Exemplo n.º 1
0
def find_dirac_nodes():
    """
    Look for band crossings near (within `tol` eV) the Fermi level.

    Returns:
        boolean. Whether or not a band crossing occurs at or near
            the fermi level.
    """

    vasprun = Vasprun('vasprun.xml')
    dirac = False
    if vasprun.get_band_structure().get_band_gap()['energy'] < 0.1:
        efermi = vasprun.efermi
        bsp = BSPlotter(vasprun.get_band_structure('KPOINTS', line_mode=True,
                                                   efermi=efermi))
        bands = []
        data = bsp.bs_plot_data(zero_to_efermi=True)
        for d in range(len(data['distances'])):
            for i in range(bsp._nb_bands):
                x = data['distances'][d],
                y = [data['energy'][d][str(Spin.up)][i][j]
                     for j in range(len(data['distances'][d]))]
                band = [x, y]
                bands.append(band)

        considered = []
        for i in range(len(bands)):
            for j in range(len(bands)):
                if i != j and (j, i) not in considered:
                    considered.append((j, i))
                    for k in range(len(bands[i][0])):
                        if ((-0.1 < bands[i][1][k] < 0.1) and
                                (-0.1 < bands[i][1][k] - bands[j][1][k] < 0.1)):
                            dirac = True
    return dirac
Exemplo n.º 2
0
def get_band_edges():
    """
    Calculate the band edge locations relative to the vacuum level
    for a semiconductor. If spin-polarized, returns all 4 band edges.
    """

    # Vacuum level energy from LOCPOT.
    locpot = Locpot.from_file("LOCPOT")
    evac = max(locpot.get_average_along_axis(2))

    vasprun = Vasprun("vasprun.xml")
    efermi = vasprun.efermi - evac

    if vasprun.get_band_structure().is_spin_polarized:
        eigenvals = {Spin.up: [], Spin.down: []}
        for band in vasprun.eigenvalues:
            for eigenvalue in vasprun.eigenvalues[band]:
                eigenvals[band[0]].append(eigenvalue)

        up_cbm = min([e[0] for e in eigenvals[Spin.up] if not e[1]]) - evac
        up_vbm = max([e[0] for e in eigenvals[Spin.up] if e[1]]) - evac
        dn_cbm = min([e[0] for e in eigenvals[Spin.down] if not e[1]]) - evac
        dn_vbm = max([e[0] for e in eigenvals[Spin.down] if e[1]]) - evac
        edges = {"up_cbm": up_cbm, "up_vbm": up_vbm, "dn_cbm": dn_cbm, "dn_vbm": dn_vbm, "efermi": efermi}

    else:
        bs = vasprun.get_band_structure()
        cbm = bs.get_cbm()["energy"] - evac
        vbm = bs.get_vbm()["energy"] - evac
        edges = {"cbm": cbm, "vbm": vbm, "efermi": efermi}

    return edges
Exemplo n.º 3
0
def find_dirac_nodes():
    """
    Look for band crossings near (within `tol` eV) the Fermi level.

    Returns:
        boolean. Whether or not a band crossing occurs at or near
            the fermi level.
    """

    vasprun = Vasprun('vasprun.xml')
    dirac = False
    if vasprun.get_band_structure().get_band_gap()['energy'] < 0.1:
        efermi = vasprun.efermi
        bsp = BSPlotter(vasprun.get_band_structure('KPOINTS', line_mode=True,
                                                   efermi=efermi))
        bands = []
        data = bsp.bs_plot_data(zero_to_efermi=True)
        for d in range(len(data['distances'])):
            for i in range(bsp._nb_bands):
                x = data['distances'][d],
                y = [data['energy'][d][str(Spin.up)][i][j]
                     for j in range(len(data['distances'][d]))]
                band = [x, y]
                bands.append(band)

        considered = []
        for i in range(len(bands)):
            for j in range(len(bands)):
                if i != j and (j, i) not in considered:
                    considered.append((j, i))
                    for k in range(len(bands[i][0])):
                        if ((-0.1 < bands[i][1][k] < 0.1) and
                                (-0.1 < bands[i][1][k] - bands[j][1][k] < 0.1)):
                            dirac = True
    return dirac
Exemplo n.º 4
0
def get_bs(dos, vasprun_bands, kpts_bands):  
    ## get BandStructureSymmLine object and "save" in hidden div in json format
    bands = Vasprun(vasprun_bands, parse_projected_eigen = True)
    if dos:
        dos = CompleteDos.from_dict(json.loads(dos))
        bs = bands.get_band_structure(kpts_bands, line_mode=True, efermi=dos.efermi)  
    else:
        bs = bands.get_band_structure(kpts_bands, line_mode=True) 
    return json.dumps(bs.as_dict(), cls=MyEncoder)
Exemplo n.º 5
0
 def get_bandgap_from_aexx(self, structure, aexx, outdir=None):
     vasprun_location = os.path.join(outdir, str(aexx).zfill(2), self.names[-1], 'vasprun.xml')
     try:
         vasprun = Vasprun(vasprun_location, parse_projected_eigen=False)
         band_gap = vasprun.get_band_structure().get_band_gap()['energy']
     except:
         def set_aexx(vasp: Vasp, structure=None):
             vasp.add_keyword('AEXX', aexx/100)
             return vasp
         for x in self.functionals: # Set nupdown
             x.modifications.append(set_aexx)
         super().__call__(structure, outdir=os.path.join(outdir, str(aexx).zfill(2)))
         vasprun = Vasprun(vasprun_location, parse_projected_eigen=False)
         band_gap = vasprun.get_band_structure().get_band_gap()['energy']
     return band_gap
Exemplo n.º 6
0
def boltz_run(vrun=""):
    """
  Helper function to run and store Bolztrap 
  Please note high denske k-point mesh is needed
  The automatic k-point convergene in JARVIS-DFT is generally good enough
  
  Args:
      vrun: path to vasprun.xml
  Returns:
        BoltztrapAnalyzer object
  """
    if which("x_trans") is None or which("BoltzTraP") is None:
        print("Please install BoltzTrap")
    v = Vasprun(vrun)
    kp = vrun.replace("vasprun.xml", "KPOINTS")
    out = vrun.replace("vasprun.xml", "OUTCAR")
    for line in open(out, "r"):
        if "NELECT" in line:
            nelect = float(line.split()[2])
    bs = v.get_band_structure(kp, line_mode=False)
    brun = BoltztrapRunner(bs, nelect)
    path = vrun.split("vasprun.xml")[0]
    folder = str(path) + str("/boltztrap")
    out_trans = str(folder) + str("/boltztrap.outputtrans")
    if not os.path.exists(out_trans):
        brun.run(path_dir=path)
        print("doesnt exist", out_trans)
    bana = BoltztrapAnalyzer.from_files(folder)
    return bana
Exemplo n.º 7
0
    def run_task(self, fw_spec):

        potcar_spec = self.get("potcar_spec", False)
        vasp_input_set_params = self.get("vasp_input_set_params") or {}

        # update the bandgap based on output from the previous calculation,
        # unless the user specified a bandgap via vasp_input_set_params
        if vasp_input_set_params.get("bandgap") is None:
            # First look for the gga_bandgap key in the FW spec, to save parsing time
            if fw_spec.get("gga_bandgap") is not None:
                vasp_input_set_params["bandgap"] = fw_spec.get("gga_bandgap")
            # If not found, parse the files from the previous calc to find the bandgap
            else:
                parse_potcar_file = not potcar_spec
                vasprun = Vasprun("vasprun.xml",
                                  parse_potcar_file=parse_potcar_file)
                bandgap = vasprun.get_band_structure(
                    efermi="smart").get_band_gap()["energy"]
                vasp_input_set_params["bandgap"] = bandgap

