Exemplo n.º 1
0
    def setUp(self):
        self.norm_str = Strain.from_deformation([[1.02, 0, 0], [0, 1, 0], [0, 0, 1]])
        self.ind_str = Strain.from_deformation([[1, 0.02, 0], [0, 1, 0], [0, 0, 1]])

        self.non_ind_str = Strain.from_deformation([[1, 0.02, 0.02], [0, 1, 0], [0, 0, 1]])

        with warnings.catch_warnings(record=True):
            warnings.simplefilter("always")
            self.no_dfm = Strain([[0.0, 0.01, 0.0], [0.01, 0.0002, 0.0], [0.0, 0.0, 0.0]])
Exemplo n.º 2
0
    def setUp(self):
        self.norm_str = Strain.from_deformation([[1.02, 0, 0], [0, 1, 0],
                                                 [0, 0, 1]])
        self.ind_str = Strain.from_deformation([[1, 0.02, 0], [0, 1, 0],
                                                [0, 0, 1]])

        self.non_ind_str = Strain.from_deformation([[1, 0.02, 0.02], [0, 1, 0],
                                                    [0, 0, 1]])

        with warnings.catch_warnings(record=True):
            warnings.simplefilter("always")
            self.no_dfm = Strain([[0., 0.01, 0.], [0.01, 0.0002, 0.],
                                  [0., 0., 0.]])
Exemplo n.º 3
0
    def test_energy_density(self):

        film_elac = ElasticTensor.from_voigt(
            [[324.32, 187.3, 170.92, 0., 0., 0.],
             [187.3, 324.32, 170.92, 0., 0., 0.],
             [170.92, 170.92, 408.41, 0., 0., 0.],
             [0., 0., 0., 150.73, 0., 0.], [0., 0., 0., 0., 150.73, 0.],
             [0., 0., 0., 0., 0., 238.74]])

        dfm = Deformation([[-9.86004855e-01, 2.27539582e-01, -4.64426035e-17],
                           [-2.47802121e-01, -9.91208483e-01, -7.58675185e-17],
                           [-6.12323400e-17, -6.12323400e-17, 1.00000000e+00]])

        self.assertAlmostEqual(
            film_elac.energy_density(dfm.green_lagrange_strain),
            0.00125664672793)

        film_elac.energy_density(
            Strain.from_deformation([[0.99774738, 0.11520994, -0.],
                                     [-0.11520994, 0.99774738, 0.],
                                     [
                                         -0.,
                                         -0.,
                                         1.,
                                     ]]))
Exemplo n.º 4
0
 def test_from_strain_stress_list(self):
     strain_list = [Strain.from_deformation(def_matrix)
                    for def_matrix in self.def_stress_dict['deformations']]
     stress_list = [stress for stress in self.def_stress_dict['stresses']]
     with warnings.catch_warnings(record = True):
         et_fl = -0.1*ElasticTensor.from_strain_stress_list(strain_list, stress_list)
         self.assertArrayAlmostEqual(et_fl.round(2),
                                     [[59.29, 24.36, 22.46, 0, 0, 0],
                                      [28.06, 56.91, 22.46, 0, 0, 0],
                                      [28.06, 25.98, 54.67, 0, 0, 0],
                                      [0, 0, 0, 26.35, 0, 0],
                                      [0, 0, 0, 0, 26.35, 0],
                                      [0, 0, 0, 0, 0, 26.35]])
Exemplo n.º 5
0
 def test_from_pseudoinverse(self):
     strain_list = [Strain.from_deformation(def_matrix)
                    for def_matrix in self.def_stress_dict['deformations']]
     stress_list = [stress for stress in self.def_stress_dict['stresses']]
     with warnings.catch_warnings(record=True):
         et_fl = -0.1*ElasticTensor.from_pseudoinverse(strain_list, 
                                                       stress_list).voigt
         self.assertArrayAlmostEqual(et_fl.round(2),
                                     [[59.29, 24.36, 22.46, 0, 0, 0],
                                      [28.06, 56.91, 22.46, 0, 0, 0],
                                      [28.06, 25.98, 54.67, 0, 0, 0],
                                      [0, 0, 0, 26.35, 0, 0],
                                      [0, 0, 0, 0, 26.35, 0],
                                      [0, 0, 0, 0, 0, 26.35]])
Exemplo n.º 6
0
    def run_task(self, fw_spec):
        v, _ = get_vasprun_outcar(self.get("calc_dir", "."), parse_dos=False, parse_eigen=False)
        stress = v.ionic_steps[-1]['stress']
        defo = self['deformation']
        d_ind = np.nonzero(defo - np.eye(3))
        delta = Decimal((defo - np.eye(3))[d_ind][0])
        # Shorthand is d_X_V, X is voigt index, V is value
        dtype = "_".join(["d", str(reverse_voigt_map[d_ind][0]),
                          "{:.0e}".format(delta)])
        strain = Strain.from_deformation(defo)
        defo_dict = {'deformation_matrix': defo,
                     'strain': strain.tolist(),
                     'stress': stress}

        return FWAction(mod_spec=[{'_set': {
            'deformation_tasks->{}'.format(dtype): defo_dict}}])
Exemplo n.º 7
0
    def test_energy_density(self):

