Exemplo n.º 1
0
def test_BlockDiag_multiproc(par):
    """Single and multiprocess consistentcy for BlockDiag operator
    """
    np.random.seed(0)
    nproc = 2
    G = np.random.normal(0, 10, (par['ny'], par['nx'])).astype(par['dtype'])
    x = np.ones(4 * par['nx']) + par['imag'] * np.ones(4 * par['nx'])
    y = np.ones(4 * par['ny']) + par['imag'] * np.ones(4 * par['ny'])

    BDop = BlockDiag([MatrixMult(G, dtype=par['dtype'])] * 4,
                     dtype=par['dtype'])
    BDmultiop = BlockDiag([MatrixMult(G, dtype=par['dtype'])] * 4,
                          nproc=nproc,
                          dtype=par['dtype'])
    assert dottest(BDmultiop,
                   4 * par['ny'],
                   4 * par['nx'],
                   complexflag=0 if par['imag'] == 0 else 3)
    # forward
    assert_array_almost_equal(BDop * x, BDmultiop * x, decimal=4)
    # adjoint
    assert_array_almost_equal(BDop.H * y, BDmultiop.H * y, decimal=4)

    # close pool
    BDmultiop.pool.close()
Exemplo n.º 2
0
def test_BlockDiag(par):
    """Dot-test and inversion for BlockDiag operator"""
    np.random.seed(0)
    G1 = np.random.normal(0, 10, (par["ny"], par["nx"])).astype(par["dtype"])
    G2 = np.random.normal(0, 10, (par["ny"], par["nx"])).astype(par["dtype"])
    x = np.ones(2 * par["nx"]) + par["imag"] * np.ones(2 * par["nx"])

    BDop = BlockDiag(
        [MatrixMult(G1, dtype=par["dtype"]), MatrixMult(G2, dtype=par["dtype"])],
        dtype=par["dtype"],
    )
    assert dottest(
        BDop, 2 * par["ny"], 2 * par["nx"], complexflag=0 if par["imag"] == 0 else 3
    )

    xlsqr = lsqr(
        BDop, BDop * x, damp=1e-20, iter_lim=500, atol=1e-8, btol=1e-8, show=0
    )[0]
    assert_array_almost_equal(x, xlsqr, decimal=3)

    # use numpy matrix directly in the definition of the operator
    BD1op = BlockDiag([MatrixMult(G1, dtype=par["dtype"]), G2], dtype=par["dtype"])
    assert dottest(
        BD1op, 2 * par["ny"], 2 * par["nx"], complexflag=0 if par["imag"] == 0 else 3
    )

    # use scipy matrix directly in the definition of the operator
    G2 = sp_random(par["ny"], par["nx"], density=0.4).astype("float32")
    BD2op = BlockDiag([MatrixMult(G1, dtype=par["dtype"]), G2], dtype=par["dtype"])
    assert dottest(
        BD2op, 2 * par["ny"], 2 * par["nx"], complexflag=0 if par["imag"] == 0 else 3
    )
Exemplo n.º 3
0
def focusing_wrapper(direct,toff,g0VS,iava,Rop,R1op,Restrop,t):
    nr=direct.shape[0]
    nsava=iava.shape[0]
    
    nt=t.shape[0]
    dt=t[1]-t[0]
    
    # window
    directVS_off = direct - toff
    idirectVS_off = np.round(directVS_off/dt).astype(np.int)
    w = np.zeros((nr, nt))
    wi = np.ones((nr, nt))
    for ir in range(nr-1):
        w[ir, :idirectVS_off[ir]]=1   
    wi = wi - w
         
    w = np.hstack((np.fliplr(w), w[:, 1:]))
    wi = np.hstack((np.fliplr(wi), wi[:, 1:]))
    
    # smoothing
    nsmooth=10
    if nsmooth>0:
        smooth=np.ones(nsmooth)/nsmooth
        w  = filtfilt(smooth, 1, w)
        wi  = filtfilt(smooth, 1, wi)
        
    # Input focusing function
    fd_plus =  np.concatenate((np.fliplr(g0VS.T), np.zeros((nr, nt-1))), axis=-1)
    
    # operators
    Wop = Diagonal(w.flatten())
    WSop = Diagonal(w[iava].flatten())
    WiSop = Diagonal(wi[iava].flatten())
    
    Mop = VStack([HStack([Restrop, -1*WSop*Rop]),
                   HStack([-1*WSop*R1op, Restrop])])*BlockDiag([Wop, Wop])
    
    Gop = VStack([HStack([Restrop, -1*Rop]),
                   HStack([-1*R1op, Restrop])])
    
    p0_minus = Rop*fd_plus.flatten()
    d = WSop*p0_minus
    
    p0_minus = p0_minus.reshape(nsava, 2*nt-1)
    d = np.concatenate((d.reshape(nsava, 2*nt-1), np.zeros((nsava, 2*nt-1))))
    