        # read the structure from the output of the previous calculation
        structure = Structure.from_file("POSCAR")

        vis = MPScanRelaxSet(structure, **vasp_input_set_params)

        vis.write_input(".", potcar_spec=potcar_spec)
Exemplo n.º 8
0
def read_vasprun(filename='vasprun.xml'):
    """Read a VASP vasprun.xml file to obtain the density of states

    Pymatgen must be present on the system to use this method

    Args:
        filename (str): Path to vasprun.xml file

    Returns:
        data (pymatgen.electronic_structure.dos.Dos): A pymatgen Dos object
    """
    try:
        from pymatgen.io.vasp.outputs import Vasprun
        from pymatgen.electronic_structure.core import Spin
    except ImportError as e:
        e.msg = "pymatgen package neccessary to load vasprun files"
        raise

    vr = Vasprun(filename)
    band = vr.get_band_structure()
    dos = vr.complete_dos

    if band.is_metal():
        zero_point = vr.efermi
    else:
        zero_point = band.get_vbm()['energy']

    # Shift the energies so that the vbm is at 0 eV, also taking into account
    # any gaussian broadening
    dos.energies -= zero_point
    if vr.parameters['ISMEAR'] == 0 or vr.parameters['ISMEAR'] == -1:
        dos.energies -= vr.parameters['SIGMA']

    return dos
Exemplo n.º 9
0
    def from_file(cls, filename):
        """
        Loads a SolarCell instance from a vasprun.xml. # TODO extend

        Args:
            filename (str): vasprum.xml file from which to load the SolarCell object.

        Returns:
            SolarCell

        """
        try:
            vasprun = Vasprun(filename, parse_potcar_file=False)
            diel_tensor = DielTensor.from_file(filename)
        except ParseError:
            raise IOError("Error while parsing the input file. Currently the "
                          "SolarCell class can only be constructed from "
                          "the vasprun.xml file. If you have provided this "
                          "file, check if the run has completed.")

        # Extract the information on the direct and indirect band gap
        bandstructure = vasprun.get_band_structure()
        bandgaps = (bandstructure.get_band_gap()["energy"],
                    bandstructure.get_direct_band_gap())

        return cls(diel_tensor, bandgaps)
Exemplo n.º 10
0
def plot_band_structure(ylim=(-5, 5), draw_fermi=False, fmt='pdf'):
    """
    Plot a standard band structure with no projections.

    Args:
        ylim (tuple): minimum and maximum potentials for the plot's y-axis.
        draw_fermi (bool): whether or not to draw a dashed line at E_F.
        fmt (str): matplotlib format style. Check the matplotlib docs
            for options.
    """

    vasprun = Vasprun('vasprun.xml')
    efermi = vasprun.efermi
    bsp = BSPlotter(
        vasprun.get_band_structure('KPOINTS', line_mode=True, efermi=efermi))
    if fmt == "None":
        return bsp.bs_plot_data()
    else:
        plot = bsp.get_plot(ylim=ylim)
        fig = plot.gcf()
        ax = fig.gca()
        ax.set_xticklabels(
            [r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()])
        ax.set_yticklabels(
            [r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()])
        if draw_fermi:
            ax.plot([ax.get_xlim()[0], ax.get_xlim()[1]], [0, 0], 'k--')
        plt.savefig('band_structure.{}'.format(fmt), transparent=True)

    plt.close()
Exemplo n.º 11
0
def plot_orb_projected_bands(orbitals, fmt='pdf', ylim=(-5, 5)):
    """
    Plot a separate band structure for each orbital of each element in
    orbitals.

    Args:
        orbitals (dict): dictionary of the form
            {element: [orbitals]},
            e.g. {'Mo': ['s', 'p', 'd'], 'S': ['p']}
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True)
    bs = vasprun.get_band_structure('KPOINTS', line_mode=True)
    bspp = BSPlotterProjected(bs)
    ax = bspp.get_projected_plots_dots(orbitals, ylim=ylim).gcf().gca()
    ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()])
    ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()])
    if fmt == "None":
        return ax
    else:
        plt.savefig('orb_projected_bands.{}'.format(fmt))
    plt.close()
Exemplo n.º 12
0
    def test_get_band_structure(self):
        filepath = os.path.join(test_dir, 'vasprun_Si_bands.xml')
        vasprun = Vasprun(filepath,
                          parse_projected_eigen=True, parse_potcar_file=False)
        bs = vasprun.get_band_structure(kpoints_filename=
                                        os.path.join(test_dir,
                                                     'KPOINTS_Si_bands'))
        cbm = bs.get_cbm()
        vbm = bs.get_vbm()
        self.assertEqual(cbm['kpoint_index'], [13], "wrong cbm kpoint index")
        self.assertAlmostEqual(cbm['energy'], 6.2301, "wrong cbm energy")
        self.assertEqual(cbm['band_index'], {Spin.up: [4], Spin.down: [4]},
                         "wrong cbm bands")
        self.assertEqual(vbm['kpoint_index'], [0, 63, 64])
        self.assertAlmostEqual(vbm['energy'], 5.6158, "wrong vbm energy")
        self.assertEqual(vbm['band_index'], {Spin.up: [1, 2, 3],
                                             Spin.down: [1, 2, 3]},
                         "wrong vbm bands")
        self.assertEqual(vbm['kpoint'].label, "\Gamma", "wrong vbm label")
        self.assertEqual(cbm['kpoint'].label, None, "wrong cbm label")

        projected = bs.get_projection_on_elements()
        self.assertAlmostEqual(projected[Spin.up][0][0]["Si"], 0.4238)
        projected = bs.get_projections_on_elements_and_orbitals({"Si": ["s"]})
        self.assertAlmostEqual(projected[Spin.up][0][0]["Si"]["s"], 0.4238)
Exemplo n.º 13
0
    def test_get_band_structure(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            filepath = os.path.join(test_dir, 'vasprun_Si_bands.xml')
            vasprun = Vasprun(filepath,
                              parse_projected_eigen=True,
                              parse_potcar_file=False)
            bs = vasprun.get_band_structure(
                kpoints_filename=os.path.join(test_dir, 'KPOINTS_Si_bands'))
            cbm = bs.get_cbm()
            vbm = bs.get_vbm()
            self.assertEqual(cbm['kpoint_index'], [13],
                             "wrong cbm kpoint index")
            self.assertAlmostEqual(cbm['energy'], 6.2301, "wrong cbm energy")
            self.assertEqual(cbm['band_index'], {
                Spin.up: [4],
                Spin.down: [4]
            }, "wrong cbm bands")
            self.assertEqual(vbm['kpoint_index'], [0, 63, 64])
            self.assertAlmostEqual(vbm['energy'], 5.6158, "wrong vbm energy")
            self.assertEqual(vbm['band_index'], {
                Spin.up: [1, 2, 3],
                Spin.down: [1, 2, 3]
            }, "wrong vbm bands")
            self.assertEqual(vbm['kpoint'].label, "\\Gamma", "wrong vbm label")
            self.assertEqual(cbm['kpoint'].label, None, "wrong cbm label")

            projected = bs.get_projection_on_elements()
            self.assertAlmostEqual(projected[Spin.up][0][0]["Si"], 0.4238)
            projected = bs.get_projections_on_elements_and_orbitals(
                {"Si": ["s"]})
            self.assertAlmostEqual(projected[Spin.up][0][0]["Si"]["s"], 0.4238)
Exemplo n.º 14
0
def plot_orb_projected_bands(orbitals, fmt='pdf', ylim=(-5, 5)):
    """
    Plot a separate band structure for each orbital of each element in
    orbitals.