        film_elac = ElasticTensor.from_voigt([
            [324.32,  187.3,   170.92,    0.,      0.,      0.],
            [187.3,   324.32,  170.92,    0.,      0.,      0.],
            [170.92,  170.92,  408.41,    0.,      0.,      0.],
            [0.,      0.,      0.,    150.73,    0.,      0.],
            [0.,      0.,      0.,      0.,    150.73,    0.],
            [0.,      0.,      0.,      0.,      0.,    238.74]])

        dfm = Deformation([[ -9.86004855e-01,2.27539582e-01,-4.64426035e-17],
                           [ -2.47802121e-01,-9.91208483e-01,-7.58675185e-17],
                           [ -6.12323400e-17,-6.12323400e-17,1.00000000e+00]])

        self.assertAlmostEqual(film_elac.energy_density(dfm.green_lagrange_strain),
            0.00125664672793)

        film_elac.energy_density(Strain.from_deformation([[ 0.99774738,  0.11520994, -0.        ],
                                        [-0.11520994,  0.99774738,  0.        ],
                                        [-0.,         -0.,          1.,        ]]))
Exemplo n.º 8
0
    def run_task(self, fw_spec):
        v, _ = get_vasprun_outcar(self.get("calc_dir", "."),
                                  parse_dos=False,
                                  parse_eigen=False)
        stress = v.ionic_steps[-1]['stress']
        defo = self['deformation']
        d_ind = np.nonzero(defo - np.eye(3))
        delta = Decimal((defo - np.eye(3))[d_ind][0])
        # Shorthand is d_X_V, X is voigt index, V is value
        dtype = "_".join(
            ["d",
             str(reverse_voigt_map[d_ind][0]), "{:.0e}".format(delta)])
        strain = Strain.from_deformation(defo)
        defo_dict = {
            'deformation_matrix': defo,
            'strain': strain.tolist(),
            'stress': stress
        }

        return FWAction(mod_spec=[{
            '_set': {
                'deformation_tasks->{}'.format(dtype): defo_dict
            }
        }])
Exemplo n.º 9
0
    def runSimulation(self):
        if self.args["pymatgen"] == True:
            starting_struct = singleFromFile(self.args)
            info = runCalc("all_relax", ["structures","stresses"], [starting_struct], self.args)
            relaxed_struct = info["structures"][0]
            relaxed_stress = info["stresses"][0]

            strains = []
            deformed_set = DeformedStructureSet(relaxed_struct, symmetry=True)
            deformed_structs = deformed_set.deformed_structures
            symmetry_dict = deformed_set.sym_dict
            deformations = deformed_set.deformations

            stresses = runCalc("atom_relax", ["stresses"], deformed_structs, self.args)["stresses"]
        
            for i in range(len(deformations)):
                strains.append(Strain.from_deformation(deformations[i]))

            for i in range(len(deformations)):
                for symm in symmetry_dict[deformations[i]]:
                    strains.append(strains[i].transform(symm))
                    stresses.append(stresses[i].transform(symm))

            self.elastic_tensor = ElasticTensor.from_independent_strains(strains,stresses,eq_stress=relaxed_stress,vasp=True).zeroed().voigt
Exemplo n.º 10
0
def make_vasp(jdata, conf_dir, norm_def = 2e-3, shear_def = 5e-3) :
    norm_def = jdata['norm_deform']
    shear_def = jdata['shear_deform']
    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')

    # get equi poscar
    if 'relax_incar' in jdata.keys():
        vasp_str='vasp-relax_incar'
    else:
        kspacing = jdata['vasp_params']['kspacing']
        vasp_str='vasp-k%.2f' % kspacing

    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, vasp_str)
    equi_contcar = os.path.join(equi_path, 'CONTCAR')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, vasp_str)
    os.makedirs(task_path, exist_ok=True)
    cwd = os.getcwd()
    os.chdir(task_path)
    if os.path.isfile('POSCAR') :
        os.remove('POSCAR')
    os.symlink(os.path.relpath(equi_contcar), 'POSCAR')
    os.chdir(cwd)
    task_poscar = os.path.join(task_path, 'POSCAR')
    # stress
    equi_outcar = os.path.join(equi_path, 'OUTCAR')
    stress = vasp.get_stress(equi_outcar)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = [-norm_def, -0.5*norm_def, 0.5*norm_def, norm_def]
    shear_strains = [-shear_def, -0.5*shear_def, 0.5*shear_def, shear_def]
    dfm_ss = DeformedStructureSet(ss, 
                                  symmetry = False, 
                                  norm_strains = norm_strains,
                                  shear_strains = shear_strains)
    n_dfm = len(dfm_ss)
    # gen incar
    if  'relax_incar' in jdata.keys():
        relax_incar_path = jdata['relax_incar']
        assert(os.path.exists(relax_incar_path))
        relax_incar_path = os.path.abspath(relax_incar_path)
        fc = open(relax_incar_path).read()
        kspacing =float(re.findall((r"KSPACING(.+?)\n"),fc)[0].replace('=',''))
        kgamma =('T' in re.findall((r"KGAMMA(.+?)\n"),fc)[0])
    else :
        fp_params = jdata['vasp_params']
        ecut = fp_params['ecut']
        ediff = fp_params['ediff']
        npar = fp_params['npar']
        kpar = fp_params['kpar']
        kspacing = fp_params['kspacing']
        kgamma = fp_params['kgamma']
        fc = vasp.make_vasp_relax_incar(ecut, ediff, True, False, False, npar=npar,kpar=kpar, kspacing = kspacing, kgamma = kgamma)
        
