Exemplo n.º 1
0
def test_opt_qn_normal(f=hp_normal):
    bandit = Bandit(
            {'loss': -scope.sum([f('v%i' % ii, 0, 1)
                for ii in range(25)]) ** 2},
            loss_target=0)
    algo = TreeParzenEstimator(bandit,
            prior_weight=.5,
            n_startup_jobs=0,
            n_EI_candidates=1,
            gamma=0.15)
    trials = Trials()
    experiment = Experiment(trials, algo, async=False)
    experiment.max_queue_len = 1
    experiment.run(40)
    print list(sorted(trials.losses()))

    idxs, vals = miscs_to_idxs_vals(trials.miscs)

    if 1:
        import hyperopt.plotting
        hyperopt.plotting.main_plot_vars(trials, bandit, do_show=1)
    else:
        import matplotlib.pyplot as plt
        begin = [v[:10] for k, v in vals.items()]
        end = [v[-10:] for k, v in vals.items()]
        plt.subplot(2, 1, 1)
        plt.title('before')
        plt.hist(np.asarray(begin).flatten())
        plt.subplot(2, 1, 2)
        plt.title('after')
        plt.hist(np.asarray(end).flatten())
        plt.show()
Exemplo n.º 2
0
def test_opt_qn_normal(f=hp_normal):
    bandit = Bandit(
        {'loss': -scope.sum([f('v%i' % ii, 0, 1) for ii in range(25)])**2},
        loss_target=0)
    algo = TreeParzenEstimator(bandit,
                               prior_weight=.5,
                               n_startup_jobs=0,
                               n_EI_candidates=1,
                               gamma=0.15)
    trials = Trials()
    experiment = Experiment(trials, algo, async=False)
    experiment.max_queue_len = 1
    experiment.run(40)
    print list(sorted(trials.losses()))

    idxs, vals = miscs_to_idxs_vals(trials.miscs)

    if 1:
        import hyperopt.plotting
        hyperopt.plotting.main_plot_vars(trials, bandit, do_show=1)
    else:
        import matplotlib.pyplot as plt
        begin = [v[:10] for k, v in vals.items()]
        end = [v[-10:] for k, v in vals.items()]
        plt.subplot(2, 1, 1)
        plt.title('before')
        plt.hist(np.asarray(begin).flatten())
        plt.subplot(2, 1, 2)
        plt.title('after')
        plt.hist(np.asarray(end).flatten())
        plt.show()
Exemplo n.º 3
0
def ap_categorical_sampler(obs, prior_weight, upper,
        size=(), rng=None, LF=DEFAULT_LF):
    weights = scope.linear_forgetting_weights(scope.len(obs), LF=LF)
    counts = scope.bincount(obs, minlength=upper, weights=weights)
    # -- add in some prior pseudocounts
    pseudocounts = counts + prior_weight
    return scope.categorical(pseudocounts / scope.sum(pseudocounts),
            upper=upper, size=size, rng=rng)
Exemplo n.º 4
0
def ap_categorical_sampler(obs, prior_weight, upper, size=(), rng=None):
    counts = scope.bincount(obs, minlength=upper)
    # -- add in some prior pseudocounts
    pseudocounts = counts + prior_weight
    return scope.categorical(pseudocounts / scope.sum(pseudocounts),
            size=size, rng=rng)