    # solve
    f1 = lsqr(Mop, d.flatten(), iter_lim=10, show=False)[0]
    f1 = f1.reshape(2*nr, (2*nt-1))
    f1_tot = f1 + np.concatenate((np.zeros((nr, 2*nt-1)), fd_plus))
    
    g = BlockDiag([WiSop,WiSop])*Gop*f1_tot.flatten()
    g = g.reshape(2*nsava, (2*nt-1))
    
    f1_minus, f1_plus =  f1_tot[:nr], f1_tot[nr:]
    g_minus, g_plus =  -g[:nsava], np.fliplr(g[nsava:])

    return f1_minus, f1_plus, g_minus, g_plus, p0_minus
Exemplo n.º 4
0
def test_BlockDiag_rlinear(par):
    """BlockDiag operator applied to mix of R-linear and C-linear operators
    """
    np.random.seed(0)
    if np.dtype(par['dtype']).kind == 'c':
        G = ((np.random.normal(0, 10, (par['ny'], par['nx'])) +
              1j * np.random.normal(0, 10, (par['ny'], par['nx']))).astype(
                  par['dtype']))
    else:
        G = np.random.normal(0, 10,
                             (par['ny'], par['nx'])).astype(par['dtype'])
    Rop = Real(dims=(par['nx'], ), dtype=par['dtype'])

    BDop = BlockDiag([Rop, MatrixMult(G, dtype=par['dtype'])],
                     dtype=par['dtype'])
    assert BDop.clinear == False
    assert dottest(BDop,
                   par['nx'] + par['ny'],
                   2 * par['nx'],
                   complexflag=0 if par['imag'] == 0 else 3)
    # forward
    x = np.random.randn(
        2 * par['nx']) + par['imag'] * np.random.randn(2 * par['nx'])
    expected = np.concatenate([np.real(x[:par['nx']]), G @ x[par['nx']:]])
    assert_array_almost_equal(expected, BDop * x, decimal=4)
Exemplo n.º 5
0
def test_describe():
    """Testing the describe method. As it is is difficult to verify that the
    output is correct, at this point we merely test that no error arises when
    applying this method to a variety of operators
    """
    A = MatrixMult(np.ones((10, 5)))
    A.name = "A"
    B = Diagonal(np.ones(5))
    B.name = "A"
    C = MatrixMult(np.ones((10, 5)))
    C.name = "C"

    AT = A.T
    AH = A.H
    A3 = 3 * A
    D = A + C
    E = D * B
    F = (A + C) * B + A
    G = HStack((A * B, C * B))
    H = BlockDiag((F, G))

    describe(A)
    describe(AT)
    describe(AH)
    describe(A3)
    describe(D)
    describe(E)
    describe(F)
    describe(G)
    describe(H)
Exemplo n.º 6
0
def test_BlockDiag(par):
    """Dot-test and inversion for BlockDiag operator
    """
    np.random.seed(10)
    G1 = np.random.normal(0, 10, (par['ny'], par['nx'])).astype(par['dtype'])
    G2 = np.random.normal(0, 10, (par['ny'], par['nx'])).astype(par['dtype'])
    x = np.ones(2*par['nx']) + par['imag']*np.ones(2*par['nx'])

    BDop = BlockDiag([MatrixMult(G1, dtype=par['dtype']),
                      MatrixMult(G2, dtype=par['dtype'])],
                     dtype=par['dtype'])
    assert dottest(BDop, 2*par['ny'], 2*par['nx'], complexflag=0 if par['imag'] == 0 else 3)

    xlsqr = lsqr(BDop, BDop * x, damp=1e-20, iter_lim=500, show=0)[0]
    assert_array_almost_equal(x, xlsqr, decimal=3)
Exemplo n.º 7
0
def test_BlockDiag(par):
    """Dot-test and comparison with pylops for BlockDiag operator
    """
    np.random.seed(10)
    G1 = da.random.normal(0, 10, (par['ny'], par['nx'])).astype(par['dtype'])
    G2 = da.random.normal(0, 10, (par['ny'], par['nx'])).astype(par['dtype'])
    x = da.ones(2*par['nx']) + par['imag']*np.ones(2*par['nx'])
    dops = [dMatrixMult(G1, dtype=par['dtype']),
            dMatrixMult(G2, dtype=par['dtype'])]
    ops = [MatrixMult(G1.compute(), dtype=par['dtype']),
           MatrixMult(G2.compute(), dtype=par['dtype'])]
    dBDop = dBlockDiag(dops, compute=(True, True), dtype=par['dtype'])
    BDop = BlockDiag(ops, dtype=par['dtype'])
    assert dottest(dBDop, 2 * par['ny'], 2 * par['nx'],
                   chunks=(2 * par['ny'], 2 * par['nx']),
                   complexflag=0 if par['imag'] == 0 else 3)

    dy = dBDop * x.ravel()
    y = BDop * x.ravel().compute()
    assert_array_almost_equal(dy, y, decimal=4)
Exemplo n.º 8
0
def Sliding3D(Op, dims, dimsd, nwin, nover, nop,
              tapertype='hanning', design=False, nproc=1):
    """3D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into patches
    each patch is transformed, and patches are then recombined in a sliding
    window fashion. Both model and data should be 3-dimensional
    arrays in nature as they are internally reshaped and interpreted as
    3-dimensional arrays. Each patch contains in fact a portion of the
    array in the first and second dimensions (and the entire third dimension).