    with open(os.path.join(task_path, 'INCAR'), 'w') as fp :
        fp.write(fc)
    # gen potcar
    with open(task_poscar,'r') as fp :
        lines = fp.read().split('\n')
        ele_list = lines[5].split()
    potcar_map = jdata['potcar_map']
    potcar_list = []
    for ii in ele_list :
        assert os.path.exists(os.path.abspath(potcar_map[ii])),"No POTCAR in the potcar_map of %s"%(ii)
        potcar_list.append(os.path.abspath(potcar_map[ii]))
    with open(os.path.join(task_path,'POTCAR'), 'w') as outfile:
        for fname in potcar_list:
            with open(fname) as infile:
                outfile.write(infile.read())
    # gen kpoints
    fc = vasp.make_kspacing_kpoints(task_poscar, kspacing, kgamma)
    with open(os.path.join(task_path,'KPOINTS'), 'w') as fp:
        fp.write(fc)
    # gen tasks    
    cwd = os.getcwd()
    for ii in range(n_dfm) :
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['POSCAR', 'POTCAR', 'INCAR', 'KPOINTS'] :
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
        # record strain
        strain = Strain.from_deformation(dfm_ss.deformations[ii])
        np.savetxt('strain.out', strain)
        # link incar, potcar, kpoints
        os.symlink(os.path.relpath(os.path.join(task_path, 'INCAR')), 'INCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'POTCAR')), 'POTCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'KPOINTS')), 'KPOINTS')
    cwd = os.getcwd()
Exemplo n.º 11
0
def make_lammps(jdata, conf_dir,task_type) :
    fp_params = jdata['lammps_params']
    model_dir = fp_params['model_dir']
    type_map = fp_params['type_map'] 
    model_dir = os.path.abspath(model_dir)
    model_name =fp_params['model_name']
    if not model_name and task_type =='deepmd':
        models = glob.glob(os.path.join(model_dir, '*pb'))
        model_name = [os.path.basename(ii) for ii in models]
        assert len(model_name)>0,"No deepmd model in the model_dir"
    else:
        models = [os.path.join(model_dir,ii) for ii in model_name]

    model_param = {'model_name' :      fp_params['model_name'],
                  'param_type':          fp_params['model_param_type']}
    
    ntypes = len(type_map)

    norm_def = jdata['norm_deform']
    shear_def = jdata['shear_deform']

    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')
    # get equi poscar
    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, task_type)
    equi_dump = os.path.join(equi_path, 'dump.relax')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, task_type)
    os.makedirs(task_path, exist_ok=True)
    task_poscar = os.path.join(task_path, 'POSCAR')
    lammps.poscar_from_last_dump(equi_dump, task_poscar, type_map)
    # get equi stress
    equi_log = os.path.join(equi_path, 'log.lammps')
    stress = lammps.get_stress(equi_log)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    # ss = Structure.from_file(conf_poscar)
    # print(ss)
    # ss = ss.from_file(task_poscar)
    # print(ss)
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = [-norm_def, -0.5*norm_def, 0.5*norm_def, norm_def]
    shear_strains = [-shear_def, -0.5*shear_def, 0.5*shear_def, shear_def]
    print('gen with norm '+str(norm_strains))
    print('gen with shear '+str(shear_strains))
    dfm_ss = DeformedStructureSet(ss, 
                                  symmetry = False, 
                                  norm_strains = norm_strains,
                                  shear_strains = shear_strains)
    n_dfm = len(dfm_ss)
    # gen tasks    
    cwd = os.getcwd()
    # make lammps.in
    if task_type=='deepmd':
        fc = lammps.make_lammps_elastic('conf.lmp', 
                                    ntypes, 
                                    lammps.inter_deepmd,
                                    model_name)  
    elif task_type=='meam':
        fc = lammps.make_lammps_elastic('conf.lmp', 
                                    ntypes, 
                                    lammps.inter_meam,
                                    model_param)
    f_lammps_in = os.path.join(task_path, 'lammps.in')
    with open(f_lammps_in, 'w') as fp :
        fp.write(fc)
    cwd = os.getcwd()
    
    os.chdir(task_path)
    for ii in model_name :
        if os.path.exists(ii) :
            os.remove(ii)
    for (ii,jj) in zip(models, model_name) :
        os.symlink(os.path.relpath(ii), jj)
    share_models = [os.path.join(task_path,ii) for ii in model_name]

    for ii in range(n_dfm) :
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['conf.lmp', 'lammps.in'] + model_name :
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
        lammps.cvt_lammps_conf('POSCAR', 'conf.lmp')
        ptypes = vasp.get_poscar_types('POSCAR')
        lammps.apply_type_map('conf.lmp', type_map, ptypes)    
        # record strain
        strain = Strain.from_deformation(dfm_ss.deformations[ii])
        np.savetxt('strain.out', strain)
        # link lammps.in
        os.symlink(os.path.relpath(f_lammps_in), 'lammps.in')
        # link models
        for (ii,jj) in zip(share_models, model_name) :
            os.symlink(os.path.relpath(ii), jj)
    cwd = os.getcwd()
Exemplo n.º 12
0
def make_vasp(jdata, conf_dir, norm_def=2e-3, shear_def=5e-3):
    fp_params = jdata['vasp_params']
    ecut = fp_params['ecut']
    ediff = fp_params['ediff']
    npar = fp_params['npar']
    kpar = fp_params['kpar']
    kspacing = fp_params['kspacing']
    kgamma = fp_params['kgamma']
    strain_start = jdata['strain_start']
    strain_end = jdata['strain_end']
    strain_step = jdata['strain_step']
    strain_direct = jdata['strain_direct']