    Args:
        orbitals (dict): dictionary of the form
            {element: [orbitals]},
            e.g. {'Mo': ['s', 'p', 'd'], 'S': ['p']}
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True)
    bs = vasprun.get_band_structure('KPOINTS', line_mode=True)
    bspp = BSPlotterProjected(bs)
    ax = bspp.get_projected_plots_dots(orbitals, ylim=ylim).gcf().gca()
    ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()])
    ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()])
    if fmt == "None":
        return ax
    else:
        plt.savefig('orb_projected_bands.{}'.format(fmt))
    plt.close()
Exemplo n.º 15
0
def plot_local_potential(axis=2, ylim=(-20, 0), fmt='pdf'):
    """
    Plot data from the LOCPOT file along any of the 3 primary axes.
    Useful for determining surface dipole moments and electric
    potentials on the interior of the material.

    Args:
        axis (int): 0 = x, 1 = y, 2 = z
        ylim (tuple): minimum and maximum potentials for the plot's y-axis.
        fmt (str): matplotlib format style. Check the matplotlib docs
            for options.
    """

    ax = plt.figure(figsize=(16, 10)).gca()

    locpot = Locpot.from_file('LOCPOT')
    structure = Structure.from_file('CONTCAR')
    vd = VolumetricData(structure, locpot.data)
    abs_potentials = vd.get_average_along_axis(axis)
    vacuum_level = max(abs_potentials)

    vasprun = Vasprun('vasprun.xml')
    bs = vasprun.get_band_structure()
    if not bs.is_metal():
        cbm = bs.get_cbm()['energy'] - vacuum_level
        vbm = bs.get_vbm()['energy'] - vacuum_level

    potentials = [potential - vacuum_level for potential in abs_potentials]
    axis_length = structure.lattice._lengths[axis]
    positions = np.arange(0, axis_length, axis_length / len(potentials))

    ax.plot(positions, potentials, linewidth=2, color='k')

    ax.set_xlim(0, axis_length)
    ax.set_ylim(ylim[0], ylim[1])

    ax.set_xticklabels(
        [r'$\mathrm{%s}$' % tick for tick in ax.get_xticks()], size=20)
    ax.set_yticklabels(
        [r'$\mathrm{%s}$' % tick for tick in ax.get_yticks()], size=20)
    ax.set_xlabel(r'$\mathrm{\AA}$', size=24)
    ax.set_ylabel(r'$\mathrm{V\/(eV)}$', size=24)

    if not bs.is_metal():
        ax.text(ax.get_xlim()[1], cbm, r'$\mathrm{CBM}$',
                horizontalalignment='right', verticalalignment='bottom',
                size=20)
        ax.text(ax.get_xlim()[1], vbm, r'$\mathrm{VBM}$',
                horizontalalignment='right', verticalalignment='top', size=20)
        ax.fill_between(ax.get_xlim(), cbm, ax.get_ylim()[1],
                        facecolor=plt.cm.jet(0.3), zorder=0, linewidth=0)
        ax.fill_between(ax.get_xlim(), ax.get_ylim()[0], vbm,
                        facecolor=plt.cm.jet(0.7), zorder=0, linewidth=0)

    if fmt == "None":
        return ax
    else:
        plt.savefig('locpot.{}'.format(fmt))
    plt.close()
Exemplo n.º 16
0
def plot_local_potential(axis=2, ylim=(-20, 0), fmt='pdf'):
    """
    Plot data from the LOCPOT file along any of the 3 primary axes.
    Useful for determining surface dipole moments and electric
    potentials on the interior of the material.

    Args:
        axis (int): 0 = x, 1 = y, 2 = z
        ylim (tuple): minimum and maximum potentials for the plot's y-axis.
        fmt (str): matplotlib format style. Check the matplotlib docs
            for options.
    """

    ax = plt.figure(figsize=(16, 10)).gca()

    locpot = Locpot.from_file('LOCPOT')
    structure = Structure.from_file('CONTCAR')
    vd = VolumetricData(structure, locpot.data)
    abs_potentials = vd.get_average_along_axis(axis)
    vacuum_level = max(abs_potentials)

    vasprun = Vasprun('vasprun.xml')
    bs = vasprun.get_band_structure()
    if not bs.is_metal():
        cbm = bs.get_cbm()['energy'] - vacuum_level
        vbm = bs.get_vbm()['energy'] - vacuum_level

    potentials = [potential - vacuum_level for potential in abs_potentials]
    axis_length = structure.lattice.lengths[axis]
    positions = np.arange(0, axis_length, axis_length / len(potentials))

    ax.plot(positions, potentials, linewidth=2, color='k')

    ax.set_xlim(0, axis_length)
    ax.set_ylim(ylim[0], ylim[1])

    ax.set_xticklabels(
        [r'$\mathrm{%s}$' % tick for tick in ax.get_xticks()], size=20)
    ax.set_yticklabels(
        [r'$\mathrm{%s}$' % tick for tick in ax.get_yticks()], size=20)
    ax.set_xlabel(r'$\mathrm{\AA}$', size=24)
    ax.set_ylabel(r'$\mathrm{V\/(eV)}$', size=24)

    if not bs.is_metal():
        ax.text(ax.get_xlim()[1], cbm, r'$\mathrm{CBM}$',
                horizontalalignment='right', verticalalignment='bottom',
                size=20)
        ax.text(ax.get_xlim()[1], vbm, r'$\mathrm{VBM}$',
                horizontalalignment='right', verticalalignment='top', size=20)
        ax.fill_between(ax.get_xlim(), cbm, ax.get_ylim()[1],
                        facecolor=plt.cm.jet(0.3), zorder=0, linewidth=0)
        ax.fill_between(ax.get_xlim(), ax.get_ylim()[0], vbm,
                        facecolor=plt.cm.jet(0.7), zorder=0, linewidth=0)

    if fmt == "None":
        return ax
    else:
        plt.savefig('locpot.{}'.format(fmt))
    plt.close()
Exemplo n.º 17
0
def plot_simple_smoothed_band_structure(ylim=[-1.5, 3.5], filename=None):
    vasprun = Vasprun('./vasprun.xml')
    bs = vasprun.get_band_structure(line_mode=True)
    if filename is None:
        # BSPlotter(bs).get_plot(smooth=True,ylim=ylim)
        BSPlotter(bs).show(smooth=True, ylim=ylim)
    else:
        BSPlotter(bs).save_plot(filename)
Exemplo n.º 18
0
def bandgap(directory):

    # Load the vasprun.xml file
    vasprun = Vasprun(os.path.join(directory, "vasprun.xml"))

    # Extract the band gap from the band structure
    band_gap = vasprun.get_band_structure().get_band_gap()

    print("Band gap = " + str(band_gap) + " eV")
Exemplo n.º 19
0
def fsplot(
    filename: Optional[Union[Path, str]] = None,
    interpolate_factor: int = 8,
    mu: float = 0.0,
    wigner_seitz: bool = True,
    spin: Optional[Spin] = None,
    plot_type: str = "plotly",
    interactive: bool = False,
    prefix: Optional[str] = None,
    directory: Optional[Union[Path, str]] = None,
    image_format: str = "png",
    dpi: float = 400,
):
    """Plot Fermi surfaces from a vasprun.xml file.

    Args:
        filename: Path to input vasprun file.
        interpolate_factor: The factor by which to interpolate the bands.
        mu: The level above the Fermi energy at which the isosurfaces are to be plotted.
        wigner_seitz: Controls whether the cell is the Wigner-Seitz cell or the
            reciprocal unit cell parallelepiped.
        spin: The spin channel to plot. By default plots both spin channels.
        plot_type: Method used for plotting. Valid options are: "matplotlib", "plotly",
            "mayavi".
        interactive: Whether to enable interactive plots.
        prefix: Prefix for file names.
        directory: The directory in which to save files.
        image_format: The image file format.
        dpi: The dots-per-inch (pixel density) for the image.