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFTND`
    or :obj:`pylops.signalprocessing.Radon3D`) of 3-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire first and/or
       second dimensions. The start and end indeces of each window can be
       displayed using ``design=True`` while defining the best sliding window
       approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 3-dimensional model. Note that ``dims[0]`` and ``dims[1]``
        should be multiple of the model sizes of the transform in the
        first and second dimensions
    dimsd : :obj:`tuple`
        Shape of 3-dimensional data
    nwin : :obj:`tuple`
        Number of samples of window
    nover : :obj:`tuple`
        Number of samples of overlapping part of window
    nop : :obj:`tuple`
        Number of samples in axes of transformed domain associated
        to spatial axes in the data
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin0_ins, mwin0_ends = _slidingsteps(dims[0],
                                          Op.shape[1]//(nop[1]*dims[2]), 0)
    mwin1_ins, mwin1_ends = _slidingsteps(dims[1],
                                          Op.shape[1]//(nop[0]*dims[2]), 0)

    # data windows
    dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
    dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
    nwins0 = len(dwin0_ins)
    nwins1 = len(dwin1_ins)
    nwins = nwins0*nwins1

    # create tapers
    if tapertype is not None:
        tap = taper3d(dimsd[2], nwin, nover, tapertype=tapertype)

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning('(%d,%d) windows required...', nwins0, nwins1)
        logging.warning('model wins - start0:%s, end0:%s, start1:%s, end1:%s',
                        str(mwin0_ins), str(mwin0_ends),
                        str(mwin1_ins), str(mwin1_ends))
        logging.warning('data wins - start0:%s, end0:%s, start1:%s, end1:%s',
                        str(dwin0_ins), str(dwin0_ends),
                        str(dwin1_ins), str(dwin1_ends))

    if nwins*Op.shape[1]//dims[2] != dims[0]*dims[1]:
        raise ValueError('Model shape (dims=%s) is not consistent with chosen '
                         'number of windows. Choose dims[0]=%d and '
                         'dims[1]=%d for the operator to work with '
                         'estimated number of windows, or create '
                         'the operator with design=True to find out the'
                         'optimal number of windows for the current '
                         'model size...'
                         % (str(dims), nwins0*Op.shape[1]//(nop[1]*dims[2]),
                            nwins1 * Op.shape[1]//(nop[0]*dims[2])))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)], nproc=nproc)
    else:
        OOp = BlockDiag([Diagonal(tap.flatten()) * Op
                         for _ in range(nwins)], nproc=nproc)

    hstack = HStack([Restriction(dimsd[1] * dimsd[2] * nwin[0],
                                 range(win_in, win_end),
                                 dims=(nwin[0], dimsd[1], dimsd[2]),
                                 dir=1).H
                     for win_in, win_end in zip(dwin1_ins,
                                                dwin1_ends)])

    combining1 = BlockDiag([hstack]*nwins0)
    combining0 = HStack([Restriction(np.prod(dimsd),
                                     range(win_in, win_end),
                                     dims=dimsd, dir=0).H
                         for win_in, win_end in zip(dwin0_ins, dwin0_ends)])
    Sop = combining0 * combining1 * OOp
    return Sop
Exemplo n.º 9
0
def Sliding1D(Op, dim, dimd, nwin, nover, tapertype="hanning", design=False):
    r"""1D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to slices of the model
    vector in forward mode and slices of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into
    slices, each slice is transformed, and slices are then recombined in a
    sliding window fashion.

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT`) on 1-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire data.
       The start and end indices of each window can be displayed using
       ``design=True`` while defining the best sliding window approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dim : :obj:`tuple`
        Shape of 1-dimensional model.
    dimd : :obj:`tuple`
        Shape of 1-dimensional data
    nwin : :obj:`int`
        Number of samples of window
    nover : :obj:`int`
        Number of samples of overlapping part of window
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin_ins, mwin_ends = _slidingsteps(dim, Op.shape[1], 0)
    # data windows
    dwin_ins, dwin_ends = _slidingsteps(dimd, nwin, nover)
    nwins = len(dwin_ins)

    # create tapers
    if tapertype is not None:
        tap = taper(nwin, nover, tapertype=tapertype)
        tapin = tap.copy()
        tapin[:nover] = 1
        tapend = tap.copy()
        tapend[-nover:] = 1
        taps = {}
        taps[0] = tapin
        for i in range(1, nwins - 1):
            taps[i] = tap
        taps[nwins - 1] = tapend