    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')
    # get equi poscar
    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, 'vasp-k%.2f' % kspacing)
    equi_contcar = os.path.join(equi_path, 'CONTCAR')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, 'vasp-k%.2f' % kspacing)
    os.makedirs(task_path, exist_ok=True)
    cwd = os.getcwd()
    os.chdir(task_path)
    if os.path.isfile('POSCAR'):
        os.remove('POSCAR')
    os.symlink(os.path.relpath(equi_contcar), 'POSCAR')
    os.chdir(cwd)
    task_poscar = os.path.join(task_path, 'POSCAR')
    # stress
    equi_outcar = os.path.join(equi_path, 'OUTCAR')
    stress = vasp.get_stress(equi_outcar)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = np.arange(strain_start, strain_end, strain_step)
    print('gen with norm ' + str(norm_strains))
    deformations = []
    for ii in norm_strains:
        strain = Strain.from_index_amount(strain_direct, ii)
        deformations.append(strain.get_deformation_matrix())
    deformed_structures = [
        defo.apply_to_structure(ss) for defo in deformations
    ]
    n_dfm = len(deformed_structures)
    # gen incar
    fc = vasp.make_vasp_relax_incar(ecut,
                                    ediff,
                                    True,
                                    False,
                                    False,
                                    npar=npar,
                                    kpar=kpar,
                                    kspacing=None,
                                    kgamma=None)
    with open(os.path.join(task_path, 'INCAR'), 'w') as fp:
        fp.write(fc)
    # gen potcar
    with open(task_poscar, 'r') as fp:
        lines = fp.read().split('\n')
        ele_list = lines[5].split()
    potcar_map = jdata['potcar_map']
    potcar_list = []
    for ii in ele_list:
        assert (os.path.exists(potcar_map[ii]))
        potcar_list.append(potcar_map[ii])
    with open(os.path.join(task_path, 'POTCAR'), 'w') as outfile:
        for fname in potcar_list:
            with open(fname) as infile:
                outfile.write(infile.read())
    # gen kpoints
    fc = vasp.make_kspacing_kpoints(task_poscar, kspacing, kgamma)
    with open(os.path.join(task_path, 'KPOINTS'), 'w') as fp:
        fp.write(fc)
    # gen tasks
    cwd = os.getcwd()
    for ii in range(n_dfm):
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['POSCAR', 'POTCAR', 'INCAR', 'KPOINTS']:
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        deformed_structures[ii].to('POSCAR', 'POSCAR')
        # record strain
        strain = Strain.from_deformation(deformations[ii])
        np.savetxt('strain.out', strain)
        # link incar, potcar, kpoints
        os.symlink(os.path.relpath(os.path.join(task_path, 'INCAR')), 'INCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'POTCAR')),
                   'POTCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'KPOINTS')),
                   'KPOINTS')
    cwd = os.getcwd()
Exemplo n.º 13
0
def make_lammps(jdata, conf_dir, task_type):
    fp_params = jdata['lammps_params']
    model_dir = fp_params['model_dir']
    type_map = fp_params['type_map']
    model_dir = os.path.abspath(model_dir)
    model_name = fp_params['model_name']
    if not model_name:
        models = glob.glob(os.path.join(model_dir, '*pb'))
        model_name = [os.path.basename(ii) for ii in models]
    else:
        models = [os.path.join(model_dir, ii) for ii in model_name]

    model_param = {
        'model_name': fp_params['model_name'],
        'param_type': fp_params['model_param_type']
    }

    ntypes = len(type_map)
    strain_start = jdata['strain_start']
    strain_end = jdata['strain_end']
    strain_step = jdata['strain_step']
    strain_direct = jdata['strain_direct']

    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')
    # get equi poscar
    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, task_type)
    equi_dump = os.path.join(equi_path, 'dump.relax')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, task_type)
    os.makedirs(task_path, exist_ok=True)
    task_poscar = os.path.join(task_path, 'POSCAR')
    lammps.poscar_from_last_dump(equi_dump, task_poscar, type_map)
    # get equi stress
    equi_log = os.path.join(equi_path, 'log.lammps')
    stress = lammps.get_stress(equi_log)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = np.arange(strain_start, strain_end, strain_step)
    print('gen with norm ' + str(norm_strains))
    deformations = []
    for ii in norm_strains:
        strain = Strain.from_index_amount(strain_direct, ii)
        deformations.append(strain.get_deformation_matrix())
    deformed_structures = [
        defo.apply_to_structure(ss) for defo in deformations
    ]
    n_dfm = len(deformed_structures)
    # gen tasks
    cwd = os.getcwd()
    # make lammps.in
    if task_type == 'deepmd':
        fc = lammps.make_lammps_elastic('conf.lmp', ntypes,
                                        lammps.inter_deepmd, model_name)
    elif task_type == 'meam':
        fc = lammps.make_lammps_elastic('conf.lmp', ntypes, lammps.inter_meam,
                                        model_param)

    f_lammps_in = os.path.join(task_path, 'lammps.in')
    with open(f_lammps_in, 'w') as fp:
        fp.write(fc)
    cwd = os.getcwd()
    if task_type == 'deepmd':
        os.chdir(task_path)
        for ii in model_name:
            if os.path.exists(ii):
                os.remove(ii)
        for (ii, jj) in zip(models, model_name):
            os.symlink(os.path.relpath(ii), jj)
        share_models = glob.glob(os.path.join(task_path, '*pb'))
    else:
        share_models = models

