0.9,\
            color=color[md.experiment][0], linewidth=2)
        x, y = [], []
        for d in md.d:
            x += [[md.data_other['Time']] * len(d.y)]
            y += [log10(d.y * d.mult_factors / d.Sc + 1)]
        plot( x, y, ' ', marker=color[md.experiment][1], markersize=4,\
             color=color[md.experiment][0])
    ylabel(md.unit)
    xlabel(r"$min$")
    savefig("Images/All.png")
Exemplo n.º 53
0
def simulation(recipe, curvNo, noIndicators):
    worker = recipe.getWorker("ThicknessModeller")
    simulation = worker.plugCalcAbsorption.getResult()
    worker = recipe.getWorker("AddColumn")
    table = worker.plugCompute.getResult(subscriber=TextSubscriber("Add Column"))
    thickness = table[u"thickness"]
    index = curvNo2Index(table[u"pixel"], curvNo)
    worker = recipe.getWorker("MRA Exp")
    minimaPos = worker.plugMra.getResult()[r'\lambda_{min}'].inUnitsOf(simulation.dimensions[1])
    maximaPos = worker.plugMra.getResult()[r'\lambda_{max}'].inUnitsOf(simulation.dimensions[1])
    visualizer = ImageVisualizer(simulation, False)
    ordinate = simulation.dimensions[1].data
    if not noIndicators:
        pylab.hlines(thickness.data[index],ordinate.min(),ordinate.max(),
                     label ="$%s$"%minimaPos.shortname)
        abscissae = simulation.dimensions[0].data
        pylab.vlines(minimaPos.data[:,index],abscissae.min(),abscissae.max(),
                     label ="$%s$"%minimaPos.shortname)
        pylab.vlines(maximaPos.data[:,index],abscissae.min(),abscissae.max(),
                     label ="$%s$"%maximaPos.shortname)
Exemplo n.º 54
0
def plot_effmass_with_fit(cfnc, ti, tf, T, 
                          save=False, name='', title=None, yrange=[]):
    "Also show the mass determined from a fit."
    effmass = naive_effmass(cfnc)
    ave, sigma = effmass[0], JKsigma(effmass)
    fit = fit_twopoint_cfuns(cfnc, ti, tf, T)
    m, sigm = fit[0][1], fit[1][1]
    p.figure()
    if title is not None:
        p.title(title)
    if yrange:
        p.ylim(yrange)
    p.xlabel('$t$')
    p.ylabel('$|\\frac{C[t+1]}{C[t]}|$')
    p.errorbar(range(len(ave)), ave, sigma, fmt='ko')
    p.hlines([m-sigm, m+sigm], ti, tf, colors='r')
    #p.axhspan((m-sigm), (m+sigm), facecolor=(1.0,0.0,0.0), alpha=0.5) 
    if save:
        p.savefig(name)
    else:
        p.show()
Exemplo n.º 55
0
def plotHMapEffects(s,alpha=0.1,Nsamp=1000):
  D = s.D
  Htrans = s.Htrans
  cpairs = zip(
    (['r','b','k'][i%3] for i in count(0)),
    zip(xrange(D),[j%D for j in xrange(1,D+1)])
  )
  x = sampleSCrossSD(r0=1.0,r1=0.3,D=D-1,N=Nsamp)
  tmpx = array(x)
  for h,A in zip(Htrans.H,Htrans.A):
    f = h.f
    figure(figsize=(12,12))
    subplot(2,2,1)
    for c,(i,j) in cpairs:
      scatter(tmpx[:,i],tmpx[:,j],alpha=alpha,c=c)
    subplot(2,2,2)
    bt = h.computebtilde(tmpx)
    if bt.shape[1]==1:
      scatter(zeros(bt.shape[0]),bt[:,0],alpha=alpha)
      lnes = f.getEllipse()
      for l in lnes:
        hlines(l,-1,1)
      subplot(2,2,3)
      a = applyAffine(h.ga,tmpx[:,:h.split])
      if a.shape[1]>2:
        scatter(a[:,0],a[:,1],alpha=alpha)
      else:
        scatter(zeros_like(a[:,0]),a[:,0],alpha=alpha)
    else:
      scatter(*bt.T,alpha=alpha)
      plot(*f.getEllipse())
      subplot(2,2,3)
      a = applyAffine(h.ga,tmpx[:,:h.split])
      scatter(zeros(a.shape[0]),a[:,0],alpha=alpha)
    subplot(2,2,4)
    tmpx = h(tmpx)
    for c,(i,j) in cpairs:
      scatter(tmpx[:,i],tmpx[:,j],alpha=alpha,c=c)
    tmpx = dot(A,tmpx.T).T
Exemplo n.º 56
0
def fwhm_whisker_des_plot(stampImgList=None,bkgList=None,whkSex=None,fwhmSex=None,sigma=1.1/scale,dimmfwhm=None):
    whk,fwhm = get_fwhm_whisker_list(stampImgList,bkgList,sigma=sigma)
    whk=list(whk.T)
    fwh=list(fwhm.T)
    fwh.append(fwhmSex)
    whk.append(whkSex)
    pl.figure(figsize=(15,10))
    pl.subplot(2,1,1)
    pl.boxplot(whk)
    pl.hlines(0.2,0,4,linestyle='solid',color='g')
    pl.ylim(np.median(whk[2])-0.3,np.median(whk[2])+0.6)
    pl.grid()
    pl.xticks(np.arange(1,4),['whisker_Wmoments','whisker_Amoments','whisker_sx'])
    if dimmfwhm != None:
        pl.title('DIMM Seeing FWHM: '+str(round(dimmfwhm,3)) +'(arcsec)    sqrt(DIMM fwhm^2 + 0.55^2): '+str(round(np.sqrt(dimmfwhm**2 + 0.55**2),3)))
    pl.subplot(2,1,2)
    pl.boxplot(fwh)
    pl.ylim(0,np.median(fwh[5])+2)
    pl.grid()
    pl.hlines(0.9,0,7,linestyle='solid',color='g')
    pl.xticks(np.arange(1,7),['fwhm_weighted', 'fwhm_Amoments','fwhm_moffat', 'fwhm_gauss','fwhm_sech2','fwhm_sx'])
    return '-----done !----'
def plot_channel(ax, c, clusters, cluster_p_values,plot_type,full=False):
	for i_c, (start, stop) in enumerate(clusters):
		if start / n_times == c:
			start -= c*n_times
			stop -= c*n_times
			if cluster_p_values[i_c] <= 0.05:
				h = ax.axvspan(times[start], times[stop-1], color='r', alpha=0.3)
			else:
				ax.axvspan(times[start], times[stop-1], color=(0.3, 0.3, 0.3),
						   alpha=0.3)
	pl.axhline(y=0,linewidth=1,color="black")	
	if plot_type == "data":
		hf = ax.plot(times, -1*means0[c],"r",times,-1*means1[c],"g")
		if not full:		
			pl.text(-0.035,ydata_scale*.9,ydata_scale_txt)
			pl.legend(hf,(cond_names[0],cond_names[1]),loc="upper right")
	elif plot_type == "f":
		hf = ax.plot(times, T_obs[c], 'g')
	pl.vlines(x=xt,ymin=ymarks*-1,ymax=ymarks)
	pl.vlines(x=xt2,ymin=np.array([0]),ymax=ymarks2,linewidth=1)
	pl.hlines(ydata_scale,xmark*-1,xmark)
	pl.xlim([0,times[lent-1]])
	return hf
Exemplo n.º 58
0
def myPlot2(X,fun,X0,funp,D,c1,c2):
    p.figure(figsize=(10,6))
    F=do(f,X)
    d=0
    dr=[0]
    for DD in D:
        if DD==1:
            p.plot(X0[d:d+2],funp[d:d+2],c1+'o-',lw=2,)
        elif DD==2:
            yr=p.linspace(0,1,100)
            xr=X0[d]+(X0[d+2]-X0[d])*yr
            fr=funp[d]+(funp[d+1]-funp[d])*(4.*yr*(1.0-yr))+2.0*(funp[d+2]-funp[d])*yr*(yr-0.5)
            p.plot(X0[d],funp[d],c1+'o',lw=2,)
            p.plot(xr,fr,c1+'-',lw=2,)
            p.plot(X0[d],funp[d],c1+'o-',lw=2,)
        dr.append(dr[-1]+DD)
        d=d+DD
    p.hlines(0,0,1)
    p.vlines(X0[dr],0,funp[dr],linestyle='dotted')
    p.xticks(X0[dr],['$x_{%s}$'%i for i in range(len(X0[dr]))],fontsize='large')
    p.yticks([])
    p.ylabel('$f(x)$',fontsize='large')
    p.axis([X0[0],X0[-1],0,F.max()+0.1])
def plotGaussianAndSignaPoints(x_range, gaussian, sigma_points, means):
  # Get inputs
  gaussian_i    = gaussian[0]
  gaussian_t    = gaussian[1]
  gaussian_mc   = gaussian[2]
  gaussian_ekf  = gaussian[3]