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning("%d windows required...", nwins)
        logging.warning("model wins - start:%s, end:%s", str(mwin_ins), str(mwin_ends))
        logging.warning("data wins - start:%s, end:%s", str(dwin_ins), str(dwin_ends))
    if nwins * Op.shape[1] != dim:
        raise ValueError(
            "Model shape (dim=%d) is not consistent with chosen "
            "number of windows. Choose dim=%d for the "
            "operator to work with estimated number of windows, "
            "or create the operator with design=True to find "
            "out the optimal number of windows for the current "
            "model size..." % (dim, nwins * Op.shape[1])
        )
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag([Diagonal(taps[itap].ravel()) * Op for itap in range(nwins)])

    combining = HStack(
        [
            Restriction(dimd, np.arange(win_in, win_end), dtype=Op.dtype).H
            for win_in, win_end in zip(dwin_ins, dwin_ends)
        ]
    )
    Sop = combining * OOp
    return Sop
def focusing_wrapper(direct, toff, g0VS, iava1, Rop1, R1op1, Restrop1, iava2,
                     Rop2, R1op2, Restrop2, t):
    nsmooth = 10
    nr = direct.shape[0]
    nsava1 = iava1.shape[0]
    nsava2 = iava2.shape[0]

    nt = t.shape[0]
    dt = t[1] - t[0]

    # window
    directVS_off = direct - toff
    idirectVS_off = np.round(directVS_off / dt).astype(np.int)
    w = np.zeros((nr, nt))
    wi = np.ones((nr, nt))
    for ir in range(nr - 1):
        w[ir, :idirectVS_off[ir]] = 1
    wi = wi - w

    w = np.hstack((np.fliplr(w), w[:, 1:]))
    wi = np.hstack((np.fliplr(wi), wi[:, 1:]))

    if nsmooth > 0:
        smooth = np.ones(nsmooth) / nsmooth
        w = filtfilt(smooth, 1, w)
        wi = filtfilt(smooth, 1, wi)

    # Input focusing function
    fd_plus = np.concatenate((np.fliplr(g0VS.T), np.zeros((nr, nt - 1))),
                             axis=-1)

    # operators
    Wop = Diagonal(w.flatten())
    WSop1 = Diagonal(w[iava1].flatten())
    WSop2 = Diagonal(w[iava2].flatten())
    WiSop1 = Diagonal(wi[iava1].flatten())
    WiSop2 = Diagonal(wi[iava2].flatten())

    Mop1 = VStack([
        HStack([Restrop1, -1 * WSop1 * Rop1]),
        HStack([-1 * WSop1 * R1op1, Restrop1])
    ]) * BlockDiag([Wop, Wop])
    Mop2 = VStack([
        HStack([Restrop2, -1 * WSop2 * Rop2]),
        HStack([-1 * WSop2 * R1op2, Restrop2])
    ]) * BlockDiag([Wop, Wop])
    Mop = VStack([
        HStack([Mop1, Mop1, Zero(Mop1.shape[0], Mop1.shape[1])]),
        HStack([Mop2, Zero(Mop2.shape[0], Mop2.shape[1]), Mop2])
    ])

    Gop1 = VStack(
        [HStack([Restrop1, -1 * Rop1]),
         HStack([-1 * R1op1, Restrop1])])
    Gop2 = VStack(
        [HStack([Restrop2, -1 * Rop2]),
         HStack([-1 * R1op2, Restrop2])])

    d1 = WSop1 * Rop1 * fd_plus.flatten()
    d1 = np.concatenate(
        (d1.reshape(nsava1, 2 * nt - 1), np.zeros((nsava1, 2 * nt - 1))))
    d2 = WSop2 * Rop2 * fd_plus.flatten()
    d2 = np.concatenate(
        (d2.reshape(nsava2, 2 * nt - 1), np.zeros((nsava2, 2 * nt - 1))))

    d = np.concatenate((d1, d2))

    # solve
    comb_f = lsqr(Mop, d.flatten(), iter_lim=10, show=False)[0]
    comb_f = comb_f.reshape(6 * nr, (2 * nt - 1))
    comb_f_tot = comb_f + np.concatenate((np.zeros(
        (nr, 2 * nt - 1)), fd_plus, np.zeros((4 * nr, 2 * nt - 1))))

    f1_1 = comb_f_tot[:2 * nr] + comb_f_tot[2 * nr:4 * nr]
    f1_2 = comb_f_tot[:2 * nr] + comb_f_tot[4 * nr:]

    g_1 = BlockDiag([WiSop1, WiSop1]) * Gop1 * f1_1.flatten()
    g_1 = g_1.reshape(2 * nsava1, (2 * nt - 1))
    g_2 = BlockDiag([WiSop2, WiSop2]) * Gop2 * f1_2.flatten()
    g_2 = g_2.reshape(2 * nsava2, (2 * nt - 1))

    f1_1_minus, f1_1_plus = f1_1[:nr], f1_1[nr:]
    f1_2_minus, f1_2_plus = f1_2[:nr], f1_2[nr:]
    g_1_minus, g_1_plus = -g_1[:nsava1], np.fliplr(g_1[nsava1:])
    g_2_minus, g_2_plus = -g_2[:nsava2], np.fliplr(g_2[nsava2:])

    return f1_1_minus, f1_1_plus, f1_2_minus, f1_2_plus, g_1_minus, g_1_plus, g_2_minus, g_2_plus
Exemplo n.º 11
0
def Sliding2D(Op, dims, dimsd, nwin, nover, tapertype='hanning', design=False):
    """2D Sliding transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into patches
    each patch is transformed, and patches are then recombined in a sliding
    window fashion. Both model and data should be 2-dimensional
    arrays in nature as they are internally reshaped and interpreted as
    2-dimensional arrays. Each patch contains in fact a portion of the
    array in the first dimension (and the entire second dimension).