    for ii in range(n_dfm):
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['conf.lmp', 'lammps.in'] + model_name:
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        deformed_structures[ii].to('POSCAR', 'POSCAR')
        lammps.cvt_lammps_conf('POSCAR', 'conf.lmp')
        ptypes = vasp.get_poscar_types('POSCAR')
        lammps.apply_type_map('conf.lmp', type_map, ptypes)
        # record strain
        strain = Strain.from_deformation(deformations[ii])
        np.savetxt('strain.out', strain)
        # link lammps.in
        os.symlink(os.path.relpath(f_lammps_in), 'lammps.in')
        # link models
        for (ii, jj) in zip(share_models, model_name):
            os.symlink(os.path.relpath(ii), jj)
    cwd = os.getcwd()
Exemplo n.º 14
0
    def make_confs(self, path_to_work, path_to_equi, refine=False):
        path_to_work = os.path.abspath(path_to_work)
        path_to_equi = os.path.abspath(path_to_equi)
        task_list = []
        cwd = os.getcwd()

        norm_def = self.norm_deform
        shear_def = self.shear_deform
        norm_strains = [-norm_def, -0.5 * norm_def, 0.5 * norm_def, norm_def]
        shear_strains = [
            -shear_def, -0.5 * shear_def, 0.5 * shear_def, shear_def
        ]
        print('gen with norm ' + str(norm_strains))
        print('gen with shear ' + str(shear_strains))

        equi_contcar = os.path.join(path_to_equi, 'CONTCAR')
        if not os.path.exists(equi_contcar):
            raise RuntimeError("please do relaxation first")

        ss = Structure.from_file(equi_contcar)
        dfm_ss = DeformedStructureSet(ss,
                                      symmetry=False,
                                      norm_strains=norm_strains,
                                      shear_strains=shear_strains)
        n_dfm = len(dfm_ss)

        os.chdir(path_to_work)
        if os.path.isfile('POSCAR'):
            os.remove('POSCAR')
        os.symlink(os.path.relpath(equi_contcar), 'POSCAR')
        #           task_poscar = os.path.join(output, 'POSCAR')
        # stress
        equi_outcar = os.path.join(path_to_equi, 'OUTCAR')
        equi_log = os.path.join(path_to_equi, 'log.lammps')
        if os.path.exists(equi_outcar):
            stress = vasp.get_stress(equi_outcar)
            np.savetxt('equi.stress.out', stress)
        elif os.path.exists(equi_log):
            stress = lammps.get_stress(equi_log)
            np.savetxt('equi.stress.out', stress)
        os.chdir(cwd)

        if refine:
            task_list = make_refine(self.parameter['init_from_suffix'],
                                    self.parameter['output_suffix'],
                                    path_to_work, n_dfm)
            os.chdir(cwd)
        else:
            for ii in range(n_dfm):
                output_task = os.path.join(path_to_work, 'task.%06d' % ii)
                os.makedirs(output_task, exist_ok=True)
                os.chdir(output_task)
                for jj in [
                        'INCAR', 'POTCAR', 'POSCAR', 'conf.lmp', 'in.lammps'
                ]:
                    if os.path.exists(jj):
                        os.remove(jj)
                task_list.append(output_task)
                dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
                # record strain
                strain = Strain.from_deformation(dfm_ss.deformations[ii])
                np.savetxt('strain.out', strain)
            os.chdir(cwd)
        return task_list
Exemplo n.º 15
0
def make_deepmd_lammps(jdata, conf_dir) :
    deepmd_model_dir = jdata['deepmd_model_dir']
    deepmd_type_map = jdata['deepmd_type_map']
    ntypes = len(deepmd_type_map)    
    deepmd_model_dir = os.path.abspath(deepmd_model_dir)
    deepmd_models = glob.glob(os.path.join(deepmd_model_dir, '*pb'))
    deepmd_models_name = [os.path.basename(ii) for ii in deepmd_models]
    norm_def = jdata['norm_deform']
    shear_def = jdata['shear_deform']

