Exemplo n.º 1
0
 def __init__(self, threshold=1e-2, **kwargs):
     """
     Args:
         kwargs:
             args for SubstitutionProbability class
             lambda_table, alpha
     """
     self._kwargs = kwargs
     self._threshold = threshold
     self._substitutor = SubstitutionPredictor(threshold=threshold,
                                               **kwargs)
Exemplo n.º 2
0
class SubstitutionPredictorTransformation(AbstractTransformation):
    """
    This transformation takes a structure and uses the structure
    prediction module to find likely site substitutions.
    """

    def __init__(self, threshold=1e-2, **kwargs):
        """
        Args:
            kwargs:
                args for SubstitutionProbability class
                lambda_table, alpha
        """
        self._kwargs = kwargs
        self._threshold = threshold
        self._substitutor = SubstitutionPredictor(threshold=threshold,
                                                  **kwargs)

    def apply_transformation(self, structure, return_ranked_list=False):
        if not return_ranked_list:
            raise ValueError("SubstitutionPredictorTransformation doesn't"
                             " support returning 1 structure")

        preds = self._substitutor.composition_prediction(
            structure.composition, to_this_composition=False)
        preds.sort(key=lambda x: x['probability'], reverse=True)

        outputs = []
        for pred in preds:
            st = SubstitutionTransformation(pred['substitutions'])
            output = {'structure': st.apply_transformation(structure),
                      'probability': pred['probability'],
                      'threshold': self._threshold, 'substitutions': {}}
            #dictionary keys have to be converted to strings for JSON
            for key, value in pred['substitutions'].items():
                output['substitutions'][str(key)] = str(value)
            outputs.append(output)
        return outputs

    def __str__(self):
        return "SubstitutionPredictorTransformation"

    def __repr__(self):
        return self.__str__()

    @property
    def inverse(self):
        return None

    @property
    def is_one_to_many(self):
        return True

    @property
    def to_dict(self):
        d = {"name": self.__class__.__name__, "version": __version__,
             "init_args": self._kwargs, "@module": self.__class__.__module__,
             "@class": self.__class__.__name__}
        d["init_args"]["threshold"] = self._threshold
        return d
Exemplo n.º 3
0
    def run_task(self, fw_spec):
        db = SPStructuresMongoAdapter.auto_load()
        tstructs = []
        species = fw_spec['species']
        t = fw_spec['threshold']
        for p in SubstitutionPredictor(threshold=t).list_prediction(species):
            subs = p['substitutions']
            if len(set(subs.values())) < len(species):
                continue
            st = SubstitutionTransformation(subs)
            target = map(str, subs.keys())
            for snl in db.get_snls(target):
                ts = TransformedStructure.from_snl(snl)
                ts.append_transformation(st)
                if ts.final_structure.charge == 0:
                    tstructs.append(ts)

        transmuter = StandardTransmuter(tstructs)
        f = RemoveDuplicatesFilter(structure_matcher=StructureMatcher(
            comparator=ElementComparator(), primitive_cell=False))
        transmuter.apply_filter(f)
        results = []
        for ts in transmuter.transformed_structures:
            results.append(ts.to_snl([]).to_dict)
        submissions = SPSubmissionsMongoAdapter.auto_load()
        submissions.insert_results(fw_spec['submission_id'], results)
Exemplo n.º 4
0
 def __init__(self, threshold=1e-2, **kwargs):
     """
     Args:
         kwargs:
             args for SubstitutionProbability class
             lambda_table, alpha
     """
     self._kwargs = kwargs
     self._threshold = threshold
     self._substitutor = SubstitutionPredictor(threshold=threshold, **kwargs)
Exemplo n.º 5
0
class SubstitutionPredictorTransformation(AbstractTransformation):
    """
    This transformation takes a structure and uses the structure
    prediction module to find likely site substitutions.

    Args:
        threshold: Threshold for substitution.
        **kwargs: Args for SubstitutionProbability class lambda_table, alpha
    """
    def __init__(self, threshold=1e-2, **kwargs):
        self.kwargs = kwargs
        self.threshold = threshold
        self._substitutor = SubstitutionPredictor(threshold=threshold,
                                                  **kwargs)

    def apply_transformation(self, structure, return_ranked_list=False):
        if not return_ranked_list:
            raise ValueError("SubstitutionPredictorTransformation doesn't"
                             " support returning 1 structure")

        preds = self._substitutor.composition_prediction(
            structure.composition, to_this_composition=False)
        preds.sort(key=lambda x: x['probability'], reverse=True)

        outputs = []
        for pred in preds:
            st = SubstitutionTransformation(pred['substitutions'])
            output = {
                'structure': st.apply_transformation(structure),
                'probability': pred['probability'],
                'threshold': self.threshold,
                'substitutions': {}
            }
            # dictionary keys have to be converted to strings for JSON
            for key, value in pred['substitutions'].items():
                output['substitutions'][str(key)] = str(value)
            outputs.append(output)
        return outputs

    def __str__(self):
        return "SubstitutionPredictorTransformation"

    def __repr__(self):
        return self.__str__()

    @property
    def inverse(self):
        return None

    @property
    def is_one_to_many(self):
        return True
Exemplo n.º 6
0
    def test_prediction(self):
        sp = SubstitutionPredictor(threshold = 8e-3)
        result = sp.list_prediction(['Na+', 'Cl-'], to_this_composition = True)[5]
        cprob = sp.p.cond_prob_list(result['substitutions'].keys(),
                                    result['substitutions'].values())
        self.assertAlmostEqual(result['probability'], cprob)
        self.assertEqual(set(result['substitutions'].values()), set(['Na+', 'Cl-']))

        result = sp.list_prediction(['Na+', 'Cl-'], to_this_composition = False)[5]
        cprob = sp.p.cond_prob_list(result['substitutions'].keys(),
                                    result['substitutions'].values())
        self.assertAlmostEqual(result['probability'], cprob)
        self.assertNotEqual(set(result['substitutions'].values()),
                            set(['Na+', 'Cl-']))

        c = Composition({'Ag2+' : 1, 'Cl-' : 2})
        result = sp.composition_prediction(c, to_this_composition = True)[2]
        self.assertEqual(set(result['substitutions'].values()), set(c.elements))
        result = sp.composition_prediction(c, to_this_composition = False)[2]
        self.assertEqual(set(result['substitutions'].keys()), set(c.elements))
Exemplo n.º 7
0
 def __init__(self, threshold=1e-2, **kwargs):
     self._kwargs = kwargs
     self._threshold = threshold
     self._substitutor = SubstitutionPredictor(threshold=threshold,
                                               **kwargs)
Exemplo n.º 8
0
 def __init__(self, threshold=1e-2, **kwargs):
     self.kwargs = kwargs
     self.threshold = threshold
     self._substitutor = SubstitutionPredictor(threshold=threshold,
                                               **kwargs)