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT2`
    or :obj:`pylops.signalprocessing.Radon2D`) of 2-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, sliding windows may not cover the entire first dimension.
       The start and end indeces of each window can be displayed using
       ``design=True`` while defining the best sliding window approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 2-dimensional model. Note that ``dims[0]`` should be multiple
        of the model size of the transform in the first dimension
    dimsd : :obj:`tuple`
        Shape of 2-dimensional data
    nwin : :obj:`int`
        Number of samples of window
    nover : :obj:`int`
        Number of samples of overlapping part of window
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    """
    # model windows
    mwin_ins, mwin_ends = _slidingsteps(dims[0], Op.shape[1] // dims[1], 0)
    # data windows
    dwin_ins, dwin_ends = _slidingsteps(dimsd[0], nwin, nover)
    nwins = len(dwin_ins)

    # create tapers
    if tapertype is not None:
        tap = taper2d(dimsd[1], nwin, nover, tapertype=tapertype)
        tapin = tap.copy()
        tapin[:nover] = 1
        tapend = tap.copy()
        tapend[-nover:] = 1
        taps = {}
        taps[0] = tapin
        for i in range(1, nwins - 1):
            taps[i] = tap
        taps[nwins - 1] = tapend

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning('%d windows required...', nwins)
        logging.warning('model wins - start:%s, end:%s', str(mwin_ins),
                        str(mwin_ends))
        logging.warning('data wins - start:%s, end:%s', str(dwin_ins),
                        str(dwin_ends))
    if nwins * Op.shape[1] // dims[1] != dims[0]:
        raise ValueError('Model shape (dims=%s) is not consistent with chosen '
                         'number of windows. Choose dims[0]=%d for the '
                         'operator to work with estimated number of windows, '
                         'or create the operator with design=True to find '
                         'out the optimal number of windows for the current '
                         'model size...' %
                         (str(dims), nwins * Op.shape[1] // dims[1]))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag(
            [Diagonal(taps[itap].flatten()) * Op for itap in range(nwins)])

    combining = HStack([
        Restriction(np.prod(dimsd), range(win_in, win_end), dims=dimsd).H
        for win_in, win_end in zip(dwin_ins, dwin_ends)
    ])
    Sop = combining * OOp
    return Sop
Exemplo n.º 12
0
def Patch2D(Op,
            dims,
            dimsd,
            nwin,
            nover,
            nop,
            tapertype="hanning",
            design=False):
    """2D Patch transform operator.

    Apply a transform operator ``Op`` repeatedly to patches of the model
    vector in forward mode and patches of the data vector in adjoint mode.
    More specifically, in forward mode the model vector is divided into
    patches, each patch is transformed, and patches are then recombined
    together. Both model and data are internally reshaped and
    interpreted as 2-dimensional arrays: each patch contains a portion
    of the array in both the first and second dimension.

    This operator can be used to perform local, overlapping transforms (e.g.,
    :obj:`pylops.signalprocessing.FFT2D`
    or :obj:`pylops.signalprocessing.Radon2D`) on 2-dimensional arrays.

    .. note:: The shape of the model has to be consistent with
       the number of windows for this operator not to return an error. As the
       number of windows depends directly on the choice of ``nwin`` and
       ``nover``, it is recommended to use ``design=True`` if unsure about the
       choice ``dims`` and use the number of windows printed on screen to
       define such input parameter.

    .. warning:: Depending on the choice of `nwin` and `nover` as well as the
       size of the data, patches may not cover the entire size of the data.
       The start and end indices of each window can be displayed using
       ``design=True`` while defining the best patching approach.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Transform operator
    dims : :obj:`tuple`
        Shape of 2-dimensional model. Note that ``dims[0]`` and ``dims[1]``
        should be multiple of the model size of the transform in their
        respective dimensions
    dimsd : :obj:`tuple`
        Shape of 2-dimensional data
    nwin : :obj:`tuple`
        Number of samples of window
    nover : :obj:`tuple`
        Number of samples of overlapping part of window
    nop : :obj:`tuple`
        Size of model in the transformed domain
    tapertype : :obj:`str`, optional
        Type of taper (``hanning``, ``cosine``, ``cosinesquare`` or ``None``)
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``)

    Returns
    -------
    Sop : :obj:`pylops.LinearOperator`
        Sliding operator

    Raises
    ------
    ValueError
        Identified number of windows is not consistent with provided model
        shape (``dims``).

    See Also
    --------
    Sliding2d: 2D Sliding transform operator.