    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')
    # get equi poscar
    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, 'deepmd')
    equi_dump = os.path.join(equi_path, 'dump.relax')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, 'deepmd')
    os.makedirs(task_path, exist_ok=True)
    task_poscar = os.path.join(task_path, 'POSCAR')
    lammps.poscar_from_last_dump(equi_dump, task_poscar, deepmd_type_map)
    # get equi stress
    equi_log = os.path.join(equi_path, 'log.lammps')
    stress = lammps.get_stress(equi_log)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    # ss = Structure.from_file(conf_poscar)
    # print(ss)
    # ss = ss.from_file(task_poscar)
    # print(ss)
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = [-norm_def, -0.5*norm_def, 0.5*norm_def, norm_def]
    shear_strains = [-shear_def, -0.5*shear_def, 0.5*shear_def, shear_def]
    print('gen with norm '+str(norm_strains))
    print('gen with shear '+str(shear_strains))
    dfm_ss = DeformedStructureSet(ss, 
                                  symmetry = False, 
                                  norm_strains = norm_strains,
                                  shear_strains = shear_strains)
    n_dfm = len(dfm_ss)
    # gen tasks    
    cwd = os.getcwd()
    # make lammps.in
    fc = lammps.make_lammps_elastic('conf.lmp', 
                                    ntypes, 
                                    lammps.inter_deepmd,
                                    deepmd_models_name)        
    f_lammps_in = os.path.join(task_path, 'lammps.in')
    with open(f_lammps_in, 'w') as fp :
        fp.write(fc)
    cwd = os.getcwd()
    for ii in range(n_dfm) :
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['conf.lmp', 'lammps.in'] + deepmd_models_name :
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
        lammps.cvt_lammps_conf('POSCAR', 'conf.lmp')
        ptypes = vasp.get_poscar_types('POSCAR')
        lammps.apply_type_map('conf.lmp', deepmd_type_map, ptypes)    
        # record strain
        strain = Strain.from_deformation(dfm_ss.deformations[ii])
        np.savetxt('strain.out', strain)
        # link lammps.in
        os.symlink(os.path.relpath(f_lammps_in), 'lammps.in')
        # link models
        for (ii,jj) in zip(deepmd_models, deepmd_models_name) :
            os.symlink(os.path.relpath(ii), jj)
    cwd = os.getcwd()
Exemplo n.º 16
0
    def make_confs(self, path_to_work, path_to_equi, refine=False):
        path_to_work = os.path.abspath(path_to_work)
        if os.path.exists(path_to_work):
            dlog.warning('%s already exists' % path_to_work)
        else:
            os.makedirs(path_to_work)
        path_to_equi = os.path.abspath(path_to_equi)

        if 'start_confs_path' in self.parameter and os.path.exists(
                self.parameter['start_confs_path']):
            init_path_list = glob.glob(
                os.path.join(self.parameter['start_confs_path'], '*'))
            struct_init_name_list = []
            for ii in init_path_list:
                struct_init_name_list.append(ii.split('/')[-1])
            struct_output_name = path_to_work.split('/')[-2]
            assert struct_output_name in struct_init_name_list
            path_to_equi = os.path.abspath(
                os.path.join(self.parameter['start_confs_path'],
                             struct_output_name, 'relaxation', 'relax_task'))

        task_list = []
        cwd = os.getcwd()
        equi_contcar = os.path.join(path_to_equi, 'CONTCAR')

        os.chdir(path_to_work)
        if os.path.isfile('POSCAR'):
            os.remove('POSCAR')
        if os.path.islink('POSCAR'):
            os.remove('POSCAR')
        os.symlink(os.path.relpath(equi_contcar), 'POSCAR')
        #           task_poscar = os.path.join(output, 'POSCAR')

        # stress, deal with unsupported stress in dpdata
        #with open(os.path.join(path_to_equi, 'result.json')) as fin:
        #    equi_result = json.load(fin)
        #equi_stress = np.array(equi_result['stress']['data'])[-1]
        equi_result = loadfn(os.path.join(path_to_equi, 'result.json'))
        equi_stress = equi_result['stress'][-1]
        dumpfn(equi_stress, 'equi.stress.json', indent=4)
        os.chdir(cwd)

        if refine:
            print('elastic refine starts')
            task_list = make_refine(self.parameter['init_from_suffix'],
                                    self.parameter['output_suffix'],
                                    path_to_work)

            # record strain
            # df = Strain.from_deformation(dfm_ss.deformations[idid])
            # dumpfn(df.as_dict(), 'strain.json', indent=4)
            init_from_path = re.sub(self.parameter['output_suffix'][::-1],
                                    self.parameter['init_from_suffix'][::-1],
                                    path_to_work[::-1],
                                    count=1)[::-1]
            task_list_basename = list(map(os.path.basename, task_list))

            for ii in task_list_basename:
                init_from_task = os.path.join(init_from_path, ii)
                output_task = os.path.join(path_to_work, ii)
                os.chdir(output_task)
                if os.path.isfile('strain.json'):
                    os.remove('strain.json')
                copyfile(os.path.join(init_from_task, 'strain.json'),
                         'strain.json')
                #os.symlink(os.path.relpath(
                #    os.path.join((re.sub(self.parameter['output_suffix'], self.parameter['init_from_suffix'], ii)),
                #                 'strain.json')),
                #           'strain.json')
            os.chdir(cwd)
        else:
            norm_def = self.norm_deform
            shear_def = self.shear_deform
            norm_strains = [
                -norm_def, -0.5 * norm_def, 0.5 * norm_def, norm_def
            ]
            shear_strains = [
                -shear_def, -0.5 * shear_def, 0.5 * shear_def, shear_def
            ]

            if not os.path.exists(equi_contcar):
                raise RuntimeError("please do relaxation first")

            ss = Structure.from_file(equi_contcar)
            dfm_ss = DeformedStructureSet(ss,
                                          symmetry=False,
                                          norm_strains=norm_strains,
                                          shear_strains=shear_strains)
            n_dfm = len(dfm_ss)

            print('gen with norm ' + str(norm_strains))
            print('gen with shear ' + str(shear_strains))
            for ii in range(n_dfm):
                output_task = os.path.join(path_to_work, 'task.%06d' % ii)
                os.makedirs(output_task, exist_ok=True)
                os.chdir(output_task)
                for jj in [
                        'INCAR', 'POTCAR', 'POSCAR', 'conf.lmp', 'in.lammps'
                ]:
                    if os.path.exists(jj):
                        os.remove(jj)
                task_list.append(output_task)
                dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
                # record strain
                df = Strain.from_deformation(dfm_ss.deformations[ii])
                dumpfn(df.as_dict(), 'strain.json', indent=4)
            os.chdir(cwd)
        return task_list
Exemplo n.º 17
0
def get_wf_elastic_constant(structure,
                            metadata,
                            strain_states=None,
                            stencils=None,
                            db_file=None,
                            conventional=False,
                            order=2,
                            vasp_input_set=None,
                            analysis=True,
                            sym_reduce=False,
                            tag='elastic',
                            copy_vasp_outputs=False,
                            **kwargs):
    """
    Returns a workflow to calculate elastic constants.