    Returns:
        The filename written to disk.
    """
    from ifermi.fermi_surface import FermiSurface
    from ifermi.interpolator import Interpolater
    from ifermi.plotter import FSPlotter

    if not filename:
        filename = find_vasprun_file()

    vr = Vasprun(filename)
    bs = vr.get_band_structure()

    interpolater = Interpolater(bs)

    interp_bs, kpoint_dim = interpolater.interpolate_bands(interpolate_factor)
    fs = FermiSurface.from_band_structure(
        interp_bs, kpoint_dim, mu=mu, wigner_seitz=wigner_seitz, spin=spin,
    )

    plotter = FSPlotter(fs)

    directory = directory if directory else "."
    prefix = "{}_".format(prefix) if prefix else ""
    output_filename = "{}fermi_surface.{}".format(prefix, image_format)
    output_filename = Path(directory) / output_filename
    plotter.plot(plot_type=plot_type, interactive=interactive, filename=output_filename)
Exemplo n.º 20
0
def get_band_edges():
    """
    Calculate the band edge locations relative to the vacuum level
    for a semiconductor.

    Returns:
        edges (dict): {'up_cbm': , 'up_vbm': , 'dn_cbm': , 'dn_vbm': , 'efermi'}
    """
    # Vacuum level energy from LOCPOT.
    locpot = Locpot.from_file('LOCPOT')
    evac = max(locpot.get_average_along_axis(2))

    vasprun = Vasprun('vasprun.xml')
    bs = vasprun.get_band_structure()
    eigenvals = vasprun.eigenvalues
    efermi = vasprun.efermi - evac

    if bs.is_spin_polarized:
        print(eigenvals[Spin.up])
        print([e[0] - evac for e in eigenvals[Spin.up][0]])
        up_cbm = min([
            min([e[0] for e in eigenvals[Spin.up][i] if not e[1]])
            for i in range(len(eigenvals[Spin.up]))
        ]) - evac
        up_vbm = max([
            max([e[0] for e in eigenvals[Spin.up][i] if e[1]])
            for i in range(len(eigenvals[Spin.up]))
        ]) - evac
        dn_cbm = min([
            min([e[0] for e in eigenvals[Spin.down][i] if not e[1]])
            for i in range(len(eigenvals[Spin.down]))
        ]) - evac
        dn_vbm = max([
            max([e[0] for e in eigenvals[Spin.down][i] if e[1]])
            for i in range(len(eigenvals[Spin.down]))
        ]) - evac
        edges = {
            'up_cbm': up_cbm,
            'up_vbm': up_vbm,
            'dn_cbm': dn_cbm,
            'dn_vbm': dn_vbm,
            'efermi': efermi
        }

    else:
        cbm = bs.get_cbm()['energy'] - evac
        vbm = bs.get_vbm()['energy'] - evac
        edges = {
            'up_cbm': cbm,
            'up_vbm': vbm,
            'dn_cbm': cbm,
            'dn_vbm': vbm,
            'efermi': efermi
        }

    return edges
Exemplo n.º 21
0
def get_dir_indir_gap(run=""):
    """
    Get direct and indirect bandgaps for a vasprun.xml
    """

    v = Vasprun(run)
    bandstructure = v.get_band_structure()
    dir_gap = bandstructure.get_direct_band_gap()
    indir_gap = bandstructure.get_band_gap()["energy"]
    return dir_gap, indir_gap
Exemplo n.º 22
0
def banddos(pref='',storedir=None):
    ru=str("vasprun.xml")
    kpfile=str("KPOINTS")




    run = Vasprun(ru, parse_projected_eigen = True)
    bands = run.get_band_structure(kpfile, line_mode = True, efermi = run.efermi)
    bsp =  BSPlotter(bands)
    zero_to_efermi=True
    bandgap=str(round(bands.get_band_gap()['energy'],3))
    print "bg=",bandgap
    data=bsp.bs_plot_data(zero_to_efermi)
    plt = get_publication_quality_plot(12, 8)
    band_linewidth = 3
    x_max = data['distances'][-1][-1]
    print (x_max)
    for d in range(len(data['distances'])):
       for i in range(bsp._nb_bands):
          plt.plot(data['distances'][d],
                 [data['energy'][d]['1'][i][j]
                  for j in range(len(data['distances'][d]))], 'b-',
                 linewidth=band_linewidth)
          if bsp._bs.is_spin_polarized:
             plt.plot(data['distances'][d],
                     [data['energy'][d]['-1'][i][j]
                      for j in range(len(data['distances'][d]))],
                     'r--', linewidth=band_linewidth)
    bsp._maketicks(plt)
    if bsp._bs.is_metal():
         e_min = -10
         e_max = 10
         band_linewidth = 3

    for cbm in data['cbm']:
            plt.scatter(cbm[0], cbm[1], color='r', marker='o',
                        s=100)

            for vbm in data['vbm']:
                plt.scatter(vbm[0], vbm[1], color='g', marker='o',
                            s=100)


    plt.xlabel(r'$\mathrm{Wave\ Vector}$', fontsize=30)
    ylabel = r'$\mathrm{E\ -\ E_f\ (eV)}$' if zero_to_efermi \
       else r'$\mathrm{Energy\ (eV)}$'
    plt.ylabel(ylabel, fontsize=30)
    plt.ylim(-4,4)
    plt.xlim(0,x_max)
    plt.tight_layout()
    plt.savefig('BAND.png',img_format="png")

    plt.close()
Exemplo n.º 23
0
def get_band_edges():
    """
    Calculate the band edge locations relative to the vacuum level
    for a semiconductor. If spin-polarized, returns all 4 band edges.
    """

    # Vacuum level energy from LOCPOT.
    locpot = Locpot.from_file('LOCPOT')
    evac = max(locpot.get_average_along_axis(2))

    vasprun = Vasprun('vasprun.xml')
    efermi = vasprun.efermi - evac

    if vasprun.get_band_structure().is_spin_polarized:
        eigenvals = {Spin.up: [], Spin.down: []}
        for band in vasprun.eigenvalues:
            for eigenvalue in vasprun.eigenvalues[band]:
                eigenvals[band[0]].append(eigenvalue)

        up_cbm = min([e[0] for e in eigenvals[Spin.up] if not e[1]]) - evac
        up_vbm = max([e[0] for e in eigenvals[Spin.up] if e[1]]) - evac
        dn_cbm = min([e[0] for e in eigenvals[Spin.down] if not e[1]]) - evac
        dn_vbm = max([e[0] for e in eigenvals[Spin.down] if e[1]]) - evac
        edges = {
            'up_cbm': up_cbm,
            'up_vbm': up_vbm,
            'dn_cbm': dn_cbm,
            'dn_vbm': dn_vbm,
            'efermi': efermi
        }

    else:
        bs = vasprun.get_band_structure()
        cbm = bs.get_cbm()['energy'] - evac
        vbm = bs.get_vbm()['energy'] - evac
        edges = {'cbm': cbm, 'vbm': vbm, 'efermi': efermi}

    return edges
Exemplo n.º 24
0
 def test_get_band_structure(self):
     filepath = os.path.join(test_dir, "vasprun_Si_bands.xml")
     vasprun = Vasprun(filepath, parse_potcar_file=False)
     bs = vasprun.get_band_structure(kpoints_filename=os.path.join(test_dir, "KPOINTS_Si_bands"))
     cbm = bs.get_cbm()
     vbm = bs.get_vbm()
     self.assertEqual(cbm["kpoint_index"], [13], "wrong cbm kpoint index")
     self.assertAlmostEqual(cbm["energy"], 6.2301, "wrong cbm energy")
     self.assertEqual(cbm["band_index"], {Spin.up: [4], Spin.down: [4]}, "wrong cbm bands")
     self.assertEqual(vbm["kpoint_index"], [0, 63, 64])
     self.assertAlmostEqual(vbm["energy"], 5.6158, "wrong vbm energy")
     self.assertEqual(vbm["band_index"], {Spin.up: [1, 2, 3], Spin.down: [1, 2, 3]}, "wrong vbm bands")
     self.assertEqual(vbm["kpoint"].label, "\Gamma", "wrong vbm label")
     self.assertEqual(cbm["kpoint"].label, None, "wrong cbm label")
Exemplo n.º 25
0
def plot_elt_projected_bands(ylim=(-5, 5), fmt="pdf"):
    """
    Plot separate band structures for each element where the size of the
    markers indicates the elemental character of the eigenvalue.