    """
    # model windows
    mwin0_ins, mwin0_ends = _slidingsteps(dims[0], nop[0], 0)
    mwin1_ins, mwin1_ends = _slidingsteps(dims[1], nop[1], 0)

    # data windows
    dwin0_ins, dwin0_ends = _slidingsteps(dimsd[0], nwin[0], nover[0])
    dwin1_ins, dwin1_ends = _slidingsteps(dimsd[1], nwin[1], nover[1])
    nwins0 = len(dwin0_ins)
    nwins1 = len(dwin1_ins)
    nwins = nwins0 * nwins1

    # create tapers
    if tapertype is not None:
        tap = taper2d(nwin[1], nwin[0], nover,
                      tapertype=tapertype).astype(Op.dtype)
        taps = {itap: tap for itap in range(nwins)}
        # topmost tapers
        taptop = tap.copy()
        taptop[:nover[0]] = tap[nwin[0] // 2]
        for itap in range(0, nwins1):
            taps[itap] = taptop
        # bottommost tapers
        tapbottom = tap.copy()
        tapbottom[-nover[0]:] = tap[nwin[0] // 2]
        for itap in range(nwins - nwins1, nwins):
            taps[itap] = tapbottom
        # leftmost tapers
        tapleft = tap.copy()
        tapleft[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        for itap in range(0, nwins, nwins1):
            taps[itap] = tapleft
        # rightmost tapers
        tapright = tap.copy()
        tapright[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        for itap in range(nwins1 - 1, nwins, nwins1):
            taps[itap] = tapright
        # lefttopcorner taper
        taplefttop = tap.copy()
        taplefttop[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        taplefttop[:nover[0]] = taplefttop[nwin[0] // 2]
        taps[0] = taplefttop
        # righttopcorner taper
        taprighttop = tap.copy()
        taprighttop[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        taprighttop[:nover[0]] = taprighttop[nwin[0] // 2]
        taps[nwins1 - 1] = taprighttop
        # leftbottomcorner taper
        tapleftbottom = tap.copy()
        tapleftbottom[:, :nover[1]] = tap[:, nwin[1] // 2][:, np.newaxis]
        tapleftbottom[-nover[0]:] = tapleftbottom[nwin[0] // 2]
        taps[nwins - nwins1] = tapleftbottom
        # rightbottomcorner taper
        taprightbottom = tap.copy()
        taprightbottom[:, -nover[1]:] = tap[:, nwin[1] // 2][:, np.newaxis]
        taprightbottom[-nover[0]:] = taprightbottom[nwin[0] // 2]
        taps[nwins - 1] = taprightbottom

    # check that identified number of windows agrees with mode size
    if design:
        logging.warning("%d-%d windows required...", nwins0, nwins1)
        logging.warning(
            "model wins - start:%s, end:%s / start:%s, end:%s",
            str(mwin0_ins),
            str(mwin0_ends),
            str(mwin1_ins),
            str(mwin1_ends),
        )
        logging.warning(
            "data wins - start:%s, end:%s / start:%s, end:%s",
            str(dwin0_ins),
            str(dwin0_ends),
            str(dwin1_ins),
            str(dwin1_ends),
        )
    if nwins0 * nop[0] != dims[0] or nwins1 * nop[1] != dims[1]:
        raise ValueError("Model shape (dims=%s) is not consistent with chosen "
                         "number of windows. Choose dims[0]=%d and "
                         "dims[1]=%d for the operator to work with "
                         "estimated number of windows, or create "
                         "the operator with design=True to find out the"
                         "optimal number of windows for the current "
                         "model size..." %
                         (str(dims), nwins0 * nop[0], nwins1 * nop[1]))
    # transform to apply
    if tapertype is None:
        OOp = BlockDiag([Op for _ in range(nwins)])
    else:
        OOp = BlockDiag([
            Diagonal(taps[itap].ravel(), dtype=Op.dtype) * Op
            for itap in range(nwins)
        ])

    hstack = HStack([
        Restriction(
            dimsd[1] * nwin[0],
            range(win_in, win_end),
            dims=(nwin[0], dimsd[1]),
            dir=1,
            dtype=Op.dtype,
        ).H for win_in, win_end in zip(dwin1_ins, dwin1_ends)
    ])

    combining1 = BlockDiag([hstack] * nwins0)
    combining0 = HStack([
        Restriction(
            np.prod(dimsd),
            range(win_in, win_end),
            dims=dimsd,
            dir=0,
            dtype=Op.dtype,
        ).H for win_in, win_end in zip(dwin0_ins, dwin0_ends)
    ])
    Pop = combining0 * combining1 * OOp
    return Pop
def Marchenko_depthloop_IndepRadon(zinvs, zendvs):

    toff = 0.045  # direct arrival time shift
    nfmax = 550  # max frequency for MDC (#samples)
    nfft = 2**11

    jr = 3  # subsampling in r

    # subsurface array
    xinvs = 600  # receiver array initial point in x
    xendvs = 2400  # receiver array last point in x

    dvsx = 20  # receiver array sampling in x
    dvsz = 5  # receiver array sampling in z