    Firework 1 : write vasp input set for structural relaxation,
                 run vasp,
                 pass run location,
                 database insertion.

    Firework 2 - number of total deformations: Static runs on the deformed structures

    last Firework : Analyze Stress/Strain data and fit the elastic tensor

    Args:
        structure (Structure): input structure to be optimized and run.
        strain_states (list of Voigt-notation strains): list of ratios of nonzero elements
            of Voigt-notation strain, e. g. [(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), etc.].
        stencils (list of floats, or list of list of floats): values of strain to multiply
            by for each strain state, i. e. stencil for the perturbation along the strain
            state direction, e. g. [-0.01, -0.005, 0.005, 0.01].  If a list of lists,
            stencils must correspond to each strain state provided.
        db_file (str): path to file containing the database credentials.
        conventional (bool): flag to convert input structure to conventional structure,
            defaults to False.
        order (int): order of the tensor expansion to be determined.  Defaults to 2 and
            currently supports up to 3.
        vasp_input_set (VaspInputSet): vasp input set to be used.  Defaults to static
            set with ionic relaxation parameters set.  Take care if replacing this,
            default ensures that ionic relaxation is done and that stress is calculated
            for each vasp run.
        analysis (bool): flag to indicate whether analysis task should be added
            and stresses and strains passed to that task
        sym_reduce (bool): Whether or not to apply symmetry reductions
        tag (str):
        copy_vasp_outputs (bool): whether or not to copy previous vasp outputs.
        kwargs (keyword arguments): additional kwargs to be passed to get_wf_deformations

    Returns:
        Workflow
    """
    # Convert to conventional if specified
    if conventional:
        structure = SpacegroupAnalyzer(
            structure).get_conventional_standard_structure()

    uis_elastic = {
        "IBRION": 2,
        "NSW": 99,
        "ISIF": 2,
        "ISTART": 1,
        "PREC": "High"
    }
    vis = vasp_input_set or MPStaticSet(structure,
                                        user_incar_settings=uis_elastic)

    strains = []
    if strain_states is None:
        strain_states = get_default_strain_states(order)
    if stencils is None:
        stencils = [np.linspace(-0.01, 0.01, 5 +
                                (order - 2) * 2)] * len(strain_states)
    if np.array(stencils).ndim == 1:
        stencils = [stencils] * len(strain_states)
    for state, stencil in zip(strain_states, stencils):
        strains.extend(
            [Strain.from_voigt(s * np.array(state)) for s in stencil])

    # Remove zero strains
    strains = [strain for strain in strains if not (abs(strain) < 1e-10).all()]
    # Adding the zero strains for the purpose of calculating at finite pressure or thermal expansion
    _strains = [Strain.from_deformation([[1, 0, 0], [0, 1, 0], [0, 0, 1]])]
    strains.extend(_strains)
    """
    """
    vstrains = [strain.voigt for strain in strains]
    if np.linalg.matrix_rank(vstrains) < 6:
        # TODO: check for sufficiency of input for nth order
        raise ValueError(
            "Strain list is insufficient to fit an elastic tensor")

    deformations = [s.get_deformation_matrix() for s in strains]
    """
    print(strains)
    print(deformations)
    """

    if sym_reduce:
        # Note this casts deformations to a TensorMapping
        # with unique deformations as keys to symmops
        deformations = symmetry_reduce(deformations, structure)

    wf_elastic = get_wf_deformations(structure,
                                     deformations,
                                     tag=tag,
                                     db_file=db_file,
                                     vasp_input_set=vis,
                                     copy_vasp_outputs=copy_vasp_outputs,
                                     **kwargs)
    if analysis:
        defo_fws_and_tasks = get_fws_and_tasks(
            wf_elastic,
            fw_name_constraint="deformation",
            task_name_constraint="Transmuted")
        for idx_fw, idx_t in defo_fws_and_tasks:
            defo = \
            wf_elastic.fws[idx_fw].tasks[idx_t]['transformation_params'][0][
                'deformation']
            pass_dict = {
                'strain': Deformation(defo).green_lagrange_strain.tolist(),
                'stress': '>>output.ionic_steps.-1.stress',
                'deformation_matrix': defo
            }
            if sym_reduce:
                pass_dict.update({'symmops': deformations[defo]})

            mod_spec_key = "deformation_tasks->{}".format(idx_fw)
            pass_task = pass_vasp_result(pass_dict=pass_dict,
                                         mod_spec_key=mod_spec_key)
            wf_elastic.fws[idx_fw].tasks.append(pass_task)

        fw_analysis = Firework(ElasticTensorToDb(structure=structure,
                                                 db_file=db_file,
                                                 order=order,
                                                 fw_spec_field='tags',
                                                 metadata=metadata,
                                                 vasp_input_set=vis),
                               name="Analyze Elastic Data",
                               spec={"_allow_fizzled_parents": True})
        wf_elastic.append_wf(Workflow.from_Firework(fw_analysis),
                             wf_elastic.leaf_fw_ids)

    wf_elastic.name = "{}:{}".format(structure.composition.reduced_formula,
                                     "elastic constants")

    return wf_elastic
Exemplo n.º 18
0
def make_vasp(jdata, conf_dir):
    default_norm_def = 2e-3
    default_shear_def = 5e-3
    norm_def = jdata.get('norm_deform', default_norm_def)
    shear_def = jdata.get('shear_deform', default_shear_def)
    conf_path = os.path.abspath(conf_dir)
    conf_poscar = os.path.join(conf_path, 'POSCAR')

    if 'relax_incar' in jdata.keys():
        vasp_str = 'vasp-relax_incar'
    else:
        kspacing = jdata['vasp_params']['kspacing']
        vasp_str = 'vasp-k%.2f' % kspacing