    Args:
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun("vasprun.xml", parse_projected_eigen=True)
    bs = vasprun.get_band_structure("KPOINTS", line_mode=True)
    bspp = BSPlotterProjected(bs)
    bspp.get_elt_projected_plots(ylim=ylim).savefig("elt_projected_bands.{}".format(fmt))
    plt.close()
Exemplo n.º 26
0
def plot_elt_projected_bands(ylim=(-5, 5), fmt='pdf'):
    """
    Plot separate band structures for each element where the size of the
    markers indicates the elemental character of the eigenvalue.

    Args:
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True)
    bs = vasprun.get_band_structure('KPOINTS', line_mode=True)
    bspp = BSPlotterProjected(bs)
    bspp.get_elt_projected_plots(ylim=ylim).savefig(
        'elt_projected_bands.{}'.format(fmt))
    plt.close()
Exemplo n.º 27
0
def get_band_edges():
    """
    Calculate the band edge locations relative to the vacuum level
    for a semiconductor. For a metal, returns the fermi level.

    Returns:
        edges (dict): {'up_cbm': , 'up_vbm': , 'dn_cbm': , 'dn_vbm': , 'efermi'}
    """
    # Vacuum level energy from LOCPOT.
    locpot = Locpot.from_file('LOCPOT')
    evac = max(locpot.get_average_along_axis(2))

    vasprun = Vasprun('vasprun.xml')
    bs = vasprun.get_band_structure()
    eigenvals = vasprun.eigenvalues
    efermi = vasprun.efermi - evac

    if bs.is_metal():
        edges = {'up_cbm': None, 'up_vbm': None, 'dn_cbm': None, 'dn_vbm': None,
                 'efermi': efermi}

    elif bs.is_spin_polarized:
        up_cbm = min(
            [min([e[0] for e in eigenvals[Spin.up][i] if not e[1]])
             for i in range(len(eigenvals[Spin.up]))]) - evac
        up_vbm = max(
            [max([e[0] for e in eigenvals[Spin.up][i] if e[1]])
             for i in range(len(eigenvals[Spin.up]))]) - evac
        dn_cbm = min(
            [min([e[0] for e in eigenvals[Spin.down][i] if not e[1]])
             for i in range(len(eigenvals[Spin.down]))]) - evac
        dn_vbm = max(
            [max([e[0] for e in eigenvals[Spin.down][i] if e[1]])
             for i in range(len(eigenvals[Spin.down]))]) - evac
        edges = {'up_cbm': up_cbm, 'up_vbm': up_vbm, 'dn_cbm': dn_cbm,
                 'dn_vbm': dn_vbm, 'efermi': efermi}

    else:
        cbm = bs.get_cbm()['energy'] - evac
        vbm = bs.get_vbm()['energy'] - evac
        edges = {'up_cbm': cbm, 'up_vbm': vbm, 'dn_cbm': cbm, 'dn_vbm': vbm,
                 'efermi': efermi}

    return edges
Exemplo n.º 28
0
 def test_get_band_structure(self):
     filepath = os.path.join(test_dir, 'vasprun_Si_bands.xml')
     vasprun = Vasprun(filepath, parse_potcar_file=False)
     bs = vasprun.get_band_structure(kpoints_filename=
                                     os.path.join(test_dir,
                                                  'KPOINTS_Si_bands'))
     cbm = bs.get_cbm()
     vbm = bs.get_vbm()
     self.assertEqual(cbm['kpoint_index'], [13], "wrong cbm kpoint index")
     self.assertAlmostEqual(cbm['energy'], 6.2301, "wrong cbm energy")
     self.assertEqual(cbm['band_index'], {Spin.up: [4], Spin.down: [4]},
                      "wrong cbm bands")
     self.assertEqual(vbm['kpoint_index'], [0, 63, 64])
     self.assertAlmostEqual(vbm['energy'], 5.6158, "wrong vbm energy")
     self.assertEqual(vbm['band_index'], {Spin.up: [1, 2, 3],
                                          Spin.down: [1, 2, 3]},
                      "wrong vbm bands")
     self.assertEqual(vbm['kpoint'].label, "\Gamma", "wrong vbm label")
     self.assertEqual(cbm['kpoint'].label, None, "wrong cbm label")
Exemplo n.º 29
0
 def read_convergence_data(self, data_dir):
     results = {}
     if 'G0W0' in data_dir or 'GW0' in data_dir or 'scGW0' in data_dir:
         run = os.path.join(data_dir, 'vasprun.xml')
         kpoints = os.path.join(data_dir, 'IBZKPT')
         if os.path.isfile(run):
             try:
                 logger.debug(run)
                 print(run)
                 data = Vasprun(run, ionic_step_skip=1)
                 parameters = data.incar.as_dict()
                 bandstructure = data.get_band_structure(kpoints)
                 results = {'ecuteps': parameters['ENCUTGW'],
                            'nbands': parameters['NBANDS'],
                            'nomega': parameters['NOMEGA'],
                            'gwgap': bandstructure.get_band_gap()['energy']}
                 print(results)
             except (IOError, OSError, IndexError, KeyError):
                 pass
     return results
Exemplo n.º 30
0
def plot_orb_projected_bands(orbitals, fmt="pdf", ylim=(-5, 5)):
    """
    Plot a separate band structure for each orbital of each element in
    orbitals.

    Args:
        orbitals (dict): dictionary of the form
            {element: [orbitals]},
            e.g. {'Mo': ['s', 'p', 'd'], 'S': ['p']}
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun("vasprun.xml", parse_projected_eigen=True)
    bs = vasprun.get_band_structure("KPOINTS", line_mode=True)
    bspp = BSPlotterProjected(bs)
    bspp.get_projected_plots_dots(orbitals, ylim=ylim).savefig("orb_projected_bands.{}".format(fmt))
    plt.close()
Exemplo n.º 31
0
    def __init__(self, waveder_file_ip, outcar_file_ip, vasprun_file_static):
        """
        waveder and outcar files from the linear optical independent particle approximation
        vasprun file from the associated static calculation
        """
        waveder = Waveder(waveder_file_ip)
        outcar = Outcar(outcar_file_ip)
        vasprun = Vasprun(vasprun_file_static)

        M_norm = norm(waveder.cder_data, axis=-1) * (1e-10 / e)
        self.M_squared = M_norm * M_norm

        nelect = round(outcar.nelect)
        self.vbm_band = nelect // 2 - 1
        self.cbm_band = nelect // 2

        self.bs = vasprun.get_band_structure()
        self.nbands = self.bs.nb_bands
        self.kpoints = self.bs.kpoints
        self.nkpoints = waveder.nkpoints
Exemplo n.º 32
0
def plot_color_projected_bands(ylim=(-5, 5), fmt="pdf"):
    """
    Plot a single band structure where the color of the band indicates
    the elemental character of the eigenvalue.

    Args:
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun("vasprun.xml", parse_projected_eigen=True)
    bs = vasprun.get_band_structure("KPOINTS", line_mode=True)
    bspp = BSPlotterProjected(bs)
    plot = bspp.get_elt_projected_plots_color()
    fig = plot.gcf()
    ax = fig.gca()
    ax.set_xticklabels([r"$\mathrm{%s}$" % t for t in ax.get_xticklabels()])
    ax.set_ylim(ylim)
    fig.savefig("color_projected_bands.{}".format(fmt))
    plt.close()
Exemplo n.º 33
0
def plot_color_projected_bands(ylim=(-5, 5), fmt='pdf'):
    """
    Plot a single band structure where the color of the band indicates
    the elemental character of the eigenvalue.