    # line of subsurface points for virtual sources
    vsx = np.arange(xinvs, xendvs + dvsx, dvsx)
    vsz = np.arange(zinvs, zendvs + dvsz, dvsz)

    # geometry
    nz = 401
    oz = 0
    dz = 4
    z = np.arange(oz, oz + nz * dz, dz)

    nx = 751
    ox = 0
    dx = 4
    x = np.arange(ox, ox + nx * dx, dx)

    # time axis
    ot = 0
    nt = 1081
    dt = 0.0025
    t = np.arange(ot, ot + nt * dt, dt)

    # Receivers
    r = np.loadtxt(path0 + 'r.dat', delimiter=',')
    nr = r.shape[1]

    # Sources
    s = np.loadtxt(path0 + 's.dat', delimiter=',')
    ns = s.shape[1]
    ds = s[0, 1] - s[0, 0]

    # restriction operators
    iava = np.loadtxt(path0 + 'select_rfrac70.dat', delimiter=',',
                      dtype=int) - 1
    Restrop = Restriction(ns * (2 * nt - 1),
                          iava,
                          dims=(ns, 2 * nt - 1),
                          dir=0,
                          dtype='float64')

    # data
    print('Loading reflection data...')
    R = np.zeros((nt, ns, nr), 'f')
    for isrc in range(ns - 1):
        is_ = isrc * jr
        R[:, :, isrc] = np.loadtxt(path0 + 'R/dat1_' + str(is_) + '.dat',
                                   delimiter=',')

    R = 2 * np.swapaxes(R, 0, 2)

    # wavelet
    wav = np.loadtxt(path0 + 'wav.dat', delimiter=',')
    wav_c = wav[np.argmax(wav) - 60:np.argmax(wav) + 60]
    W = np.abs(np.fft.rfft(wav, nfft)) * dt

    # Convolution operators
    print('Creating MDC operators...')
    Rtwosided = np.concatenate((np.zeros((nr, ns, nt - 1)), R), axis=-1)
    R1twosided = np.concatenate((np.flip(R, axis=-1), np.zeros(
        (nr, ns, nt - 1))),
                                axis=-1)

    Rtwosided_fft = np.fft.rfft(Rtwosided, 2 * nt - 1,
                                axis=-1) / np.sqrt(2 * nt - 1)
    Rtwosided_fft = Rtwosided_fft[..., :nfmax]
    R1twosided_fft = np.fft.rfft(R1twosided, 2 * nt - 1,
                                 axis=-1) / np.sqrt(2 * nt - 1)
    R1twosided_fft = R1twosided_fft[..., :nfmax]

    Rop = MDC(Rtwosided_fft[iava],
              nt=2 * nt - 1,
              nv=1,
              dt=dt,
              dr=ds,
              twosided=True,
              dtype='complex64')
    R1op = MDC(R1twosided_fft[iava],
               nt=2 * nt - 1,
               nv=1,
               dt=dt,
               dr=ds,
               twosided=True,
               dtype='complex64')

    del wav, R, Rtwosided, R1twosided, Rtwosided_fft, R1twosided_fft

    # configuring radon transform
    nwin = 23
    nwins = 14
    nover = 10
    npx = 101
    pxmax = 0.006
    px = np.linspace(-pxmax, pxmax, npx)

    t2 = np.concatenate([-t[::-1], t[1:]])
    nt2 = t2.shape[0]

    dimsd = (nr, nt2)
    dimss = (nwins * npx, dimsd[1])

    # sliding window radon with overlap
    RadOp = Radon2D(t2,
                    np.linspace(-ds * nwin // 2, ds * nwin // 2, nwin),
                    px,
                    centeredh=True,
                    kind='linear',
                    engine='numba')
    Slidop = Sliding2D(RadOp,
                       dimss,
                       dimsd,
                       nwin,
                       nover,
                       tapertype='cosine',
                       design=True)
    Sparseop = BlockDiag([Slidop, Slidop])

    del nwin, nwins, nover, npx, pxmax, px, t2, nt2, dimsd, dimss, RadOp, Slidop

    # the loop
    print('Entering loop...')
    z_steps = np.arange(zinvs, zendvs + 1, dvsz)
    for z_current in z_steps:
        redatuming_wrapper(toff, W, wav_c, iava, Rop, R1op, Restrop, Sparseop,
                           vsx, vsz, x, z, z_current, nt, dt, nfft, nr, ds,
                           dvsx)
def redatuming_wrapper(toff, W, wav, iava, Rop, R1op, Restrop, Sparseop, vsx,
                       vsz, x, z, z_current, nt, dt, nfft, nr, ds, dvsx):

    from scipy.signal import filtfilt

    nava = iava.shape[0]
    nvsx = vsx.shape[0]

    PUP = np.zeros(shape=(nava, nvsx, nt))
    PDOWN = np.zeros(shape=(nava, nvsx, nt))

    for ix in range(nvsx):
        s = '####### Point ' + str(ix + 1) + ' of ' + str(
            nvsx) + ' of current line (z = ' + str(z_current) + ', x = ' + str(
                vsx[ix]) + ')'
        print(s)