    # get equi poscar
    equi_path = re.sub('confs', global_equi_name, conf_path)
    equi_path = os.path.join(equi_path, vasp_str)
    equi_contcar = os.path.join(equi_path, 'CONTCAR')
    task_path = re.sub('confs', global_task_name, conf_path)
    task_path = os.path.join(task_path, vasp_str)
    os.makedirs(task_path, exist_ok=True)
    cwd = os.getcwd()
    os.chdir(task_path)
    if os.path.isfile('POSCAR'):
        os.remove('POSCAR')
    os.symlink(os.path.relpath(equi_contcar), 'POSCAR')
    os.chdir(cwd)
    task_poscar = os.path.join(task_path, 'POSCAR')
    # stress
    equi_outcar = os.path.join(equi_path, 'OUTCAR')
    stress = vasp.get_stress(equi_outcar)
    np.savetxt(os.path.join(task_path, 'equi.stress.out'), stress)
    # gen strcture
    ss = Structure.from_file(task_poscar)
    # gen defomations
    norm_strains = [-norm_def, -0.5 * norm_def, 0.5 * norm_def, norm_def]
    shear_strains = [-shear_def, -0.5 * shear_def, 0.5 * shear_def, shear_def]
    dfm_ss = DeformedStructureSet(ss,
                                  symmetry=False,
                                  norm_strains=norm_strains,
                                  shear_strains=shear_strains)
    n_dfm = len(dfm_ss)
    # gen incar
    if 'relax_incar' in jdata.keys():
        relax_incar_path = jdata['relax_incar']
        assert (os.path.exists(relax_incar_path))
        relax_incar_path = os.path.abspath(relax_incar_path)
        incar = incar_upper(Incar.from_file(relax_incar_path))
        if incar.get('ISIF') != 2:
            dlog.info("%s:%s setting ISIF to 2" %
                      (__file__, make_vasp.__name__))
            incar['ISIF'] = 2
        fc = incar.get_string()
        kspacing = incar['KSPACING']
        kgamma = incar['KGAMMA']
    else:
        fp_params = jdata['vasp_params']
        ecut = fp_params['ecut']
        ediff = fp_params['ediff']
        npar = fp_params['npar']
        kpar = fp_params['kpar']
        kspacing = fp_params['kspacing']
        kgamma = fp_params['kgamma']
        fc = vasp.make_vasp_relax_incar(ecut,
                                        ediff,
                                        True,
                                        False,
                                        False,
                                        npar=npar,
                                        kpar=kpar,
                                        kspacing=kspacing,
                                        kgamma=kgamma)

    with open(os.path.join(task_path, 'INCAR'), 'w') as fp:
        fp.write(fc)
    # gen potcar
    with open(task_poscar, 'r') as fp:
        lines = fp.read().split('\n')
        ele_list = lines[5].split()
    potcar_map = jdata['potcar_map']
    potcar_list = []
    for ii in ele_list:
        assert os.path.exists(os.path.abspath(
            potcar_map[ii])), "No POTCAR in the potcar_map of %s" % (ii)
        potcar_list.append(os.path.abspath(potcar_map[ii]))
    with open(os.path.join(task_path, 'POTCAR'), 'w') as outfile:
        for fname in potcar_list:
            with open(fname) as infile:
                outfile.write(infile.read())
    # gen kpoints
    fc = vasp.make_kspacing_kpoints(task_poscar, kspacing, kgamma)
    with open(os.path.join(task_path, 'KPOINTS'), 'w') as fp:
        fp.write(fc)
    # gen tasks
    cwd = os.getcwd()
    for ii in range(n_dfm):
        # make dir
        dfm_path = os.path.join(task_path, 'dfm-%03d' % ii)
        os.makedirs(dfm_path, exist_ok=True)
        os.chdir(dfm_path)
        for jj in ['POSCAR', 'POTCAR', 'INCAR', 'KPOINTS']:
            if os.path.isfile(jj):
                os.remove(jj)
        # make conf
        dfm_ss.deformed_structures[ii].to('POSCAR', 'POSCAR')
        # record strain
        strain = Strain.from_deformation(dfm_ss.deformations[ii])
        np.savetxt('strain.out', strain)
        # link incar, potcar, kpoints
        os.symlink(os.path.relpath(os.path.join(task_path, 'INCAR')), 'INCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'POTCAR')),
                   'POTCAR')
        os.symlink(os.path.relpath(os.path.join(task_path, 'KPOINTS')),
                   'KPOINTS')
        #copy cvasp
        if ('cvasp' in jdata) and (jdata['cvasp'] == True):
            shutil.copyfile(cvasp_file, os.path.join(dfm_path, 'cvasp.py'))
    os.chdir(cwd)