    Args:
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True)
    bs = vasprun.get_band_structure('KPOINTS', line_mode=True)
    bspp = BSPlotterProjected(bs)
    plot = bspp.get_elt_projected_plots_color()
    fig = plot.gcf()
    ax = fig.gca()
    ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()])
    ax.set_ylim(ylim)
    fig.savefig('color_projected_bands.{}'.format(fmt))
    plt.close()
Exemplo n.º 34
0
 def read_convergence_data(self, data_dir):
     results = {}
     if 'G0W0' in data_dir or 'GW0' in data_dir or 'scGW0' in data_dir:
         run = os.path.join(data_dir, 'vasprun.xml')
         kpoints = os.path.join(data_dir, 'IBZKPT')
         if os.path.isfile(run):
             try:
                 logger.debug(run)
                 print(run)
                 data = Vasprun(run, ionic_step_skip=1)
                 parameters = data.incar.as_dict()
                 bandstructure = data.get_band_structure(kpoints)
                 results = {
                     'ecuteps': parameters['ENCUTGW'],
                     'nbands': parameters['NBANDS'],
                     'nomega': parameters['NOMEGA'],
                     'gwgap': bandstructure.get_band_gap()['energy']
                 }
                 print(results)
             except (IOError, OSError, IndexError, KeyError):
                 pass
     return results
Exemplo n.º 35
0
def get_fermi_velocities():
    """
    Calculates the fermi velocity of each band that crosses the fermi
    level, according to v_F = dE/(h_bar*dk).

    Returns:
        fermi_velocities (list). The absolute values of the
            adjusted slopes of each band, in Angstroms/s.
    """

    vr = Vasprun('vasprun.xml')
    eigenvalues = vr.eigenvalues
    bs = vr.get_band_structure()
    bands = bs.bands
    kpoints = bs.kpoints
    efermi = bs.efermi
    h_bar = 6.582e-16  # eV*s

    fermi_bands = []
    for spin in bands:
        for i in range(len(bands[spin])):
            if max(bands[spin][i]) > efermi > min(bands[spin][i]):
                fermi_bands.append(bands[spin][i])

    fermi_velocities = []
    for band in fermi_bands:
        for i in range(len(band) - 1):
            if (band[i] < efermi
                    and band[i + 1] > efermi) or (band[i] > efermi
                                                  and band[i + 1] < efermi):
                dk = np.sqrt((kpoints[i + 1].cart_coords[0] -
                              kpoints[i].cart_coords[0])**2 +
                             (kpoints[i + 1].cart_coords[1] -
                              kpoints[i].cart_coords[1])**2)
                v_f = abs((band[i + 1] - band[i]) / (h_bar * dk))
                fermi_velocities.append(v_f)

    return fermi_velocities  # Values are in Angst./s
Exemplo n.º 36
0
def plot_elt_projected_bands(ylim=(-5, 5), fmt='pdf'):
    """
    Plot separate band structures for each element where the size of the
    markers indicates the elemental character of the eigenvalue.

    Args:
        ylim (tuple): minimum and maximum energies for the plot's
            y-axis.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True)
    bs = vasprun.get_band_structure('KPOINTS', line_mode=True)
    bspp = BSPlotterProjected(bs)
    ax = bspp.get_elt_projected_plots(ylim=ylim).gcf().gca()
    ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()])
    ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()])
    if fmt == "None":
        return ax
    else:
        plt.savefig('elt_projected_bands.{}'.format(fmt))
    plt.close()
Exemplo n.º 37
0
def get_fermi_velocities():
    """
    Calculates the fermi velocity of each band that crosses the fermi
    level, according to v_F = dE/(h_bar*dk).

    Returns:
        fermi_velocities (list). The absolute values of the
            adjusted slopes of each band, in Angstroms/s.
    """

    vr = Vasprun('vasprun.xml')
    # eigenvalues = vr.eigenvalues
    bs = vr.get_band_structure()
    bands = bs.bands
    kpoints = bs.kpoints
    efermi = bs.efermi
    h_bar = 6.582e-16  # eV*s

    fermi_bands = []
    for spin in bands:
        for i in range(len(bands[spin])):
            if max(bands[spin][i]) > efermi > min(bands[spin][i]):
                fermi_bands.append(bands[spin][i])

    fermi_velocities = []
    for band in fermi_bands:
        for i in range(len(band)-1):
            if (band[i] < efermi < band[i+1]) or (band[i] > efermi > band[i+1]):
                dk = np.sqrt((kpoints[i+1].cart_coords[0]
                              - kpoints[i].cart_coords[0])**2
                             + (kpoints[i+1].cart_coords[1]
                                - kpoints[i].cart_coords[1])**2)
                v_f = abs((band[i+1] - band[i]) / (h_bar * dk))
                fermi_velocities.append(v_f)

    return fermi_velocities  # Values are in Angst./s
Exemplo n.º 38
0
def plot_band_structure(ylim=(-5, 5), draw_fermi=False, fmt="pdf"):
    """
    Plot a standard band structure with no projections.

    Args:
        ylim (tuple): minimum and maximum potentials for the plot's
            y-axis.
        draw_fermi (bool): whether or not to draw a dashed line at
            E_F.
        fmt (str): matplotlib format style. Check the matplotlib
            docs for options.
    """

    vasprun = Vasprun("vasprun.xml")
    efermi = vasprun.efermi
    bsp = BSPlotter(vasprun.get_band_structure("KPOINTS", line_mode=True, efermi=efermi))
    plot = bsp.get_plot(ylim=ylim)
    fig = plot.gcf()
    ax = fig.gca()
    ax.set_xticklabels([r"$\mathrm{%s}$" % t for t in ax.get_xticklabels()])
    if draw_fermi:
        ax.plot([ax.get_xlim()[0], ax.get_xlim()[1]], [0, 0], "k--")
    fig.savefig("band_structure.{}".format(fmt), transparent=True)
    plt.close()
Exemplo n.º 39
0
    nseg = len(k)-1
    r = [0.5*(red[i]+red[i+1]) for i in range(nseg)]
    g = [0.5*(green[i]+green[i+1]) for i in range(nseg)]
    b = [0.5*(blue[i]+blue[i+1]) for i in range(nseg)]
    a = np.ones(nseg, np.float)*alpha
    lc = LineCollection(seg, colors=zip(r,g,b,a), linewidth = 2)
    ax.add_collection(lc)

if __name__ == "__main__":
    # --------------------------------------------------------------  
    # read data
    # --------------------------------------------------------------      
    # readin bandstructure and density of states from vasprun.xml file
    run = Vasprun("vasprun.xml", parse_projected_eigen = True)
    bands = run.get_band_structure("KPOINTS", line_mode = True, efermi = run.efermi)
    complete_dos = run.complete_dos
    print 'cbm and vbm ', complete_dos.get_cbm_vbm()
    print 'gap = ', complete_dos.get_gap()
    # get orbital projected DOS.    
    spd_dos = complete_dos.get_spd_dos()
    # kpoints labels, must conform with the label in the KPOINTS file
    labels = [ r"$G$", r"$X$", r"$M$", r"$G$"]