        # direct wave
        direct = np.loadtxt(path0 + 'Traveltimes/trav_x' + str(vsx[ix]) +
                            '_z' + str(z_current) + '.dat',
                            delimiter=',')
        f = 2 * np.pi * np.arange(nfft) / (dt * nfft)
        g0VS = np.zeros((nfft, nr), dtype=np.complex128)
        for it in range(len(W)):
            g0VS[it] = W[it] * f[it] * hankel2(0, f[it] * direct + 1e-10) / 4
        g0VS = np.fft.irfft(g0VS, nfft, axis=0) / dt
        g0VS = np.real(g0VS[:nt])

        nr = direct.shape[0]
        nsava = iava.shape[0]

        # window
        directVS_off = direct - toff
        idirectVS_off = np.round(directVS_off / dt).astype(np.int)
        w = np.zeros((nr, nt))
        wi = np.ones((nr, nt))
        for ir in range(nr - 1):
            w[ir, :idirectVS_off[ir]] = 1
        wi = wi - w

        w = np.hstack((np.fliplr(w), w[:, 1:]))
        wi = np.hstack((np.fliplr(wi), wi[:, 1:]))

        # smoothing
        nsmooth = 10
        if nsmooth > 0:
            smooth = np.ones(nsmooth) / nsmooth
            w = filtfilt(smooth, 1, w)
            wi = filtfilt(smooth, 1, wi)

        # Input focusing function
        fd_plus = np.concatenate((np.fliplr(g0VS.T), np.zeros((nr, nt - 1))),
                                 axis=-1)

        # create operators
        Wop = Diagonal(w.flatten())
        WSop = Diagonal(w[iava].flatten())
        WiSop = Diagonal(wi[iava].flatten())

        Mop = VStack([
            HStack([Restrop, -1 * WSop * Rop]),
            HStack([-1 * WSop * R1op, Restrop])
        ]) * BlockDiag([Wop, Wop])

        Mop_radon = Mop * Sparseop

        Gop = VStack(
            [HStack([Restrop, -1 * Rop]),
             HStack([-1 * R1op, Restrop])])

        d = WSop * Rop * fd_plus.flatten()
        d = np.concatenate(
            (d.reshape(nsava, 2 * nt - 1), np.zeros((nsava, 2 * nt - 1))))

        # solve with SPGL1
        f = SPGL1(Mop_radon,
                  d.flatten(),
                  sigma=1e-5,
                  iter_lim=35,
                  opt_tol=0.05,
                  dec_tol=0.05,
                  verbosity=1)[0]

        # alternatively solve with FISTA
        #f = FISTA(Mop_radon, d.flatten(), eps=1e-1, niter=200,
        #           alpha=2.129944e-04, eigsiter=4, eigstol=1e-3,
        #           tol=1e-2, returninfo=False, show=True)[0]

        # alternatively solve with LSQR
        #f = lsqr(Mop_radon, d.flatten(), iter_lim=100, show=True)[0]

        f = Sparseop * f
        f = f.reshape(2 * nr, (2 * nt - 1))
        f_tot = f + np.concatenate((np.zeros((nr, 2 * nt - 1)), fd_plus))

        g_1 = BlockDiag([WiSop, WiSop]) * Gop * f_tot.flatten()
        g_1 = g_1.reshape(2 * nsava, (2 * nt - 1))

        #f1_minus, f1_plus =  f_tot[:nr], f_tot[nr:]
        g_minus, g_plus = -g_1[:nsava], np.fliplr(g_1[nsava:])

        #
        PUP[:, ix, :] = g_minus[:, nt - 1:]
        PDOWN[:, ix, :] = g_plus[:, nt - 1:]

    # save redatumed wavefield (line-by-line)
    jt = 2
    redatumed = MDD(PDOWN[:, :, ::jt],
                    PUP[:, :, ::jt],
                    dt=jt * dt,
                    dr=dvsx,
                    wav=wav[::jt],
                    twosided=True,
                    adjoint=False,
                    psf=False,
                    dtype='complex64',
                    dottest=False,
                    **dict(iter_lim=20, show=0))

    np.savetxt(path_save + 'Line1_' + str(z_current) + '.dat',
               np.diag(redatumed[:, :, (nt + 1) // jt - 1]),
               delimiter=',')

    # calculate and save angle gathers (line-by-line)
    vel_sm = np.loadtxt(path0 + 'vel_sm.dat', delimiter=',')
    cp = vel_sm[find_closest(z_current, z), 751 // 2]

    irA = np.asarray([7, 15, 24, 35])
    nalpha = 201
    A = np.zeros((nalpha, len(irA)))

    for i in np.arange(0, len(irA)):
        ir = irA[i]
        anglegath, alpha = AngleGather(np.swapaxes(redatumed, 0, 2), nvsx,
                                       nalpha, dt * jt, ds, ir, cp)
        A[:, i] = anglegath

    np.savetxt(path_save + 'AngleGather1_' + str(z_current) + '.dat',
               A,
               delimiter=',')