  sigma_points_i = sigma_points[0]
  sigma_points_t = sigma_points[1]

  mean_ekf, mean_sigma, mean_mc = means

  fig = pylab.figure("Gaussian and sigma points")
  plot = fig.gca()

  # get the offset to plot in reverse
  rev_offset = np.min(x_range)

  # plot the gaussians
  plot.plot(x_range, gaussian_i, 'b-')
  plot.plot(gaussian_t, x_range + rev_offset,'g-.', label='Trans. Inodore')
  plot.plot(gaussian_mc[0],gaussian_mc[1][:-1] + rev_offset, 'g', label='Monte Carlo')
  plot.plot(gaussian_ekf,x_range + rev_offset,'g.', label=u'Linéarisation')

  # plot the sigma points
  plot.plot(sigma_points_i[:,0], sigma_points_i[:,1], 'bo')
  plot.plot(sigma_points_t[:,1] + np.min(x_range), sigma_points_t[:,0] + rev_offset, 'go')

  # plot the transformation
#  plot.plot(x_range, x_range + rev_offset, 'k-', linewidth = 0.5)
  plot.plot(x_range, transform(x_range) + rev_offset, 'k--', label='Fonction de transfert')

  # plot the mean values
  max_line = 2
  pylab.hlines(mean_ekf,0, max_line, colors = 'r', linestyles='dotted')
  pylab.hlines(mean_sigma,0, max_line, colors = 'r', linestyles='dashdot')
  pylab.hlines(mean_mc,0, max_line, colors = 'r', linestyles='solid')


  # set plot parameters
  pylab.xlim([np.min(x_range),np.max(x_range)])
  pylab.ylim([0,8])

  pylab.legend(loc = 'upper right')
  plot.set_aspect('equal')
  pylab.title(u'Différentes méthodes de propagation')
  pylab.grid(True, 'both', 'both')
  fig.show()