    # --------------------------------------------------------------  
    # compute a dictionary of projections on elements and specific orbitals
    #A dictionary of Elements and Orbitals for which we want
    #to have projections on. It is given as: {Element:[orbitals]},
    #e.g., {'Cu':['d','s']}    
    # --------------------------------------------------------------          
    pbands = bands.get_projections_on_elts_and_orbitals({"Fe": ["s", "p", "d"]})
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from pymatgen.electronic_structure.core import Spin
from pymatgen.io.vasp.outputs import Vasprun

if __name__ == "__main__":
    vasprun_dirctory = '/mnt/c/Users/a/OneDrive/Calculation_Data/Mg2C_Graphene/Paper_results/Bands/data/'
    vasprun_file = 'vasprun.xml'
    kpoints_file = 'KPOINTS'
    saving_dictory = '/mnt/c/Users/a/OneDrive/Calculation_Data/Mg2C_Graphene/Paper_results/Picture/'
    saving_file = '{}'.format('TotBand')
    title = '{}'.format(r"$Mg_2C$" + '-Gr' + ' TotBand')
    vasprun = Vasprun("{}".format(vasprun_dirctory + vasprun_file))
    bands = vasprun.get_band_structure("{}".format(vasprun_dirctory +
                                                   kpoints_file),
                                       line_mode=True,
                                       efermi=vasprun.efermi)

    energy_min = 0
    energy_max = 0.12
    # 高对称点设置
    labels = [r"$M$", r"$\Gamma$", r"$K$", r"$M$"]
    labels_position = list()
    font = {'family': 'sans-serif', 'size': 24}
    # 开始画图
    fig, ax1 = plt.subplots(figsize=(16, 10))
    # 设置刻度向内
    ax1.tick_params(direction='in')
    # 设置能量区间
    ax1.set_ylim(energy_min, energy_max)
    # 设置x轴区间
Exemplo n.º 41
0
# !/usr/bin/env python
# -*- coding: utf-8 -*-

from pymatgen.io.vasp.outputs import Vasprun
from pymatgen.electronic_structure.plotter import BSPlotter
vasprun = Vasprun("vasprun.xml")
bss = vasprun.get_band_structure(kpoints_filename="KPOINTS", line_mode=True)
plotter = BSPlotter(bss)
#plotter.save_plot("bandStructure.svg", img_format="svg")
#plotter.save_plot("bandStructure.png", img_format="png")
#plotter.save_plot("lim_bandStructure.svg", img_format="svg", ylim=(-.2, 1.4))
plotter.save_plot("MAPbI3-primitive.png", img_format="png", ylim=(-5, 5))
plotter.plot_brillouin()
Exemplo n.º 42
0
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from matplotlib.pyplot import figure

import matplotlib
matplotlib.rcParams.update({'font.size': 22})

#
from pymatgen.io.vasp.outputs import Vasprun
# modified version of pymatgen plotter
from my_functions.pmg_electronic_structure_plotter import BSPlotter

vaspout = Vasprun("./vasprun.xml")
bandstr = vaspout.get_band_structure(line_mode=True)

# give range for y axis
ymin = -7
ymax = 6

BSPlotter(bandstr).get_plot(ylim=[ymin, ymax], get_subplot=True)

# path for location of DOS file
dos_path = '..'
dos_path += '/1-DOS/'

# give elements in list
type_elements = ['Na', 'Nb', 'O']

# give a list of orbitals you want to plot for each element : 'element_orbital'
Exemplo n.º 43
0
def _get_fermi_surface(
    filename,
    interpolation_factor,
    properties,
    mu,
    decimate_factor,
    smooth,
    wigner_seitz,
    calculate_dimensionality,
):
    """Common helper method to get Fermi surface"""
    import numpy as np
    from pymatgen.electronic_structure.core import Spin
    from pymatgen.io.vasp.outputs import Vasprun

    from ifermi.interpolate import FourierInterpolator
    from ifermi.kpoints import kpoints_from_bandstructure
    from ifermi.surface import FermiSurface

    if not filename:
        filename = find_vasprun_file()

    parse_projections = properties == "spin"
    vr = Vasprun(filename, parse_projected_eigen=parse_projections)
    bs = vr.get_band_structure()

    interpolator = FourierInterpolator(bs)
    interp_bs, velocities = interpolator.interpolate_bands(
        interpolation_factor, return_velocities=True
    )

    property_data = None
    property_kpoints = None
    if properties == "velocity":
        property_data = velocities
        property_kpoints = kpoints_from_bandstructure(interp_bs)
    elif properties == "spin":
        if vr.projected_magnetisation is not None:
            # transpose so shape is (nbands, nkpoints, natoms, norbitals, 3)
            property_data = vr.projected_magnetisation.transpose(1, 0, 2, 3, 4)

            # sum across all atoms and orbitals
            property_data = property_data.sum(axis=(2, 3))
            property_data /= np.linalg.norm(property_data, axis=-1)[..., None]

            property_data = {Spin.up: property_data}
            property_kpoints = kpoints_from_bandstructure(bs)
        else:
            click.echo(
                "ERROR: Band structure does not include spin properties.\n"
                "Ensure calculation was run with LSORBIT or LNONCOLLINEAR = True "
                "and LSORBIT = 11."
            )
            sys.exit()

    return (
        FermiSurface.from_band_structure(
            interp_bs,
            mu=mu,
            wigner_seitz=wigner_seitz,
            decimate_factor=decimate_factor,
            smooth=smooth,
            property_data=property_data,
            property_kpoints=property_kpoints,
            calculate_dimensionality=calculate_dimensionality,
        ),
        bs,
    )
Exemplo n.º 44
0
    yaxis=dosyaxis,
    font=dict(
    family="Arial",
    size=22
        )
)

dosfig = go.Figure(data=dosdata, layout=doslayout)
plot_url = iplot(dosfig, filename="DOS")


# In[9]:


run = Vasprun("./vasprun.xml", parse_projected_eigen = True)
bands = run.get_band_structure("./KPOINTS", line_mode=True, efermi=dosrun.efermi)


# In[10]:


# Look for the boundaries of the band diagram in order to set up y axes range.
emin = 1e100
emax = -1e100
for spin in bands.bands.keys():
    for band in range(bands.nb_bands):
        emin = min(emin, min(bands.bands[spin][band]))
        emax = max(emax, max(bands.bands[spin][band]))
emin = emin - bands.efermi - 1 
emax = emax - bands.efermi + 1
Exemplo n.º 45
0
if __name__ == "__main__":
    # read data
    # ---------

    # kpoints labels
    labels = [r"$L$", r"$\Gamma$", r"$X$", r"$U,K$", r"$\Gamma$"]

    # density of states
    dosrun = Vasprun("./DOS/vasprun.xml")
    spd_dos = dosrun.complete_dos.get_spd_dos()

    # bands
    run = Vasprun("./Bandes/vasprun.xml", parse_projected_eigen=True)
    bands = run.get_band_structure("./Bandes/KPOINTS",
                                   line_mode=True,
                                   efermi=dosrun.efermi)

    # set up matplotlib plot
    # ----------------------

    # general options for plot
    font = {'family': 'serif', 'size': 24}
    plt.rc('font', **font)

    # set up 2 graph with aspec ration 2/1
    # plot 1: bands diagram
    # plot 2: Density of States
    gs = GridSpec(1, 2, width_ratios=[2, 1])
    fig = plt.figure(figsize=(11.69, 8.27))
    fig.suptitle("Bands diagram of copper")
Exemplo n.º 46
0
from pathlib import Path

from monty.serialization import dumpfn
from ifermi.fermi_surface import FermiSurface
from ifermi.interpolator import Interpolater

from pymatgen.io.vasp.outputs import Vasprun


if __name__ == "__main__":
    example_dir = Path("../../examples")
    vr = Vasprun(example_dir / "MgB2/vasprun.xml")
    bs = vr.get_band_structure()

    dumpfn(bs.structure, "structure.json.gz")

    interpolater = Interpolater(bs)
    new_bs, kpoint_dim = interpolater.interpolate_bands(1)

    bs_data = {"bs": new_bs, "dim": kpoint_dim, "structure": bs.structure}
    dumpfn(bs_data, "bs_BaFe2As2.json.gz")

    fs = FermiSurface.from_band_structure(new_bs, kpoint_dim, wigner_seitz=True)
    dumpfn(fs, "fs_BaFe2As2_wigner.json.gz")
    dumpfn(fs.reciprocal_space, "rs_wigner.json.gz")

    fs = FermiSurface.from_band_structure(new_bs, kpoint_dim, wigner_seitz=False)
    dumpfn(fs, "fs_BaFe2As2_reciprocal.json.gz")
    dumpfn(fs.reciprocal_space, "rs_reciprocal.json.gz")
Exemplo n.º 47
0
    def assimilate(self, path, launches_coll=None):
        """
        Parses vasp runs. Then insert the result into the db. and return the
        task_id or doc of the insertion.

