Exemplo n.º 1
0
def test_store_initialize() -> None:
    with setup_storage('test_store_initialize') as p:
        import pylightnix.core
        try:
            pylightnix.core.PYLIGHTNIX_TMP = join(p, 'tmp')
            pylightnix.core.PYLIGHTNIX_STORE = join(p, 'store')
            store_initialize(custom_store=None, custom_tmp=None)
            assert isdir(join(p, 'tmp'))
            assert isdir(join(p, 'store'))
            store_initialize(custom_store=None, custom_tmp=None)
            assert isdir(join(p, 'tmp'))
            assert isdir(join(p, 'store'))
        finally:
            pylightnix.core.PYLIGHTNIX_TMP = None  # type:ignore
            pylightnix.core.PYLIGHTNIX_STORE = None  # type:ignore
Exemplo n.º 2
0
def setup_storage(tn: str):
    # We reset STORE variables to prevent interaction with production store
    import pylightnix.core
    pylightnix.core.PYLIGHTNIX_STORE = None  # type:ignore
    pylightnix.core.PYLIGHTNIX_TMP = None  # type:ignore
    storepath = Path(join(gettempdir(), tn))
    try:
        dirchmod(storepath, 'rw')
        rmtree(storepath)
    except FileNotFoundError:
        pass
    store_initialize(custom_store=storepath,
                     custom_tmp=join(gettempdir(), 'pylightnix_tmp'))
    assert 0 == len(listdir(storepath))
    try:
        yield storepath
    finally:
        # print('Setting PYLIGHTNIX_STORE to none')
        pylightnix.core.PYLIGHTNIX_STORE = None  # type:ignore
        pylightnix.core.PYLIGHTNIX_TMP = None  # type:ignore
Exemplo n.º 3
0
from pylightnix import Path, store_initialize, dirrm
dirrm(Path('/tmp/pylightnix_mnist_demo'))
store_initialize(custom_store='/tmp/pylightnix_mnist_demo', custom_tmp='/tmp')

from pylightnix import DRef, instantiate_inplace, fetchurl

mnist_dataset:DRef = \
  instantiate_inplace(
    fetchurl,
    name='mnist',
    mode='as-is',
    url='https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz',
    sha256='731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1')

print(mnist_dataset)

from pylightnix import Config, RefPath, PromisePath, mkconfig, promise

def mnist_config()->Config:
  learning_rate = 1e-3
  num_epoches = 1
  dataset:RefPath = [mnist_dataset, 'mnist.npz']
  accuracy:PromisePath = [promise, 'accuracy.txt']
  return mkconfig(locals())

from pylightnix import match_latest

def mnist_match():
  return match_latest()
Exemplo n.º 4
0
from os.path import join
from numpy import load as np_load
from tensorflow.keras.models import ( Sequential )
from tensorflow.keras.layers import ( Conv2D, MaxPool2D, Dropout, Flatten, Dense )
from tensorflow.keras.utils import ( to_categorical )
from tensorflow.keras.backend import image_data_format
from tensorflow.keras.callbacks import ModelCheckpoint

from pylightnix import ( Matcher, Build, Path, RefPath, Config, Manager, RRef,
    DRef, Context, build_path, build_outpath, build_cattrs, mkdrv, rref2path,
    mkconfig, mkbuild, match_best, build_wrapper_, tryread, fetchurl,
    store_initialize, realize, instantiate )

from typing import Any

store_initialize()


def fetchmnist(m:Manager)->DRef:
  return \
    fetchurl(m, name='mnist',
                mode='as-is',
                url='https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz',
                sha256='731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1')

class Model(Build):
  model:Sequential
  x_train:Any
  y_train:Any
  x_test:Any
  y_test:Any
Exemplo n.º 5
0
from ultimatum.base import run1

from pylightnix import ( Config, Manager, Build, DRef, RRef, ConfigAttrs,
    mkdrv, instantiate, realizeMany, build_cattrs, build_wrapper, match_all,
    build_outpaths, Path, config_dict, build_config, store_initialize,
    match_only, build_paths, build_outpath, realize )
import matplotlib.pyplot as plt
from multiprocessing.pool import Pool
from typing import List, Optional
from json import loads as json_loads, dumps as json_dumps
from os import chdir

store_initialize('/tmp/ultimatum', '/tmp')

def _build_process(a:ConfigAttrs, o:Path):
  run1(cwd=o, nepoch=a.nepoch, n=a.n, nrounds=a.nrounds, cutoff=a.cutoff)

def breed_node(m:Manager)->DRef:
  def _config()->Config:
    name='ultimatum'
    nepoch=30000
    n=300
    nrounds=10*30
    cutoff=0.1
    version=6
    nrunners=10
    return Config(locals())
  def _build(b:Build)->None:
    c=build_cattrs(b)
    p=Pool()
    p.starmap(_build_process,[(c,o) for o in build_outpaths(b,nouts=c.nrunners)],1)