        Returns:
            If in simulate_mode, the entire doc is returned for debugging
            purposes. Else, only the task_id of the inserted doc is returned.
        """

        d = self.get_task_doc(path)
        if self.additional_fields:
            d.update(self.additional_fields)  # always add additional fields, even for failed jobs

        try:
            d["dir_name_full"] = d["dir_name"].split(":")[1]
            d["dir_name"] = get_block_part(d["dir_name_full"])
            d["stored_data"] = {}
        except:
            print 'COULD NOT GET DIR NAME'
            pprint.pprint(d)
            print traceback.format_exc()
            raise ValueError('IMPROPER PARSING OF {}'.format(path))

        if not self.simulate:
            # Perform actual insertion into db. Because db connections cannot
            # be pickled, every insertion needs to create a new connection
            # to the db.
            conn = MongoClient(self.host, self.port)
            db = conn[self.database]
            if self.user:
                db.authenticate(self.user, self.password)
            coll = db[self.collection]

            # Insert dos data into gridfs and then remove it from the dict.
            # DOS data tends to be above the 4Mb limit for mongo docs. A ref
            # to the dos file is in the dos_fs_id.
            result = coll.find_one({"dir_name": d["dir_name"]})

            if result is None or self.update_duplicates:
                if self.parse_dos and "calculations" in d:
                    for calc in d["calculations"]:
                        if "dos" in calc:
                            dos = json.dumps(calc["dos"], cls=MontyEncoder)
                            fs = gridfs.GridFS(db, "dos_fs")
                            dosid = fs.put(dos)
                            calc["dos_fs_id"] = dosid
                            del calc["dos"]

                d["last_updated"] = datetime.datetime.today()
                if result is None:
                    if ("task_id" not in d) or (not d["task_id"]):
                        d["task_id"] = "mp-{}".format(
                            db.counter.find_one_and_update(
                                {"_id": "taskid"}, {"$inc": {"c": 1}}
			    )["c"])
                    logger.info("Inserting {} with taskid = {}"
                    .format(d["dir_name"], d["task_id"]))
                elif self.update_duplicates:
                    d["task_id"] = result["task_id"]
                    logger.info("Updating {} with taskid = {}"
                    .format(d["dir_name"], d["task_id"]))

                #Fireworks processing

                self.process_fw(path, d)

                try:
                    #Add oxide_type
                    struct=Structure.from_dict(d["output"]["crystal"])
                    d["oxide_type"]=oxide_type(struct)
                except:
                    logger.error("can't get oxide_type for {}".format(d["task_id"]))
                    d["oxide_type"] = None

                #Override incorrect outcar subdocs for two step relaxations
                if "optimize structure" in d['task_type'] and \
                    os.path.exists(os.path.join(path, "relax2")):
                    try:
                        run_stats = {}
                        for i in [1,2]:
                            o_path = os.path.join(path,"relax"+str(i),"OUTCAR")
                            o_path = o_path if os.path.exists(o_path) else o_path+".gz"
                            outcar = Outcar(o_path)
                            d["calculations"][i-1]["output"]["outcar"] = outcar.as_dict()
                            run_stats["relax"+str(i)] = outcar.run_stats
                    except:
                        logger.error("Bad OUTCAR for {}.".format(path))

                    try:
                        overall_run_stats = {}
                        for key in ["Total CPU time used (sec)", "User time (sec)",
                                    "System time (sec)", "Elapsed time (sec)"]:
                            overall_run_stats[key] = sum([v[key]
                                              for v in run_stats.values()])
                        run_stats["overall"] = overall_run_stats
                    except:
                        logger.error("Bad run stats for {}.".format(path))

                    d["run_stats"] = run_stats

                # add is_compatible
                mpc = MaterialsProjectCompatibility("Advanced")

                try:
                    func = d["pseudo_potential"]["functional"]
                    labels = d["pseudo_potential"]["labels"]
                    symbols = ["{} {}".format(func, label) for label in labels]
                    parameters = {"run_type": d["run_type"],
                              "is_hubbard": d["is_hubbard"],
                              "hubbards": d["hubbards"],
                              "potcar_symbols": symbols}
                    entry = ComputedEntry(Composition(d["unit_cell_formula"]),
                                          0.0, 0.0, parameters=parameters,
                                          entry_id=d["task_id"])

                    d['is_compatible'] = bool(mpc.process_entry(entry))
                except:
                    traceback.print_exc()
                    print 'ERROR in getting compatibility'
                    d['is_compatible'] = None


                #task_type dependent processing
                if 'static' in d['task_type']:
                    launch_doc = launches_coll.find_one({"fw_id": d['fw_id'], "launch_dir": {"$regex": d["dir_name"]}}, {"action.stored_data": 1})
                    for i in ["conventional_standard_structure", "symmetry_operations",
                              "symmetry_dataset", "refined_structure"]:
                        try:
                            d['stored_data'][i] = launch_doc['action']['stored_data'][i]
                        except:
                            pass

                #parse band structure if necessary
                if ('band structure' in d['task_type'] or "Uniform" in d['task_type'])\
                    and d['state'] == 'successful':
                    launch_doc = launches_coll.find_one({"fw_id": d['fw_id'], "launch_dir": {"$regex": d["dir_name"]}},
                                                        {"action.stored_data": 1})
                    vasp_run = Vasprun(zpath(os.path.join(path, "vasprun.xml")), parse_projected_eigen=False)

                    if 'band structure' in d['task_type']:
                        def string_to_numlist(stringlist):
                            g=re.search('([0-9\-\.eE]+)\s+([0-9\-\.eE]+)\s+([0-9\-\.eE]+)', stringlist)
                            return [float(g.group(i)) for i in range(1,4)]

                        for i in ["kpath_name", "kpath"]:
                            d['stored_data'][i] = launch_doc['action']['stored_data'][i]
                        kpoints_doc = d['stored_data']['kpath']['kpoints']
                        for i in kpoints_doc:
                            kpoints_doc[i]=string_to_numlist(kpoints_doc[i])
                        bs=vasp_run.get_band_structure(efermi=d['calculations'][0]['output']['outcar']['efermi'],
                                                       line_mode=True)
                    else:
                        bs=vasp_run.get_band_structure(efermi=d['calculations'][0]['output']['outcar']['efermi'],
                                                       line_mode=False)
                    bs_json = json.dumps(bs.as_dict(), cls=MontyEncoder)
                    fs = gridfs.GridFS(db, "band_structure_fs")
                    bs_id = fs.put(bs_json)
                    d['calculations'][0]["band_structure_fs_id"] = bs_id

                    # also override band gap in task doc
                    gap = bs.get_band_gap()
                    vbm = bs.get_vbm()
                    cbm = bs.get_cbm()
                    update_doc = {'bandgap': gap['energy'], 'vbm': vbm['energy'], 'cbm': cbm['energy'], 'is_gap_direct': gap['direct']}
                    d['analysis'].update(update_doc)
                    d['calculations'][0]['output'].update(update_doc)

		coll.update_one({"dir_name": d["dir_name"]}, {'$set': d}, upsert=True)

                return d["task_id"], d
            else:
                logger.info("Skipping duplicate {}".format(d["dir_name"]))
                return result["task_id"], result

        else:
            d["task_id"] = 0
            logger.info("Simulated insert into database for {} with task_id {}"
            .format(d["dir_name"], d["task_id"]))
            return 0, d